JP2753248B2 - 電気伝導性複合酸化物の結晶製造方法 - Google Patents

電気伝導性複合酸化物の結晶製造方法

Info

Publication number
JP2753248B2
JP2753248B2 JP63039389A JP3938988A JP2753248B2 JP 2753248 B2 JP2753248 B2 JP 2753248B2 JP 63039389 A JP63039389 A JP 63039389A JP 3938988 A JP3938988 A JP 3938988A JP 2753248 B2 JP2753248 B2 JP 2753248B2
Authority
JP
Japan
Prior art keywords
cuo
crystal
oxide
composite oxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63039389A
Other languages
English (en)
Other versions
JPS6428300A (en
Inventor
晴弘 長谷川
潮 川辺
敏之 会田
一正 高木
徳海 深沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPS6428300A publication Critical patent/JPS6428300A/ja
Application granted granted Critical
Publication of JP2753248B2 publication Critical patent/JP2753248B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • Y02E40/64

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は銅イオンを持つ電気伝導性複合酸化物の結晶
製造方法に関する。
[従来の技術] アルカリ土類元素(M)を含むランタンの三二酸化物
と銅(Cu)イオンとからなる組成(La1-XMX2CuO4(M
=Sr,Ba,Ca)の複合酸化物はニッケル弗化カリウム(K2
NiF4)型結晶構造であらわされる。これは正方晶系(空
間群:D4n−I4/mmm)に属する結晶であり、岩塩構造のも
のとペロブスカイト型構造のものが層状に積み重なった
複合構造になっている。一方、アルカリ土類元素(M)
を含む希土類元素の三二酸化物と銅(Cu)イオンとから
なるY−M−Cu−O系(M=Sr,Ba,Ca)の複合酸化物は
ペロブカイト型類似結晶構造であらわされる。
希土類元素は両構造の間でイオン・スペーサーとなっ
ていて銅イオンは酸素八面体の中にある。したがって、
この構造のためにC軸の方向とC軸に垂直な面内とでは
電気伝導や電子放出などの特性が異なり、すなわち異方
性が出てくる。最近、ランタンの一部をバリウムやスト
ロンチウムのようなアルカリ土類金属の微量で置換した
複合酸化物は、30〜40Kかそれ以上の温度で超伝導性を
示し、高い臨界温度の超伝導体であることが明らかにな
った。この種の超伝導体はC軸とそれに垂直な方向では
超伝導のコヒーレンス長さは約10倍異なっている。また
この複合酸化物は、仕事関数を小さくできる単原子層を
酸化原子と結合して表面に形成することのできるバリウ
ムやストロンチウムを構成元素Mに含むことができるの
で、電子放出材料としても優れている。
[発明が解決しようとする課題] しかしながら、上記物質は、仕事関数を小さくできる
単原子層がC軸方向に積層されるため異方性を有する。
従って、この複合酸化物を超伝導応用や電子放出用の電
気伝導材料として実用に供するためにはこの複合酸化物
の単結晶が必要である。この複合酸化物は、たとえば、
La2O3,Y2O3やCuO,BaOあるいはSrOのように構成されてい
て、しかも融点の近くに加熱すると混合相になり易い、
したがって高温で溶解する結晶引き上げ法では良質な単
結晶は得られない。このような事情から、従来、実用に
供しうるような複合単結晶の製造方法はほとんどなかっ
た。本発明の目的は良質で、かつ、適度の大きさをもっ
た酸化物超電導体の結晶製造方法を提供することにあ
る。
[課題を解決するための手段] 上記目的は、K2NiF4型結晶構造又はペロブスカイト型
類似結晶構造であって、銅イオンを持つ複合酸化物La−
M−Cu−O系またはY−M−Cu−O系(M=Sr,Ba,Ca)
の多結晶体、及び、上記複合酸化物の構成元素の化学量
論的組成比に近い混合物の少なくとも一方を出発原料と
し、上記複合酸化物の融点より低い融点を有する酸化第
2銅(CuO)、または、これに酸化第1銅(Cu2O)を加
えたものを溶解剤とし、上記出発原料が上記溶融剤に溶
解しうる該複合酸化物の融点以下の溶解温度に保って上
記出発原料を上記溶融剤に溶解させた後、上記出発原料
が溶解してできた飽和溶解液から上記複合酸化物の結晶
を成長させることによって達成できる。すなわち、本発
明の製法は複合酸化物より低い融点をもつ構成酸化物の
酸化第二銅CuO(融点:約1026℃)もしくは酸化第一銅C
u2O(融点:約1235℃)を混合したものを溶融剤として
用いた融剤法によって、複合酸化物の直接溶融法による
よりはるかに低い温度(1026〜1300℃)で良質で、適度
の大きさをもった複合酸化物の結晶を構成させるもので
ある。
[作用] 以下に、本発明の製法の基本的原理について述べる。
電気電導材料として単結晶の大きさは用途によって異
なる。超伝導電極や超伝導配線に用いる場合には、少な
くとも数mm角の薄い板状結晶や絶縁基板の上に薄膜結晶
ができることが望ましい。また電子放出材料として用い
る場合には、数mm角の薄い板状結晶でも使用できるが、
陰極チップとして用いるには少なくとも1mm角×長さ8mm
程度の大きさがあれば十分である。
そこで、本発明では、La−M−Cu−O系またはY−M
−Cu−O系(M=Sr,Ba,Ca)複合酸化物より低い融点を
もつ構成酸化物の酸化第二銅CuO(融点:約1026℃)又
はそれに酸化第一銅Cu2O(融点:約1235℃)を混合した
ものを溶融剤(溶媒)とし、上記複合酸化物の過飽和溶
液から複合酸化物La−M−Cu−O系またはY−M−Cu−
O系(M=Sr,Ba,Ca)結晶を晶出させる。このような溶
融剤としては、 (1)複合酸化物La−M−Cu−O系またはY−M−Cu−
O系(N=Sr,Ba,Ca)より融点の低い溶融剤であるこ
と、 (2)複合酸化物の構成酸化物のなかで最も融点の低い
酸化物で、その溶融状態において複合酸化物そのものを
完全に溶解するが、その固体状態において溶解度をもた
ないか、あるいは溶解度に限界があること、 (3)経済的に安価に入手でき、しかも公害を出さない
ものであること、 (4)晶出すべき上記複合酸化物があまり溶解しない希
酸アルカリもしくは温水で、比較的簡単に溶解除去でき
るものであること、 という条件を満たすものであれば十分である。以上の条
件を満たす溶融剤としては、構成酸化物の酸化第二銅Cu
O(融点:約1026℃)もしくはそれに酸化第一銅CuO
2(融点:約1235℃)を混合したものがある。たとえ
ば、晶出すべき複合酸化物La−M−Cu−O系またはY−
M−Cu−O系(M=Sr,Ba,Ca)の多結晶体又はその構成
酸化物もしくは炭酸塩、たとえばLa2O3,MO,CuO又はY
2O3,MO,CuOのほぼ化学量論的組成比に近い混合酸化物を
上記溶融剤の中に溶解させる。そして、その溶融液を複
合酸化物La−M−Cu−O系またはY−M−Cu−O系(M
=Sr,Ba,Ca)、の融点より低い温度に保持し、飽和溶融
液を作る。この飽和溶融液から複合酸化物La−M−Cu−
O系またはY−M−Cu−O系(M=Sr,Ba,Ca)の結晶を
晶出させる。この晶出方法には次の二つがある。その一
つは上記過飽和溶液を上記保持温度から複合酸化物La−
M−Cu−O系またはY−M−Cu−O系(M=Sr,Ba,Ca)
結晶の発生速度よりわずかに速い結晶成長速度と見合っ
た程度の徐冷速度で降温することによって、種子結晶を
使わずに、比較的大きな複合酸化物La−M−Cu−O系ま
たはY−M−Cu−O系(M=Sr,Ba,Ca)結晶を上記飽和
溶液から晶出させることができる。さらに、結晶発生素
度と結晶成長速度とを、徐冷開始温度と徐冷速度とで制
御することによって、適度の大きさでかつ良質な、多結
晶単結晶を同時に得ることができる。もう一つの方法は
上記飽和溶液の保持温度より約10℃下の一定温度に保持
された過飽和融液中に基板を浸漬,回転して、その基板
上に比較的厚い複合酸化物La−M−Cu−O系またはY−
M−Cu−O系(M=Sr,Ba,Ca)の単結晶薄膜をエピタキ
シャル成長させることができる。
このような溶融剤で製造した複合酸化物系電気伝導材
料は従来のような溶融法に比べて電気伝導材料として適
度の大きさの単結晶や結晶薄膜が得られ、さらに、複合
酸化物La−M−Cu−O系またはY−M−Cu−O系(M=
Sr,Ba,Ca)の融点(約1400℃)以下の低い温度で結晶化
させたものであるため、結晶格子の乱れが少なく、かつ
内部歪みも少ない良質の結晶が得られるという効果があ
る。したがってパターンニングによる微細加工も極めて
容易となる。またこのような良質な結晶表面にアルゴン
やボロン,水素等の不純物をボルテックスの寸法に近い
10nm程度の間隔をもってイオン打込みすると、磁束のピ
ン止め作用を高めることができ、この結果として超電導
体に流し得る電流を高めることができる。
[実施例] 以下、本発明に係る酸化物超伝導体の製造方法の実施
例を説明する。
まず、K2NiF4結晶構造であって、酸素八面体の体心に
銅イオンをもつ複合酸化物La−M−Cu−O系(M=Sr,B
a,Ca)の場合の第1の実施例について説明する。
(La1-XMX2CuO4(M=Sr,Ba,Ca)焼結体を出発原
料,酸化銅(Cu2O・2CuO)を溶解剤とした場合の単結晶
製造方法である。
本実施例は代表的な例として、M=Srの場合の複合酸
化物の場合について述べる。
約2gの(La0.9Sr0.12CuO4焼結体の塊からなる出発
原料と、約1.47gのCu2O及び約1.63gのCuOからなる溶融
剤とをPtルツボに入れる。空気中で一度1300℃〜1100℃
に十分の時間保って、酸化銅の融液中に(La0.9Sr0.1
2CuO4を含む飽和溶液を形成する。その後、この飽和溶
液を徐冷速度3〜70℃/hで降温して酸化銅の固化したも
のを作製する。ある温度における飽和溶液に対する(La
0.9Sr0.12CuO4結晶体の数から結晶発生速度を求める
ことができる。さらに、結晶成長素度については得られ
た単結晶の大きさから推定できる。
この実施例に用いた電気炉は、最高1500℃であり、得
られた結晶の同定は粉末X線回折あるいはラウエ回折法
を用いて行った。
原料に使用した(La0.9Sr0.12CuO4結晶体は 0.9La2O3+0.2SrCO3+CuO+0.05O2=(La0.9Sr0.1)2CuO4 +0.2CO2 なる反応によって、仮焼は空気中で750℃×5h、本焼は
空気中で1200℃×5hの反応条件下で作製したものであ
る。
つぎに、上記の実施例において、徐冷開始温度が1240
℃の場合、Ptルツボの中で(La0.9Sr0.12CuO4焼結体
が酸化銅の溶液体に十分溶解するように、5時間保持し
た後、30℃/hの徐冷速度で室温まで冷却した。その結
果、(La0.9Sr0.12CuO4焼結体は酸化銅の溶融体に溶
解せず、Ptルツボの底部に残っていたが、中央部には単
結晶化している黒色に輝く導電性の(La0.9Sr0.12CuO
4結晶が多数認められた。その形状はおおむね5mmの正
方の形状をしていた。また、1300℃からの徐冷速度を70
℃/hより遅くすると単結晶が得られ始め、30℃/hよりさ
らに遅くすると、得られる単結晶の数は少なくなるが、
比較的大きな結晶が得られるようになり、3℃/hの場合
には約8mm角の単結晶が得られた。3℃/hより遅くなる
と、単結晶の形成が不安定となった。徐冷開始温度が13
00℃の場合溶解度が大きくなるが、酸化銅の酸素を解離
し易くなるので良質な結晶ができ難い。逆に、徐冷開始
温度が1100℃の場合溶解度が小さくなるので、晶出結晶
の大きさは極めて小さくなる。以上のことから、徐冷開
始温度が1100℃〜1300℃の範囲ならびに徐冷速度が3〜
70℃/hの範囲が望ましい。La−M−Cu−O系のM=Ba,C
aの場合には、上述のSrをBa or Coに替えてやればよ
い。即ち、出発原料として、約2gの(La,Ba)2CuO4また
は (La,Ca)2CuO4の焼結体を用いる他は、Srの場合と同じ
行程にて、(La0.9Ba0.12CuO4または(La0.9Ca0.12
CuO4の結晶を作成することができる。
次に本発明の第2の実施例を説明する。
本実施例はLa−M−Cu−O系(M=Sr,Ba,Ca)の構成
酸化物及び炭酸塩(SrCO3,La2O3,CuO,Cu2O)を出発原料
とした場合の単結晶製造方法である。出発原料として、
約0.62gのSrCO3と約6.20gのLa2O3と約4.93gのCuOと約4.
43gのCu2Oをとり、これらをPtルツボに入れる。上記CuO
とCu2Oで溶融剤を構成しなければならないので、CuOとC
u2Oは化学量論的組成比よりも多くルツボ内に入れる。
例えば、CuOとCu2Oが等しく単結晶の構成に寄与すると
仮定したならば、CuOの約4.09g,Cu2Oの約3.68gが溶融剤
となる。酸素雰囲気中で1300℃〜1100℃の温度範囲に約
8時間保って、これらの出発原料を十分溶融させた。第
1図に溶融温度の出発原料比依存性を示す。その後、こ
の溶融液を徐冷速度3〜70℃/hの間のある速度で降温し
て溶融した温度より約20℃低い温度で数時間保った。そ
の結果、溶融液の表面には単結晶化している、黒色に輝
く導電性の(La0.9Sr0.12CuO4結晶が多数認められ
た。その形状はおおむね5mmの正方の形状をしてい
た。得られた結晶の同定は粉末X線回析あるいはラウエ
回折法を用いて行なった。
また、1300℃からの徐冷速度を70℃/hより遅くすると
単結晶が得られ始め、30℃/hよりさらに遅くすると、得
られる単結晶の数は少なくなるが、比較的大きな結晶が
得られるようになり、3℃/hの場合には約8mm角の単結
晶が得られた。3℃/hより遅くなると、単結晶の形成が
不安定となった。徐冷開始温度が1300℃の場合溶解度が
大きくなるが、酸化銅の酸素を解離し易くなるので良質
な結晶ができ難い。逆に、徐冷開始温度が1100℃の場合
溶解度が小さくなるので、晶出結晶の大きさは極めて小
さくなる。以上のことから、徐冷開始温度が1100℃〜13
00℃の範囲ならびに徐冷素度が3〜70℃/hの範囲が望ま
しい。第2図は本実施例により得られた(La,Sr)2CuO4
単結晶の抵抗率の温度変化の測定結果を示す図である。
La−Ba−Cu−O系の場合には出発原料として、SrCO3
替りに約0.83gのBaCO3を用いれば、(La0.9Ba0.12CuO
4の単結晶が得られる。La−Ca−Cu−O系の場合には同
様に約0.42gのCaCO3を用いれば(La0.9Ca0.12CuO4
単結晶が得られる。
次に本発明の第3の実施例を説明する。
出発原料として(La0.9Sr0.12CuO4焼結体もしくは Cu2O :1.475g CuO :1.640g La2O3:2.0615g SrCO3:0.2076g の原料混合物を、溶融剤として2CuO・Cu2Oの酸化銅を用
いた場合の単結晶薄膜の製造方法である。
約10gの(La0.9Sr0.12CuO4焼結体の塊からなる出発
原料と、約7.35gのCu2O及び約8.05gのCuOからなる溶融
剤とをPtルツボに入れる。または上記La−Sr−Cu−O系
の構成酸化物Cu2O,CuO,La2O3及びSrCO3をPtルツボに入
れる。この場合も本発明の第2の実施例と同様と考える
とCuOの約1.081g,Cu2Oの約0.972gがそれぞれ溶融剤とな
る。空気中で一度1300℃〜1100℃の温度範囲に十分の時
間保って、酸化銅の融液中に(La0.9Sr0.12CuO4を含
む飽和を作製する。その後、この飽和溶液の温度より約
10℃下の一定温度に保持された過飽和融液の中に5mm角
の(100)面の単結晶SrTiO3基板(融点:1900℃)を入
れ、それを回転しながら、基板の上に黒色に輝く導電性
の(La0.9Sr0.12CuO4単結晶薄膜を晶出させる。SrTiO
3基板は格子定数がa0=3.904Åで、(La0.9Sr0.12CuO
4の格子定数にほぼ近いため、欠陥の少ない良質な結晶
膜が得られることがエッチ・ピットの実験からわかっ
た。
またこの単結晶の表面に100KeVのイオン注入により深
さ0.1μmの所にピーク値1019Ar原子/cm3の不純物をド
ープしたものでは超伝導臨界電流が改善されることが分
った。
出発原料が(La,Ba)2CuO4,(La,Ca)2CuO4焼結体粉
末の場合もほぼ同様の効果が得られた。
次に本発明の第4の実施例について説明する。
ペロブスカイト型類似結晶構造であって、銅イオンを
もつ複合酸化物Y−M−Cu−O系(M=Sr,Ba,Ca)の製
造方法について説明する。複合酸化物Y−M−Cu−O系
(M=Sr,Ba,Ca)の焼結体を出発原料,酸化銅(CuO)
を溶融剤とした場合の単結晶製造方法である。
本実施例は代表的な例として、M=Baの場合の複合酸
化物の場合について述べる。約2gのY−Ba−Cu−O系焼
結体の塊からなる出発原料と、約3.15gのCuOからなる溶
融剤とをPtルツボに入れる。このルツボを酸素雰囲気中
で一度1100℃〜1026℃の温度範囲に充分の時間保って、
酸化銅の酸液中にY−Ba−Cu−O系を含む飽和溶液を作
る。その後、この飽和溶液を徐冷速度3〜70℃/hで降温
して酸化銅の固化したものを作製する。Y−Ba−Cu−O
系の結晶の発生速度及び結晶成長速度については本発明
の第1の実施例のLa−Sr−Cu−O系の場合と同様にして
求めることができる。
この本実施例に用いた電気炉は、最高1500℃であり、
得られた結晶の同定は粉末X線回折あるいはラウエ回折
法を用いて行った。
原料に使用した焼結体は 0.6Y2O3+1.8BaO+2CuO+0.7O2=Y−Ba−Cu−O なる反応によって、仮焼は空気中で750℃×5h、本焼は
空気中で1000℃×5hの反応条件下で作ったものである。
つぎに、この実施例において、徐冷開始温度が1080℃
の場合、Ptルツボの中でY−Ba−Cu−O系の焼結体が酸
化銅の溶融体に一部溶解するように、5時間その温度を
保持する。その後、30℃/hの徐冷速度で室温まで冷却す
る。その結果、Y−Ba−Cu−O系の焼結体は酸化銅の溶
融体に一部溶解せず、Ptルツボの底部に残っていた。し
かし、中央部には単結晶化した黒色に輝く導電性のY−
Ba−Cu−O系結晶が多数認められた。また、1100℃から
の徐冷速度を70℃/hより遅くすると単結晶が得られ始
め、30℃/hよりさらに遅くすると、得られる単結晶の数
は少なくなるが、比較的大きな結果が得られるようにな
り、3℃/hの場合にはさらに大きい単結晶が得られた。
3℃/hより遅くなると、単結晶の形成が不安定となっ
た。徐冷開始温度が1100℃の場合溶解度が大きくなる
が、酸化銅の酸素を解離し易くなるので良質な結晶がで
き難い。逆に、徐冷開始温度が1030℃の場合溶解度が小
さくなるので、晶出結晶の大きさは極めて小さくなる。
以上のことから、徐冷開始温度が1026℃〜1100℃の範囲
ならびに徐冷速度が3〜70℃/hの範囲であることがわか
った。出発原料がY−Sr−Cu−O系、Y−Ca−Cu−O系
焼結体粉末の場合もほぼ同様の結果が得られた。
本実施例では、溶融剤として酸化第二銅(CuO)を用
いた場合について説明したが、酸化第二銅(CuO)及び
酸化第一銅(Cu2O)を溶融剤とする場合には、本発明の
第1の実施例と同様にすればよい。
次に本発明の第5の実施例を説明する。本実施例はY
−Ba−Cu−O系の構成酸化物及び炭酸塩(BaCO3,Y2O3,C
uO)を出発原料とした場合の単結晶製造方法である。出
発原料として、約39.470gのBaCO3と約5.645gのY2O3と約
39.772gのCuOをとり、これらを十分混合後Ptルツボに入
れる。この場合は本発明の第2の実施例と同様に考える
と、CuOの約27.841gが溶融剤となる。ただしこのY−Ba
−Cu−O系の場合にはBaCO3の約半分をCuOと同じ溶融剤
として添加する必要がある。酸素雰囲気中で1300℃〜11
00℃の温度範囲に保ち、これらの出発原料を一部溶融さ
せ、融体と固体の混合状態を作製した。
その後この飽和溶液を約10℃/hの冷却速度で850℃迄
徐冷した。その結果、Ptルツボの中には単結晶化してい
る、黒色に輝くY−Ba−Cu−O結晶が多数認められた。
その形状はおおむね約1mmの正方、厚さ約0.1mmの板状
をしていた。
次に本発明の第6の実施例を説明する。出発原料とし
てY−Ba−Cu−O系焼結体もしくはY2O3,BaO,CuO,の原
料混合物を、溶融剤としてCuOの酸化銅を用いた場合の
単結晶薄膜の製造方法である。
出発原料として約10gのY−Ba−Cu−O系焼結体の塊
と溶融剤として約15gのCuOをとり、これらをPtルツボに
入れ、空気中で一度1100℃〜1026℃の温度範囲に充分の
時間保って酸化銅の融液中にY−Ba−Cu−Oを含む飽和
溶液を作る。その後、この飽和溶液の温度より約10℃下
の一定温度に保持された過飽和融液の5mm角の(100)面
の単結晶SrTiO3基板(融点:1900℃)を入れてそれを回
転しながら、基板の上に黒色に輝く導電性のY−Ba−Cu
−O単結晶薄膜を晶出させた。
SrTiO3基板は格子定数がa0=3.904Åで、(Y0.4Sr
0.63Cu2O7の格子定数にほぼ近いため、欠陥の少ない
良質な結晶膜が得られることがエッチ・ピットの実験か
らわかった。
またこの単結晶の表面に100KeVのイオン注入により深
さ0.1μmの所にピーク値1019Ar原子/cm3の不純物をド
ープしたものでは超電導臨界電流が改善されることが分
った。出発原料がY−Sr−Cu−O系、Y−Ca−Cu−O系
焼結体粉末の場合もほぼ同様の結果が得られた。
[発明の効果] 以上詳述したところから明らかなように、本発明は、
溶融剤に構成酸化物の酸化第二銅CuOもしくはそれに酸
化第一銅Cu2Oを混合したものなどを用いるので、晶出す
べき複合酸化物を、その融点より低い温度で十分に溶解
させた後、その飽和溶液から十分ゆっくり徐冷して晶出
するか、あるいは、過飽和溶液中に基板を浸漬して基板
上に晶出させることができる。従って従来の溶融法や結
晶引き上げ法によるものに比べて良質で適度の大きさを
持った板状結晶や薄膜結晶が得られ、電気伝導性複合酸
化物の結晶製造方法として極めて有効である。
【図面の簡単な説明】
第1図は溶融温度の出発原料比の依存性を示す図、第2
図は(LaSr)2CuO4単結晶の抵抗率の温度変化の測定結
果を示す図である。
フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 39/12 ZAA H01L 39/12 ZAAC (72)発明者 高木 一正 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 深沢 徳海 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (56)参考文献 特開 昭63−310799(JP,A) 特開 昭63−274697(JP,A) 特開 昭63−230594(JP,A)

Claims (2)

    (57)【特許請求の範囲】
  1. 【請求項1】K2NiF4型結晶構造またはペロブスカイト型
    類似結晶構造で少なくとも酸素八面体の体心に銅イオン
    を持つLa−M−Cu−O系またはY−M−Cu−O系の複合
    酸化物(M=Sr、Ba、Ca)の多結晶体、および上記複合
    酸化物の構成元素の化学量論的組成比に近い混合物、の
    少なくとも一方を出発原料とし、上記出発原料を溶融剤
    に溶解し、上記出発原料が溶解してできた飽和溶解液か
    ら上記複合酸化物の結晶を成長させることを特徴とする
    電気伝導性複合酸化物の結晶製造方法。
  2. 【請求項2】特許請求の範囲1項において、上記溶融剤
    は、酸化第2銅(CuO)または、上記酸化第2銅に酸化
    第1銅(Cu2O)を加えたものであることを特徴とする電
    気伝導性複合酸化物の結晶製造方法。
JP63039389A 1987-02-27 1988-02-24 電気伝導性複合酸化物の結晶製造方法 Expired - Fee Related JP2753248B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP4255987 1987-02-27
JP62-63782 1987-03-20
JP6378287 1987-03-20
JP62-42559 1987-03-20

Publications (2)

Publication Number Publication Date
JPS6428300A JPS6428300A (en) 1989-01-30
JP2753248B2 true JP2753248B2 (ja) 1998-05-18

Family

ID=26382271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039389A Expired - Fee Related JP2753248B2 (ja) 1987-02-27 1988-02-24 電気伝導性複合酸化物の結晶製造方法

Country Status (1)

Country Link
JP (1) JP2753248B2 (ja)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310799A (ja) * 1987-06-11 1988-12-19 Toshiba Corp 酸化物超電導結晶の製造方法

Also Published As

Publication number Publication date
JPS6428300A (en) 1989-01-30

Similar Documents

Publication Publication Date Title
US4921834A (en) Flux method of growing oxide superconductors
Macmanus‐Driscoll Materials chemistry and thermodynamics of REBa2Cu3O7− x
Bykov et al. Crystallization of high temperature superconductors from nonstoichiometric melts
JP3089294B2 (ja) 超電導テープ材の製造方法
JP2753248B2 (ja) 電気伝導性複合酸化物の結晶製造方法
JP2967154B2 (ja) Agを含み結晶方位の揃った酸化物超電導体及びその製造方法
US5354921A (en) Single crystalline fibrous superconductive composition and process for preparing the same
JP2530492B2 (ja) 酸化物超伝導薄膜の作製方法及びそれに用いる基板
US6599862B2 (en) Method for preparing bismuth-based high temperature superconductors
JP3854364B2 (ja) REBa2Cu3Ox系超電導体の製造方法
JP3889139B2 (ja) 銀を含む酸化物超電導体及びその製造方法
EP0389086B1 (en) Single crystalline fibrous superconductive composition and process for preparing the same
JP2656531B2 (ja) 酸化物超電導体
CN1013158B (zh) 氧化物超导体单晶的制备方法
JP2822329B2 (ja) 超伝導体の製造方法
JPH0465395A (ja) 超電導繊維状単結晶およびその製造方法
Gauss et al. Influences of the precursor powder on the microstructure of HTSC-tapes
JP2761727B2 (ja) 酸化物超電導体の製法
JP2870647B2 (ja) Bi系酸化物超電導体の製造法
JPH01278449A (ja) 酸化物超電導体の製造方法
JP2692614B2 (ja) 新規な組織を有する酸化物超電導体
JPH0948616A (ja) 配向性基板を用いた酸化物超伝導膜及びその製造方法
JPH0725639B2 (ja) 超電導繊維状結晶、単結晶およびその製造方法
JPH0287421A (ja) 酸化物超伝導体
Misture et al. Preparation, melting sequences, and melt‐texturing of Bi‐2212 thick films

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees