【発明の詳細な説明】
「産業上の利用分野」
本発明は、酸化物系超電導導体を金属の安定化層で被
覆してなり超電導マグネットなどの超電導機器に利用さ
れる超電導線に関する。
「従来の技術」
近来、常電導状態から超電導状態へ遷移する臨界温度
(Tc)が液体窒素温度以上の高い値を示す酸化物系の超
電導材料が種々発見されつつある。そして、従来、この
種の超電導材料からなる超電導体の中でもY−Ba−Cu−
O系、La−Sr−Cu−O系等のいわゆるA−B−Cu−O系
(ただし、AはLa,Y,Yb,Sc等のIII a族金属元素を示
し、BはSr,Ba等のアルカリ土類金属元素を示す)の超
電導材料を製造するには、上記III a族金属元素の化合
物粉末と上記アルカリ土類金属元素の化合物粉末と酸化
銅粉末を混合して得た混合粉末を、所定経常に成形し、
更に熱処理して超電導材料を得るようにしている。
また、上記A−B−Cu−O系超電導体などの酸化物系
超電導体を超電導マグネットなどの超電導機器に適用さ
せるために、酸化物系超電導材料を線材化する試みもな
されている。
「発明が解決しようとする問題点」
このような酸化物系超電導材料を用いた超電導線の製
造方法としては、例えば、銅などの金属シース内に酸化
物系超電導体の原料粉末を充填し、この後伸線加工を施
し、更に熱処理を施して原料粉末の各成分元素間に反応
を起こさせて、超電導性を有する超電導導体を生成する
方法が試みられている。
ところで、酸化物系超電導体においては、熱処理時に
原料粉末と酸素との反応がその超電導特性に重要な影響
を与え、熱処理時に酸素が不足した状態で生成された超
電導体はその超電導特性が劣化する傾向にある。例えば
原料粉末の熱処理時に金属シースに酸化反応が起こる
と、原料粉末中の酸素が消費されて酸素不足を生じる。
一方、原料粉末は金属シースで被覆されているために大
気や酸素気流中などで熱処理を行っても雰囲気ガス中の
酸素と接触することができない。従って、このような状
態で作成された超電導材料は酸素不足となり、十分な超
電導特性が得られなくなる問題があった。
本発明は、前記問題に鑑みてなされたもので、超電導
特性の優れた超電導線の提供を目的としている。
「問題点を解決するための手段」
この発明は、酸化物系超電導導体を金属の安定化層で
被覆してなる超電導線において、前記安定化層が、銅、
銅−ステンレスクラッド、ステンレスからなる群から選
択される1種からなり、かつ該安定化層には、安定化層
の一部を除去して超電導導体を露出させた露出部を、一
定間隔毎に形成して、問題解決の手段とした。
「作用」
安定化層に超電導導体を露出させた露出部を形成した
ので、超電導導体の原料粉末に熱処理を施すとき、大気
など酸素を含む雰囲気ガスが露出部を通って原料粉末に
接触し、原料粉末に酸素が充分に供給される。
「実施例」
第1図はこの発明の位置実施例を示す図であって、符
号1は超電導線である。
この超電導線1は、A−B−Cu−O系(ただし、Aは
La,Y,Yb,Sc等のIII a族金属元素を示し、BはSr,Ba等の
アルカリ土類金属元素を示す)の酸化物系超電導材料の
1つであるY−Ba−Cu−O系の超電導材料からなる超電
導体2を、銅の安定化層3で被覆してなるものである。
なお、この実施例では、超電導導体2の材料としてY−
Ba−Cu−O系の超電導材料を用いたが、これに限定され
ることなく、超電導導体2の材料として、Yの代わりに
La,Ce,Pr,Nd,Pm,Eu,Gd,Tb,Sm,Dy,Ho,Er,Tm,Yb,Lu,Sc等
のIII a族金属元素を用い、Baの代わりにSr,Mg,Ca,Ra,B
e等のアルカリ土類金属元素を用いたA−B−Cu−O系
超電導材料を用いても良く、また、SrTiO3、BaPbBiO3、
BaTiO3、(Sr,Ba)TiO3、(Ca,Sr)TiO3等のA−B−O3
型などの上記A−B−Cu−O系以外の酸化物系超電導体
を用いても良い。また、この実施例では、安定化層3の
材料として銅を用いたが、ステンレス、或いは銅−ステ
ンレスクラッドを用いても良い。この超電導線1は、安
定化層3に一定間隔毎に超電導導体2を露出させる円形
の穴4,4(露出部)を形成したものである。
この超電導線1は、超電導導体2を構成する酸化物系
超電導物質の臨界温度以下に冷却することによって、超
電導導体2に損失なく電流を流すことができる。また超
電導導体2の超電導状態が破られたときには安定化層3
側に電流が流れ、超電導線1の破損を防止する。
この超電導線1は、次のように製造される、まず、安
定化層3となる銅製のシース内に、超電導材料の原料粉
末あるいは原料粉末を仮焼成した状態の粉末を充填す
る。この原料粉末は、例えばY2O3、BaCO3、CuOなどが好
適にしようされる。次に圧縮成形を施してシース内の原
料粉末を仮成形し、更に伸線加工を施して所望の線径と
する。次に、この線材表面の安定化層3に穴明け加工を
施して、一定間隔毎に超電導導体2を露出させる円形の
穴4,4を形成する。次に、この線材を、例えばコイル状
に巻回するなど目的とする形状に加工し、この後熱処理
を施して原料粉末中の各元素間に反応を起こさせ、Y−
Ba−Cu−O系の超電導材料を生成する。この熱処理は、
800〜1100℃の温度で1〜300時間程度行なう。また熱処
理の際の雰囲気は、大気雰囲気中あるいは酸素気流中と
するのが望ましい。以上の操作によって超電導線1が製
造される。
この超電導線1は、安定化層3の一部を除去して超電
導導体2を露出させた露出部となる穴4を形成し、熱処
理時に安定化層3内の原料粉末に酸素を含む雰囲気ガス
を接触させながら超電導材料を生成することができるの
で、超電導導体2を構成する超電導材料の酸素不足によ
って生じる超電導特性の劣化を防ぎ、超電導線1の超電
導特性を向上させることができる。
第2図および第3図は先の例の変形例を示す図であ
る。第2図に示す超電導線8は、安定化層6aに周方向と
長手方向とに一定の間隔をおいて配列された小孔9…を
形成したものである。この例の超電導線8は、超電導線
の前周にわたって設けられた多数の小孔9…により、熱
処理の際、安定化層6a内の原料粉末に均一な状態で酸素
を含む雰囲気ガスを接触させることができ、超電導導体
2の組成を均一化することができる。また、第3図に示
す超電導線10は、安定化層11に一定間隔毎に楕円形の穴
12…を形成したものである。なお、上記の穴4、12ある
いは小孔9のサイズや形状は、安定火葬3,6a,11の長さ
方向の電気抵抗値に影響を及ぼさないように設定するこ
とが望ましい。
第4図は、この発明の他の実施例を示す図であって、
符号13は超電導線である。先の実施例の超電導線1は超
電導導体2の断面が円形であったが、この例の超電導線
13は、薄板状の超電導導体14を金属の安定化層15で被覆
し、全体としてテープ状に成形したものである。この超
電導導体14の材料は、先の例による超電導導体2と同様
の酸化物系超電導材料が使用される。また安定化層15の
材料も先の実施例と同様に銅などの金属が使用される。
この超電導線13にあっては、安定化層15の両側部を研削
除去して超電導導体14を露出させる露出部16…が一定間
隔毎に形成されている。
この超電導線13は、先の例と同様に、超電導導体14を
構成する酸化物系超電導材料の臨界温度如何に冷却する
ことによって、超電導導体14に損失なく電流を流すこと
ができる。
この超電導線13は次のように製造される。まず、安定
化層15となる銅などの金属製角形筒状体に酸化物系超電
導材料の原料粉末または仮焼粉末を充填し、次にこれを
圧縮し、更にテープ状に伸線加工を施す。次に、このテ
ープ状線材の両側部を一定間隔毎に研削して安定化層15
が研削除去された露出部16…を形成する。次に、このテ
ープ状線材をコイル状に巻回するなど所定形状に加工し
た後、熱処理を施して超電導性を有する超電導導体14を
生成させる。以上の操作によりテープ状の超電導線13が
作成される。
この超電導線13は、先の実施例による超電導線1と同
様の効果が得られる他、線材形状をテープ状としたので
安定化層15の研削操作が機械式プレス等で簡単に行うこ
とができ、製造を容易化することができる。
第5図は第4図に示す超電導線13の変形例を示す図で
ある。第4図に示す超電導線13はテープ状線材の両側部
を研削して露出部16…を形成した構成であったが、この
図に示す超電導線17は、テープ状線材の表裏両面の安定
化層15を一定間隔毎に研削除去して露出部16…を形成し
たものである。
この例による超電導線17は、第4図に示す超電導線13
とほぼ同様の効果を得ることができる。
なお、前述の各例とも、露出部は熱処理終了後に種々
の方法によって埋めて用いても良い。
「発明の効果」
以上説明したように、この発明による超電導線は、安
定化層の一部を除去して超電導導体を露出させた露出部
を一定間隔毎に形成し、熱処理時に安定化層内の原料粉
末に酸素を含む雰囲気ガスを接触させながら超電導材料
を生成することができるので、超電導導体を構成する超
電導材料の酸素不足によって生じる超電導特性の劣化を
防ぎ、超電導線の超電導特性を向上させることができ
る。しかも、本発明では、安定化層に露出部を一定間隔
毎に形成したことにより、安定化層の機械強度を殆ど低
下させることなく、優れた超電導特性を有する超電導線
を構成することができ、線材を曲げ加工する場合にも安
定化層が内部の超電導導体を保護することができる。
また、超電導材料の酸素不足によって生じる品質のバ
ラツキを防止することができるので、超電導線の品質を
安定化することができる。
また、熱処理において、超電導材料の酸素不足による
超電導特性の劣化を防ぐことができるので、熱処理時間
を短縮しても均一かつ高品質の超電導線を得ることがで
き、したがって熱処理の所要時間を短縮して生産性を向
上させることができる。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting wire formed by covering an oxide superconducting conductor with a metal stabilizing layer and used for a superconducting device such as a superconducting magnet. [Background Art] In recent years, various oxide-based superconducting materials exhibiting a high critical temperature (Tc) at which a transition from a normal conducting state to a superconducting state is higher than the temperature of liquid nitrogen are being discovered. Conventionally, among superconductors made of this type of superconducting material, Y-Ba-Cu-
So-called AB-Cu-O system such as O system and La-Sr-Cu-O system (where A represents a Group IIIa metal element such as La, Y, Yb, Sc, etc., and B represents Sr, Ba, etc. In order to produce the superconducting material of the present invention, the mixed powder obtained by mixing the compound powder of the Group IIIa metal element, the compound powder of the alkaline earth metal element and the copper oxide powder is used. , Always molding,
Further heat treatment is performed to obtain a superconducting material. Further, in order to apply the oxide-based superconductor such as the AB-Cu-O-based superconductor to a superconducting device such as a superconducting magnet, an attempt has been made to convert the oxide-based superconducting material into a wire. `` Problems to be solved by the invention''As a method of manufacturing a superconducting wire using such an oxide-based superconducting material, for example, a raw material powder of an oxide-based superconductor is filled in a metal sheath such as copper, Thereafter, a method has been attempted in which wire drawing is performed, and further heat treatment is performed to cause a reaction between the respective component elements of the raw material powder to produce a superconducting conductor having superconductivity. By the way, in an oxide-based superconductor, the reaction between the raw material powder and oxygen at the time of heat treatment has an important effect on its superconductivity, and the superconductor generated in a state of lack of oxygen at the time of heat treatment has its superconductivity deteriorated. There is a tendency. For example, when an oxidation reaction occurs in the metal sheath during the heat treatment of the raw material powder, oxygen in the raw material powder is consumed, resulting in oxygen deficiency.
On the other hand, since the raw material powder is covered with the metal sheath, it cannot be brought into contact with the oxygen in the atmospheric gas even if the heat treatment is performed in the air or an oxygen stream. Therefore, there is a problem that the superconducting material produced in such a state becomes insufficient in oxygen and cannot obtain sufficient superconducting characteristics. The present invention has been made in view of the above problems, and has as its object to provide a superconducting wire having excellent superconducting characteristics. "Means for solving the problem" The present invention provides a superconducting wire in which an oxide-based superconducting conductor is covered with a metal stabilizing layer, wherein the stabilizing layer is made of copper,
The stabilizing layer is formed by removing a part of the stabilizing layer to expose the superconducting conductor at regular intervals. Formed as a means of solving the problem. "Action" Because the exposed portion exposing the superconducting conductor was formed in the stabilization layer, when performing heat treatment on the raw material powder for the superconducting conductor, an atmosphere gas containing oxygen, such as air, came into contact with the raw material powder through the exposed portion, Oxygen is sufficiently supplied to the raw material powder. Embodiment FIG. 1 is a view showing a position embodiment of the present invention, and reference numeral 1 denotes a superconducting wire. This superconducting wire 1 is made of an AB-Cu-O system (where A is
Y represents a group IIIa metal element such as La, Y, Yb or Sc, and B represents an alkaline earth metal element such as Sr or Ba.) Y-Ba-Cu-O which is one of oxide superconducting materials A superconductor 2 made of a system superconducting material is covered with a copper stabilizing layer 3.
In this embodiment, the material of the superconducting conductor 2 is Y-
Although a Ba-Cu-O-based superconducting material was used, the material of the superconducting conductor 2 is not limited to this, but may be replaced by Y.
Using a Group IIIa metal element such as La, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Sm, Dy, Ho, Er, Tm, Yb, Lu, Sc, etc., instead of Ba, Sr, Mg, Ca , Ra, B
An AB-Cu-O-based superconducting material using an alkaline earth metal element such as e may be used, and SrTiO 3 , BaPbBiO 3 ,
BaTiO 3, (Sr, Ba) TiO 3, (Ca, Sr) A-B-O 3 of 3 like TiO
An oxide-based superconductor other than the AB-Cu-O-based material such as a mold may be used. Although copper is used as the material of the stabilizing layer 3 in this embodiment, stainless steel or copper-stainless steel clad may be used. The superconducting wire 1 has circular holes 4 and 4 (exposed portions) for exposing the superconducting conductor 2 at regular intervals in the stabilizing layer 3. By cooling the superconducting wire 1 below the critical temperature of the oxide-based superconducting material constituting the superconducting conductor 2, a current can flow through the superconducting conductor 2 without loss. When the superconducting state of the superconducting conductor 2 is broken, the stabilizing layer 3
A current flows to the side to prevent the superconducting wire 1 from being damaged. The superconducting wire 1 is manufactured as follows. First, a raw material powder of a superconducting material or a powder obtained by temporarily firing the raw material powder is filled in a copper sheath to be a stabilizing layer 3. As the raw material powder, for example, Y 2 O 3 , BaCO 3 , CuO or the like is suitably used. Next, compression molding is performed to temporarily form the raw material powder in the sheath, and further wire drawing is performed to obtain a desired wire diameter. Next, a hole is formed in the stabilizing layer 3 on the surface of the wire to form circular holes 4 at which the superconducting conductor 2 is exposed at regular intervals. Next, the wire is processed into a desired shape, for example, wound in a coil shape, and then subjected to a heat treatment to cause a reaction between the respective elements in the raw material powder, and the Y-
A Ba-Cu-O-based superconducting material is produced. This heat treatment
It is carried out at a temperature of 800 to 1100 ° C. for about 1 to 300 hours. The atmosphere for the heat treatment is desirably in an air atmosphere or an oxygen stream. The superconducting wire 1 is manufactured by the above operation. The superconducting wire 1 is formed by removing a part of the stabilizing layer 3 to form a hole 4 serving as an exposed portion exposing the superconducting conductor 2, and an atmosphere gas containing oxygen in the raw material powder in the stabilizing layer 3 during heat treatment. , The superconducting material can be generated while contacting the superconducting material, so that the superconducting characteristics of the superconducting wire 1 can be improved by preventing deterioration of the superconducting characteristics caused by lack of oxygen in the superconducting material constituting the superconducting conductor 2. FIG. 2 and FIG. 3 are views showing a modification of the above example. The superconducting wire 8 shown in FIG. 2 is formed by forming small holes 9 arranged at regular intervals in the circumferential direction and the longitudinal direction in the stabilizing layer 6a. In the superconducting wire 8 of this example, an atmosphere gas containing oxygen is brought into contact with the raw material powder in the stabilization layer 6a in a uniform state during heat treatment by a large number of small holes 9 provided over the front circumference of the superconducting wire. Thus, the composition of superconducting conductor 2 can be made uniform. In addition, the superconducting wire 10 shown in FIG.
12 ... are formed. The size and shape of the holes 4 and 12 or the small holes 9 are desirably set so as not to affect the electrical resistance in the longitudinal direction of the stable cremations 3, 6a and 11. FIG. 4 is a view showing another embodiment of the present invention,
Reference numeral 13 denotes a superconducting wire. In the superconducting wire 1 of the previous embodiment, the cross section of the superconducting conductor 2 was circular.
Reference numeral 13 denotes a thin plate-shaped superconducting conductor 14 covered with a metal stabilizing layer 15 and formed into a tape shape as a whole. As the material of the superconducting conductor 14, the same oxide-based superconducting material as the superconducting conductor 2 according to the above example is used. As the material of the stabilizing layer 15, a metal such as copper is used as in the previous embodiment.
In the superconducting wire 13, exposed portions 16 for exposing the superconducting conductor 14 by grinding and removing both sides of the stabilizing layer 15 are formed at regular intervals. This superconducting wire 13 allows a current to flow through the superconducting conductor 14 without any loss by cooling to the critical temperature of the oxide-based superconducting material constituting the superconducting conductor 14, as in the previous example. This superconducting wire 13 is manufactured as follows. First, a raw material powder or calcined powder of an oxide-based superconducting material is filled in a metal square tubular body such as copper to be a stabilizing layer 15, which is then compressed and further subjected to wire drawing into a tape shape. . Next, both sides of this tape-shaped wire are ground at regular intervals to stabilize the
Are formed by grinding to remove the exposed portions 16. Next, after processing this tape-shaped wire into a predetermined shape such as winding it into a coil shape, it is subjected to a heat treatment to generate a superconducting conductor 14 having superconductivity. With the above operation, the tape-shaped superconducting wire 13 is created. The superconducting wire 13 has the same effect as the superconducting wire 1 according to the previous embodiment. In addition, since the wire is formed in a tape shape, the stabilization layer 15 can be easily ground by a mechanical press or the like. , Manufacturing can be facilitated. FIG. 5 is a view showing a modification of the superconducting wire 13 shown in FIG. The superconducting wire 13 shown in FIG. 4 has a configuration in which the exposed portions 16 are formed by grinding both sides of the tape-shaped wire, but the superconducting wire 17 shown in FIG. The exposed portions 16 are formed by grinding and removing the layer 15 at regular intervals. The superconducting wire 17 according to this example is the superconducting wire 13 shown in FIG.
Almost the same effect can be obtained. In each of the above-described examples, the exposed portion may be filled and used by various methods after the completion of the heat treatment. [Effects of the Invention] As described above, the superconducting wire according to the present invention forms an exposed portion in which a part of the stabilizing layer is removed to expose the superconducting conductor at regular intervals, and the inside of the stabilizing layer is formed during heat treatment. The superconducting material can be generated while contacting the atmosphere gas containing oxygen with the raw material powder of the superconducting material, so that the superconducting characteristics of the superconducting wire are prevented from deteriorating due to lack of oxygen in the superconducting material constituting the superconducting conductor, and improving the superconducting characteristics of the superconducting wire be able to. Moreover, in the present invention, by forming the exposed portions in the stabilizing layer at regular intervals, it is possible to configure a superconducting wire having excellent superconducting properties without substantially lowering the mechanical strength of the stabilizing layer, Even when the wire is bent, the stabilizing layer can protect the internal superconducting conductor. In addition, the quality of the superconducting wire can be stabilized because the quality variation caused by the lack of oxygen in the superconducting material can be prevented. In addition, in the heat treatment, deterioration of superconductivity due to lack of oxygen in the superconducting material can be prevented, so that a uniform and high-quality superconducting wire can be obtained even if the heat treatment time is shortened, thus shortening the time required for the heat treatment. Thus, productivity can be improved.
【図面の簡単な説明】
第1図はこの発明の一実施例を示す図であって、超電導
線の斜視図、第2図および第3図は第1図に示す超電導
線の変形例を示す図であって、超電導線の斜視図、第4
図はこの発明の他の実施例を示す図であって、超電導線
の斜視図、第5図は第4図の超電導線の変形例を示す斜
視図である。
1,8,10,13,17……超電導線
2,14……超電導導体
3,6a,11,15……安定化層
16……露出部
4,12……穴(露出部)
9……小孔BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view showing one embodiment of the present invention, in which a perspective view of a superconducting wire is shown, and FIGS. 2 and 3 show modified examples of the superconducting wire shown in FIG. FIG. 4 is a perspective view of a superconducting wire,
FIG. 7 is a view showing another embodiment of the present invention, and is a perspective view of a superconducting wire, and FIG. 5 is a perspective view showing a modification of the superconducting wire of FIG. 1, 8, 10, 13, 17 ... superconducting wire 2, 14 ... superconducting conductor 3, 6a, 11, 15 ... stabilizing layer 16 ... exposed part 4, 12 ... hole (exposed part) 9 ... Small hole
─────────────────────────────────────────────────────
フロントページの続き
(72)発明者 河野 宰
東京都江東区木場1丁目5番1号 藤倉
電線株式会社内
(72)発明者 定方 伸行
東京都江東区木場1丁目5番1号 藤倉
電線株式会社内
(72)発明者 杉本 優
東京都江東区木場1丁目5番1号 藤倉
電線株式会社内
(72)発明者 中川 三紀夫
東京都江東区木場1丁目5番1号 藤倉
電線株式会社内
(72)発明者 置鮎 隆一
東京都江東区木場1丁目5番1号 藤倉
電線株式会社内
(72)発明者 長谷川 正一
東京都江東区木場1丁目5番1号 藤倉
電線株式会社内
(72)発明者 丹 正之
東京都江東区木場1丁目5番1号 藤倉
電線株式会社内
(72)発明者 山之内 宏
東京都江東区木場1丁目5番1号 藤倉
電線株式会社内
(72)発明者 天野 一夫
東京都江東区木場1丁目5番1号 藤倉
電線株式会社内
(72)発明者 名取 望
東京都江東区木場1丁目5番1号 藤倉
電線株式会社内
(72)発明者 横山 繁嘉寿
東京都江東区木場1丁目5番1号 藤倉
電線株式会社内
(56)参考文献 特開 平1−163910(JP,A)
特開 昭63−225409(JP,A)
特開 昭63−281318(JP,A)
特開 昭63−271813(JP,A)
────────────────────────────────────────────────── ───
Continuation of front page
(72) Inventor Satoshi Kono
Fujikura, 1-15-1 Kiba, Koto-ku, Tokyo
Inside Electric Wire Co., Ltd.
(72) Inventor Nobuyuki Sadakata
Fujikura, 1-15-1 Kiba, Koto-ku, Tokyo
Inside Electric Wire Co., Ltd.
(72) Inventor Yu Sugimoto
Fujikura, 1-15-1 Kiba, Koto-ku, Tokyo
Inside Electric Wire Co., Ltd.
(72) Inventor Mikio Nakagawa
Fujikura, 1-15-1 Kiba, Koto-ku, Tokyo
Inside Electric Wire Co., Ltd.
(72) Inventor Ryuichi Okiayu
Fujikura, 1-15-1 Kiba, Koto-ku, Tokyo
Inside Electric Wire Co., Ltd.
(72) Inventor Shoichi Hasegawa
Fujikura, 1-15-1 Kiba, Koto-ku, Tokyo
Inside Electric Wire Co., Ltd.
(72) Inventor Masayuki Tan
Fujikura, 1-15-1 Kiba, Koto-ku, Tokyo
Inside Electric Wire Co., Ltd.
(72) Inventor Hiroshi Yamanouchi
Fujikura, 1-15-1 Kiba, Koto-ku, Tokyo
Inside Electric Wire Co., Ltd.
(72) Inventor Kazuo Amano
Fujikura, 1-15-1 Kiba, Koto-ku, Tokyo
Inside Electric Wire Co., Ltd.
(72) Inventor Nozomu Natori
Fujikura, 1-15-1 Kiba, Koto-ku, Tokyo
Inside Electric Wire Co., Ltd.
(72) Inventor Shigeyoshi Yokoyama
Fujikura, 1-15-1 Kiba, Koto-ku, Tokyo
Inside Electric Wire Co., Ltd.
(56) References JP-A-1-163910 (JP, A)
JP-A-63-225409 (JP, A)
JP-A-63-281318 (JP, A)
JP-A-63-271813 (JP, A)