JP2715877B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2715877B2
JP2715877B2 JP5332152A JP33215293A JP2715877B2 JP 2715877 B2 JP2715877 B2 JP 2715877B2 JP 5332152 A JP5332152 A JP 5332152A JP 33215293 A JP33215293 A JP 33215293A JP 2715877 B2 JP2715877 B2 JP 2715877B2
Authority
JP
Japan
Prior art keywords
film
insulating film
resist
side wall
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5332152A
Other languages
Japanese (ja)
Other versions
JPH07193126A (en
Inventor
晃 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP5332152A priority Critical patent/JP2715877B2/en
Publication of JPH07193126A publication Critical patent/JPH07193126A/en
Application granted granted Critical
Publication of JP2715877B2 publication Critical patent/JP2715877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】 本発明は半導体装置の製造方法
に関し、特に改善されたコンタクトホールを有する半導
体装置に関する。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a semiconductor device having an improved contact hole.

【0002】[0002]

【従来の技術】超LSIに代表される半導体集積回路素
子や化合物半導体素子は高性能化及び高集積化の方向を
たどっているので、微細パターンの形成は益々重要な要
素となっている。
2. Description of the Related Art Since semiconductor integrated circuit devices and compound semiconductor devices typified by VLSIs are moving toward higher performance and higher integration, formation of fine patterns is becoming an increasingly important factor.

【0003】この高性能化及び高集積化に伴い、集積回
路素子等では電極配線が必要となるが、これに不可欠な
コンタクトホールの形成方法の1つとしてRIE(Re
active Ion Etching)法が実用化さ
れている。しかしながら、このRIE法によるコンタク
トホールの壁面はほぼ垂直に近い形状となって、コンタ
クトホールに堆積する配線金属層あこの壁面で段切れを
起し易いので配線金属層の被覆性を良好にさせるよう
に、コンタクトホールの壁面をテーパー形状にする工夫
が行なわれている。
[0003] With the increase in performance and integration, integrated circuit elements and the like require electrode wiring. One of the indispensable methods for forming contact holes is RIE (Re-Reaction).
The active ion etching method has been put to practical use. However, the wall surface of the contact hole formed by the RIE method has an almost vertical shape, and the wiring metal layer deposited in the contact hole is likely to break down on the wall surface, so that the coverage of the wiring metal layer is improved. In addition, a contrivance has been made to make the wall surface of the contact hole into a tapered shape.

【0004】図3は等方性エッチングと異方性エッチン
グにより、テーパー形状を得ようとする従来技術である
(特開昭63−258021号公報)。
FIG. 3 shows a conventional technique for obtaining a tapered shape by isotropic etching and anisotropic etching (JP-A-63-258021).

【0005】図3(a)に示すように第1の導電性金属
層(今後配線層と記載する)25に対応する位置のフォ
トレジストのコンタクトホール用パターン24を設け、
これをマスクにしてフッ化アンモニウム液で層間絶縁膜
23の厚さの約1/3程度までウェットエッチングを行
う。
As shown in FIG. 3A, a contact hole pattern 24 of a photoresist is provided at a position corresponding to a first conductive metal layer (hereinafter referred to as a wiring layer) 25,
Using this as a mask, wet etching is performed with an ammonium fluoride solution to about 1/3 of the thickness of the interlayer insulating film 23.

【0006】次に同図(b)に示すようにフォトレジス
ト24をマスクとしてRIE法による異方性エッチング
を行う。このRIEでは通常の平行平板電極型の装置を
適用し、条件としてCF4 20SCCM,O2 10SC
CM,圧力1.2Pa,RF電力350Wを使用する。
Next, as shown in FIG. 1B, anisotropic etching is performed by RIE using the photoresist 24 as a mask. In this RIE, an ordinary parallel plate electrode type apparatus is applied, and CF 4 20 SCCM, O 2 10 SC
CM, pressure 1.2 Pa, RF power 350 W are used.

【0007】この開口後は同図(c)に示すように、フ
ォトレジスト24を灰化除去する。この結果透孔28は
その開口面付近を構成する凹部29,第1の配線層25
に接続しかつ凹部より径小な垂直部30が得られ、しか
もこの椀状部29の深さは全体のほぼ1/3以内であ
る。この椀状部29の垂直部30の境界に角部31が
又、凹部29の開口面にも角部32が形成されるが、同
図(d)に示すように前述のRIEと同様な条件にて層
間絶縁膜23を全面エッチバックすることによって、こ
の角部31,32が除去されると共にテーパー33が得
られる。
After this opening, the photoresist 24 is ashed and removed as shown in FIG. As a result, the through hole 28 is formed in the concave portion 29 and the first wiring layer 25 near the opening surface.
And a vertical portion 30 smaller in diameter than the concave portion is obtained, and the depth of the bowl-shaped portion 29 is within about 1/3 of the whole. A corner 31 is formed at the boundary of the vertical portion 30 of the bowl-shaped portion 29, and a corner 32 is also formed at the opening surface of the concave portion 29. As shown in FIG. By etching back the entire surface of the interlayer insulating film 23, the corners 31 and 32 are removed and a taper 33 is obtained.

【0008】[0008]

【発明が解決しようとする課題】このような従来のコン
タクトホールの形成方法では、段切れをおこし易い角部
31,32が必ず生じこの角部を取り除くため全面エッ
チバックを行う必要がああるが、このエッチバック量は
異方性エッチングのため垂直部30がなくなるまでエッ
チングし続けなければならない。このため層間絶縁膜は
図3(d)に示すように形成時膜厚と比べて約60%程
度の厚さにまで減少してしまう。これは配線容量を大き
く変化させることになり、特性の悪化となる。さらに、
垂直部30がなくなると、コンタクトホールの開口径は
エッチバックのわずかなオーバーエッチングに対して広
くなる方向に変化してしまい配線パターンの微細化が困
難になる。このために、層間絶縁膜の膜厚を厚く形成
し、コンタクトホール用フォトレジストの開口寸法を縮
小する必要があるが、これは加工精度の低下をまねき、
配線歩留が悪化するという問題があった。
In such a conventional method for forming a contact hole, corners 31 and 32, which are apt to be cut off, always occur, and it is necessary to etch back the entire surface in order to remove these corners. Since the amount of this etch back is anisotropic etching, the etching must be continued until the vertical portion 30 disappears. Therefore, as shown in FIG. 3D, the thickness of the interlayer insulating film is reduced to about 60% of the thickness at the time of formation. This greatly changes the wiring capacitance, and deteriorates the characteristics. further,
When the vertical portion 30 is eliminated, the opening diameter of the contact hole changes in a direction that becomes wider due to slight overetching of the etch back, and it becomes difficult to miniaturize the wiring pattern. For this purpose, it is necessary to increase the thickness of the interlayer insulating film and reduce the opening dimension of the contact hole photoresist, but this leads to a reduction in processing accuracy,
There is a problem that the wiring yield is deteriorated.

【0009】[0009]

【課題を解決するための手段】 本発明では、半導体基
板上に絶縁膜を形成し、第1のレジストをマスクにして
異方性ドライエッチングを行い前記絶縁膜に段差を形成
する工程と、前記第1のレジストを除去後、全面に第1
の側壁形成用膜を形成する工程と、前記第1のレジスト
の開口部内に開口を有する第2のレジストをマスクにし
て異方性ドライエッチングを行い前記第1の側壁形成
用膜と前記絶縁膜をエッチングし、前記絶縁膜を途中ま
で除去する工程と、前記第2のレジストを除去後全面に
第2の側壁形成用膜を形成する工程と、前記絶縁膜、第
1の側壁形成用膜及び第2の側壁形成用膜全面をエッチ
バックして前記絶縁膜を開口するとともに、前記絶縁膜
の開口部壁面に前記第1の側壁形成用膜及び前記第2の
側壁形成用膜を階段形状に残す工程とを有する。
According to the present invention, a step of forming an insulating film on a semiconductor substrate and performing anisotropic dry etching using a first resist as a mask to form a step in the insulating film; After removing the first resist, the first resist is
The insulation forming a sidewall forming film and said second resist having an opening in the opening of the first resist by anisotropic dry etching as a mask, the first sidewall forming film of Etch the film and cut the insulating film
Removing in a step of forming a second sidewall forming film on the removal after the entire surface of the second resist, the insulating film, the first sidewall forming film and a second sidewall forming film over the entire surface Etching the insulating film to form an opening, and leaving the first side wall forming film and the second side wall forming film in a step shape on the opening wall surface of the insulating film.

【0010】[0010]

【実施例】次に本発明について図面を参照して説明す
る。図1は本発明の一実施例の半導体素子の工程断面図
である。まず図1(a)に示すように、基板1上にCV
D法により厚さ7500オングストロームの絶縁膜であ
るSiO2 膜2を形成しコンタクホール用パターンであ
る第1のレジスト(図示しない)をマスクにしてRIE
法により異方性ドライエッチングを施す。この時の条件
としてCF4 又はCHF3 ガスで圧力は1Pa、マイク
ロ波電力は300〜500Wが適当である。その後、第
1のレジストを除去し、第1の側壁膜をCVD法により
厚さ2500オングストロームのSiO2 膜3を形成す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. FIG. 1 is a process sectional view of a semiconductor device according to one embodiment of the present invention. First, as shown in FIG.
An SiO 2 film 2 as an insulating film having a thickness of 7500 angstroms is formed by the D method, and RIE is performed using a first resist (not shown) as a contact hole pattern as a mask.
Anisotropic dry etching is performed by the method. Pressure CF 4 or CHF 3 gas as conditions at this time 1 Pa, the microwave power is appropriately 300~500W. After that, the first resist is removed, and the first side wall film is formed by a CVD method to form a 2500 angstrom thick SiO 2 film 3.

【0011】次に図1(b)に示すように、第2のレジ
スト4をステッパー又は電子ビーム露光機を用いてコン
タクトホール用パターンを形成し、さらに、第2のレジ
スト4をマスクにしてRIE法により異方性ドライエッ
チングを施す。この時の条件は同図(a)の場合とほぼ
同様でよい。この時のエッチング量は第1の側壁膜3を
エッチングし、さらに絶縁膜2を2500オングストロ
ーム程度エッチングした所で停止する。その後、第2の
レジスト4を除去し、図1(c)に示すように、第2の
側壁膜をCVD法により2500オングストロームの厚
さでSiO膜5を形成する。
Next, as shown in FIG. 1B, a pattern for a contact hole is formed on the second resist 4 using a stepper or an electron beam exposure machine, and further, RIE is performed using the second resist 4 as a mask. Anisotropic dry etching is performed by the method. The conditions at this time may be substantially the same as those in FIG. The amount of etching at this time stops when the first side wall film 3 is etched and the insulating film 2 is further etched by about 2500 Å. Thereafter, the second resist 4 is removed, and as shown in FIG. 1C, an SiO film 5 is formed on the second side wall film to a thickness of 2500 angstroms by the CVD method.

【0012】その後、図1(d)に示すようにRIE法
又はECR(Electron Cyclotron
Resonance)プラズマ法により異方性エッチン
グにより全面エッチバックを行う。
Thereafter, as shown in FIG. 1D, RIE or ECR (Electron Cyclotron) is performed.
(Resonance) The whole surface is etched back by anisotropic etching by a plasma method.

【0013】この時の条件はRIE法の場合はガスはS
6 ガスを圧力1Pa,マイクロ波電力は100〜30
0Wが適当である。又、ECR法の場合はガスはSF6
ガスを圧力は0.1Pa,マイクロ波電力は100〜2
00Wが適当である。この条件は異方性エッチングを保
ちながら開口時の基板1へのドライエッチング損傷を低
減するためである。この時のエッチバックのエッチング
量は第2の側壁膜5(厚さ2500オングストローム)
と絶縁膜2の残り膜厚2500オングストロームの合計
である5000オングストロームに若干のオーバーエッ
チ(通常2〜5割程度増し)を行う。
In this case, the gas is S in the case of the RIE method.
F 6 gas pressure 1 Pa, microwave power 100-100
0W is appropriate. In the case of the ECR method, the gas is SF 6
Gas pressure is 0.1 Pa, microwave power is 100 ~ 2
00W is appropriate. This condition is for reducing dry etching damage to the substrate 1 at the time of opening while maintaining anisotropic etching. At this time, the etching amount of the etch back is the second side wall film 5 (thickness 2500 Å).
A slight overetching (usually increased by about 20 to 50%) is performed on 5000 Å which is the sum of the thickness of the insulating film 2 and the remaining film thickness of 2500 Å.

【0014】この結果、絶縁膜2の開口部の角部及び壁
面には第1の側壁膜3と第2の側壁膜5が階段状に残
る。さらに図1(a)〜(d)からわかるように段差部
でのCVD法によるSiO2 膜の形状は、なめらかな円
弧形状となるので、全面エッチバック後の段差部に残る
側壁膜であるSiO2 膜3,5もなめらかな円弧形状と
なるため図1(d)に示すようになめらかテーパー開口
形状が得られることになる。
As a result, the first side wall film 3 and the second side wall film 5 remain stepwise at the corners and wall surfaces of the opening of the insulating film 2. Further, as can be seen from FIGS. 1A to 1D, the shape of the SiO 2 film formed by the CVD method at the stepped portion has a smooth arc shape, so that the SiO 2 film which is a sidewall film remaining on the stepped portion after the entire etch-back is performed. Since the two films 3 and 5 also have a smooth arc shape, a smooth tapered opening shape can be obtained as shown in FIG.

【0015】次に、本発明の第2の実施例について図面
を参照して説明する。図2は一実施例の半導体素子の工
程断面図である。まず図2(a)に示すように、基板1
上に絶縁膜2をCVD法により厚さ約12500オング
ストロームのSiO2 膜を形成し、第1のレジスト(図
示しない)をマスクにしてRIE法によりSiO2 膜2
を2500オングストロームエッチングする。この時の
条件は図1の場合と同様である。その後、第1のレジス
トを除去し第1の側壁膜としてCVD法で厚さ2500
オングストロームのSiO2 膜3を形成する。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a process sectional view of a semiconductor device of one embodiment. First, as shown in FIG.
The insulating film 2 to form a SiO 2 film having a thickness of about 12500 Å by the CVD method above, the SiO 2 film 2 by RIE with the first resist (not shown) as a mask
Is etched to 2500 angstroms. The conditions at this time are the same as those in FIG. Thereafter, the first resist is removed, and a thickness of 2500 is formed as a first sidewall film by a CVD method.
An Angstrom SiO 2 film 3 is formed.

【0016】次に図2(b)に示すように第2のレジス
ト4をマスクにしてRIE法により第1の側壁膜3をエ
ッチングし、さらに絶縁膜2を2500オングストロー
ムエッチングする。その後、第2のレジスト4を除去す
る。次に図2(c)に示すように、第2の側壁膜として
CVD法いより厚さ2500オングストロームのSiO
2 膜5を形成し、ステッパー又は電子ビーム露光機を用
いてコンタクトホール用のパターンを形成した第3のレ
ジスト14をマスクにしてRIE法により第2の側壁膜
5をエッチングし、さらに絶縁膜2を2500オングス
トロームエッチングする。その後、第3のレジスト14
を除去する。
Next, as shown in FIG. 2B, the first side wall film 3 is etched by RIE using the second resist 4 as a mask, and the insulating film 2 is further etched at 2500 Å. After that, the second resist 4 is removed. Next, as shown in FIG. 2C, a 2500 angstrom thick SiO 2 film is formed as a second side wall film by a CVD method.
2 film 5 is formed, the second side wall film 5 is etched by RIE using the third resist 14 on which a pattern for contact holes is formed as a mask using a stepper or an electron beam exposure machine. Is etched to 2500 angstroms. After that, the third resist 14
Is removed.

【0017】次に、図2(d)に示すように第3の側壁
膜としてCVD法により厚さ1500オングストローム
のSiO2 膜6を形成し、RIE法又はECR法により
異方性エッチング条件下で全面エッチバックを行う。こ
の時の条件は図1(d)と同様である。
Next, as shown in FIG. 2D, a 1500 angstrom thick SiO 2 film 6 is formed as a third side wall film by the CVD method, and is subjected to anisotropic etching conditions by the RIE method or the ECR method. Perform a full etch back. The conditions at this time are the same as those in FIG.

【0018】この結果、絶縁膜2の開口部の角部及び壁
面には第1の側壁膜3と第2の側壁膜5及び第3の側壁
膜6が階段状に残り、第1の実施例と同様の理由によ
り、第1〜3の側壁膜はなめらかな円弧形状となるので
コンタクトホールの開口形状もなめらかなテーパー開口
形状が得られる。第2の実施例の場合、アスペクト比
(コンタクトホール径に対する絶縁膜の厚膜)が大きい
開口形状を配線被覆性をそこなうことなく形成すること
ができ、配線容量低減による性能の向上及びコンタクト
ホール径の縮小による微細化が図ることができという利
点がある。
As a result, the first side wall film 3, the second side wall film 5, and the third side wall film 6 remain at the corners and the wall surfaces of the opening of the insulating film 2 in a stepwise manner. For the same reason as described above, the first to third side wall films have a smooth circular arc shape, so that the opening shape of the contact hole can also be a smooth tapered opening shape. In the case of the second embodiment, an opening shape having a large aspect ratio (thickness of the insulating film with respect to the diameter of the contact hole) can be formed without deteriorating the wiring coverage. There is an advantage that miniaturization can be achieved by reducing the size.

【0019】[0019]

【発明の効果】以上説明したように本発明は絶縁膜に異
方性エッチングで段差を設け、その段差上に側壁膜を形
成し異方性エッチングで全面エッチバックをすることで
アスペクト比(コンタクトホール径に対する絶縁膜の膜
厚)が大きくてもなめらかなテーパー開口形状が得られ
るので配線被覆性が良い微細なコンタクトホールが歩留
り良く形成できるという利点がある。又、寸法バラツキ
もすべて異方性エッチングを用いているので従来のよう
に等方性エッチングを用いた場合と比べて寸法バラツキ
が小さいという利点がある。なお、側壁膜の厚さバラツ
キによっても寸法は変動するが通常膜厚バラツキは±1
00〜300オングストローム程度であり、この場合の
寸法変動は0.01〜0.03μm以内であり、他工程
の寸法変動に比べて小さい。
As described above, according to the present invention, a step is formed in an insulating film by anisotropic etching, a side wall film is formed on the step, and the entire surface is etched back by anisotropic etching to obtain an aspect ratio (contact ratio). Even if the thickness of the insulating film with respect to the hole diameter is large, a smooth tapered opening shape can be obtained, so that there is an advantage that fine contact holes with good wiring coverage can be formed with high yield. Further, since all the dimensional variations use anisotropic etching, there is an advantage that the dimensional variations are small as compared with the conventional case using isotropic etching. Although the size varies depending on the thickness variation of the side wall film, the variation in the film thickness is usually ± 1.
The dimensional variation in this case is about 0.01 to 0.03 μm, which is smaller than the dimensional variation in other processes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の半導体素子の工程断面
図。
FIG. 1 is a process sectional view of a semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の半導体素子の工程断面
図。
FIG. 2 is a process sectional view of a semiconductor device according to a second embodiment of the present invention.

【図3】従来例の半導体素子の工程断面図。FIG. 3 is a process sectional view of a conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1,21 基板 2,22,23 酸化膜 3,5,6 側壁酸化膜 4,14,24 レジスト 25 第1の配線層 26 開口パターン 28 透孔 29 椀状部 30 垂直部 31,32 鋭角部 33 テーパー部 Reference Signs List 1, 21 substrate 2, 22, 23 oxide film 3, 5, 6 sidewall oxide film 4, 14, 24 resist 25 first wiring layer 26 opening pattern 28 through hole 29 bowl-shaped portion 30 vertical portion 31, 32 acute angle portion 33 Tapered part

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板上に絶縁膜を形成し、第1の
レジストをマスクにして異方性ドライエッチングを行い
前記絶縁膜に段差を形成する工程と、前記第1のレジス
トを除去後、全面に第1の側壁形成用膜を形成する工程
と、前記第1のレジストの開口部内に開口を有する第2
のレジストをマスクにして異方性ドライエッチングを行
前記第1の側壁形成用膜と前記絶縁膜をエッチング
し、前記絶縁膜を途中まで除去する工程と、前記第2の
レジストを除去後全面に第2の側壁形成用膜を形成する
工程と、前記絶縁膜、第1の側壁形成用膜及び第2の側
壁形成用膜全面をエッチバックして前記絶縁膜を開口す
るとともに、前記絶縁膜の開口部壁面に前記第1の側壁
形成用膜及び前記第2の側壁形成用膜を階段形状に残す
工程とを有することを特徴とする半導体装置の製造方
法。
A step of forming an insulating film on a semiconductor substrate, performing anisotropic dry etching using a first resist as a mask to form a step in the insulating film, and removing the first resist. Forming a first side wall forming film on the entire surface; and forming a second side wall having an opening in the opening of the first resist.
The resist by anisotropic dry etching as a mask, etching the first sidewall forming film and the insulating film
And, wherein the step of removing halfway insulating film, forming a second sidewall forming film on the removal after the entire surface of the second resist, the insulating film, the first sidewall forming film and a second Etching the entire surface of the side wall forming film to open the insulating film, and leaving the first side wall forming film and the second side wall forming film in a stepped shape on the opening wall surface of the insulating film. And a method for manufacturing a semiconductor device.
JP5332152A 1993-12-27 1993-12-27 Method for manufacturing semiconductor device Expired - Fee Related JP2715877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5332152A JP2715877B2 (en) 1993-12-27 1993-12-27 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5332152A JP2715877B2 (en) 1993-12-27 1993-12-27 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH07193126A JPH07193126A (en) 1995-07-28
JP2715877B2 true JP2715877B2 (en) 1998-02-18

Family

ID=18251735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5332152A Expired - Fee Related JP2715877B2 (en) 1993-12-27 1993-12-27 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2715877B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110491831B (en) * 2019-07-26 2022-06-14 福建省福联集成电路有限公司 Method for manufacturing through hole and manufactured device
CN113690138A (en) * 2020-05-18 2021-11-23 中芯国际集成电路制造(上海)有限公司 Semiconductor structure and method for forming semiconductor structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170418A (en) * 1988-12-22 1990-07-02 Nec Corp Manufacture of semiconductor device
JP2940041B2 (en) * 1990-01-12 1999-08-25 日本電気株式会社 Method for manufacturing multilayer semiconductor device

Also Published As

Publication number Publication date
JPH07193126A (en) 1995-07-28

Similar Documents

Publication Publication Date Title
JP3402022B2 (en) Method for manufacturing semiconductor device
JP3087685B2 (en) Method for manufacturing semiconductor device
US5667632A (en) Method of defining a line width
JPH09181180A (en) Semiconductor integrated circuit and its manufacture
JPH09205145A (en) Integrated circuit and its manufacture
US5294296A (en) Method for manufacturing a contact hole of a semiconductor device
US6656850B2 (en) Method for in-situ removal of side walls in MOM capacitor formation
US6465346B2 (en) Conducting line of semiconductor device and manufacturing method thereof using aluminum oxide layer as hard mask
JP3353532B2 (en) Trench etching method
JP2715877B2 (en) Method for manufacturing semiconductor device
US5940730A (en) Method of forming a contact hole of a semiconductor device
US6719918B2 (en) Method of reducing notching during reactive ion etching
JPH10144633A (en) Manufacture of semiconductor device
JPH09120990A (en) Formation of connecting hole
JPH11330045A (en) Method for etching laminated film of oxide film and silicon layer
JPH05299440A (en) Manufacture of semiconductor device
KR0139072B1 (en) Method of fabricating semiconductor device having step of forming play in contact hole
JPH10229121A (en) Manufacture of semiconductor device
KR100507869B1 (en) Contact hole formation method of semiconductor device
KR100209279B1 (en) Method for forming a contact of semiconductor device
KR100209637B1 (en) Platinum etching method
JP2694777B2 (en) Method for manufacturing semiconductor device
CN114678422A (en) Semiconductor structure and forming method thereof
KR100414866B1 (en) A method for forming inner capacitor in semiconductor device
KR100252901B1 (en) Method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971007

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees