JP2708829B2 - Method of forming electrode of silicon carbide - Google Patents

Method of forming electrode of silicon carbide

Info

Publication number
JP2708829B2
JP2708829B2 JP32092388A JP32092388A JP2708829B2 JP 2708829 B2 JP2708829 B2 JP 2708829B2 JP 32092388 A JP32092388 A JP 32092388A JP 32092388 A JP32092388 A JP 32092388A JP 2708829 B2 JP2708829 B2 JP 2708829B2
Authority
JP
Japan
Prior art keywords
electrode film
electrode
film
type sic
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32092388A
Other languages
Japanese (ja)
Other versions
JPH02164028A (en
Inventor
潔 太田
俊武 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32092388A priority Critical patent/JP2708829B2/en
Publication of JPH02164028A publication Critical patent/JPH02164028A/en
Application granted granted Critical
Publication of JP2708829B2 publication Critical patent/JP2708829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は炭化ケイ素の電極形成方法に関する。The present invention relates to a method for forming an electrode of silicon carbide.

(ロ) 従来の技術 炭化ケイ素(SiC)は高温高圧下で動作可能な半導体
材料として注目されており、また光学的バンドギャップ
が広く容易にpn接合が形成できることから青色発光素子
材料としても期待されている。
(B) Conventional technology Silicon carbide (SiC) has attracted attention as a semiconductor material that can operate at high temperatures and pressures, and is expected to be a blue light emitting device material because of its wide optical band gap and easy formation of a pn junction. ing.

斯るSiC半導体素子には、従来オーミック電極とし
て、1987年秋期応用物理学会予稿集、29a−W−1、586
頁に示されている如く、p型SiC上にAl/Si、n型SiC上
にNiが用いられている。
Such a SiC semiconductor device has been conventionally used as an ohmic electrode in the fall meeting of the Japan Society of Applied Physics Fall 1987, 29a-W-1, 586.
As shown on the page, Al / Si is used on p-type SiC and Ni is used on n-type SiC.

第2図に従来のSiC半導体素子、例えばSiC発光ダイオ
ードの構造を示す。斯るSiC発光ダイオードの製造方法
は、例えばn型SiC基板(8)の一主面上に、n型SiC層
(9)、p型SiC層(10)をLPE法を用いて順次成長す
る。次いで上記n型SiC基板(8)の他主面上にNi電極
膜(11)を真空蒸着し、これを1000℃で約5分間熱処理
する。これにより、n型SiC基板(8)とNi電極膜(1
1)は合金化し、オーミック性を得る。次に、斯るn型S
iC基板(8)をフッ酸(HF)によるウェットエッチング
で表面処理した後、p型SiC層(10)上にAl/Si電極膜
(12)を真空蒸着し、これを900〜950℃で約5分間熱処
理する。これによりp型SiC層(10)とAl/Si電極膜(1
2)は合金化し、オーミック性を得る。最後にワイヤボ
ンド用電極として周知であるAu/Cr電極膜(13)をNi電
極膜(11)上に積層してSiC発光ダイオードを得る。
FIG. 2 shows the structure of a conventional SiC semiconductor device, for example, a SiC light emitting diode. In the method for manufacturing such a SiC light emitting diode, for example, an n-type SiC layer (9) and a p-type SiC layer (10) are sequentially grown on one main surface of an n-type SiC substrate (8) by using the LPE method. Next, a Ni electrode film (11) is vacuum-deposited on the other main surface of the n-type SiC substrate (8), and this is heat-treated at 1000 ° C. for about 5 minutes. As a result, the n-type SiC substrate (8) and the Ni electrode film (1
1) alloys and obtains ohmic properties. Next, the n-type S
After the surface treatment of the iC substrate (8) by wet etching with hydrofluoric acid (HF), an Al / Si electrode film (12) is vacuum-deposited on the p-type SiC layer (10), and this is applied at 900 to 950 ° C. Heat treat for 5 minutes. As a result, the p-type SiC layer (10) and the Al / Si electrode film (1
2) alloys and obtains ohmic properties. Finally, an Au / Cr electrode film (13), which is well known as a wire bonding electrode, is laminated on the Ni electrode film (11) to obtain a SiC light emitting diode.

しかし乍ら、斯る従来の発光ダイオードではその製造
工程中のHFによる表面処理の際にNi電極膜(11)が若干
酸化し、このためワイヤボンド用電極として形成したAu
/Cr電極膜(13)との密着性が低下し、Ni電極膜(11)
とAu/Cr電極膜(13)との界面で剥離が発生することが
多い。この問題を解決するため、例えば「電子技術」日
刊工業新聞発行、第26巻14号(1984)128〜130頁に示さ
れている様に酸化されにくいAu/Ni電極膜がNi電極膜(1
1)に変わって用いられる。しかし、この方法において
もAu/Ni電極膜形成後に施される1000℃の熱処理の際
に、AuとNiが反応して一部のAuが電極下層に移動するた
め、電極表面ではAuが島状に残り、他の場所でNiが現れ
る。そして表面に現われたNi上で自然酸化膜が形成され
るため、結局、斯る電極とワイヤボンド線又はワイヤボ
ンド用電極であるAu/Cr電極膜との結合力が弱くなって
しまう。
However, in such a conventional light emitting diode, the Ni electrode film (11) is slightly oxidized during the surface treatment with HF during the manufacturing process, so that the Au formed as an electrode for wire bonding is used.
Adhesion with Ni / Cr electrode film (13) is reduced, and Ni electrode film (11)
Peeling often occurs at the interface between the electrode and the Au / Cr electrode film (13). In order to solve this problem, for example, as shown in "Electronic Technology" published by Nikkan Kogyo Shimbun, Vol.
Used instead of 1). However, even in this method, during the heat treatment at 1000 ° C. performed after the formation of the Au / Ni electrode film, Au and Ni react and some of the Au moves to the lower layer of the electrode. And Ni appears elsewhere. Then, since a natural oxide film is formed on the Ni appearing on the surface, the bonding strength between the electrode and the Au / Cr electrode film which is a wire bond wire or a wire bond electrode is eventually weakened.

(ハ) 発明が解決しようとする課題 したがって本発明は、強固にワイヤボンド可能なn型
SiCの電極形成方法を提供するものである。
(C) Problems to be Solved by the Invention Therefore, the present invention provides an n-type capable of firmly wire bonding.
An object of the present invention is to provide a method for forming an electrode of SiC.

(ニ) 課題を解決するための手段 本発明は、炭化ケイ素に電極を形成する方法におい
て、n型炭化ケイ素上にNi電極膜を被着する工程、該Ni
電極膜上にPd電極膜を被着する工程、及び上記Ni電極膜
及び上記Pd電極膜を熱処理する工程、を備えることを特
徴とする。
(D) Means for Solving the Problems The present invention provides a method for forming an electrode on silicon carbide, comprising the steps of: depositing a Ni electrode film on n-type silicon carbide;
A step of applying a Pd electrode film on the electrode film; and a step of heat-treating the Ni electrode film and the Pd electrode film.

(ホ) 作用 本発明方法は、n型SiCとオーミック接触可能なNi電
極膜の上にPd電極膜を被着する。このPd電極膜は1200℃
以下ではNi電極膜と反応しない。またPd電極膜は酸化し
にくい性質を有する。
(E) Function In the method of the present invention, a Pd electrode film is deposited on a Ni electrode film capable of ohmic contact with n-type SiC. This Pd electrode film is 1200 ℃
Below, it does not react with the Ni electrode film. Further, the Pd electrode film has a property of being hardly oxidized.

(ヘ) 実施例 第1図は本発明方法の一実施例を示す工程別断面図で
ある。以下図を参照して本発明方法を詳述する。
(F) Example FIG. 1 is a sectional view of each step showing an example of the method of the present invention. Hereinafter, the method of the present invention will be described in detail with reference to the drawings.

第1図(a)は第1の工程を示し、先ずn型SiC基板
(1)を準備する。そして、その一主面上に、LPE法、C
VD法等の周知のエピタキシャル法を用いてn型SiC層
(2)、p型SiC層(3)を順次積層する。
FIG. 1A shows a first step, in which an n-type SiC substrate (1) is first prepared. And on one of the main surfaces, LPE method, C
An n-type SiC layer (2) and a p-type SiC layer (3) are sequentially stacked using a well-known epitaxial method such as a VD method.

第1図(b)は第2の工程を示し、n型SiC基板
(1)の他主面上に、真空蒸着法を用いて、Ni電極膜
(4)を500Å、Pd電極膜(5)を3000Å、夫々蒸着す
る。しかる後、斯る積層基板を1000℃で約5分間熱処理
する。これによりNi電極膜(4)はn型SiC基板(1)
と合金化しオーミック性を得る。また、この1000℃の熱
処理においてPd電極膜(5)はNi電極膜(4)と反応し
ない。したがって、Ni電極膜(4)中のNiはPd電極膜
(5)内を通ってPd電極膜(5)表面に現われない。
FIG. 1 (b) shows a second step, in which a Ni electrode film (4) is formed on the other main surface of the n-type SiC substrate (1) by a vacuum evaporation method at 500 ° and a Pd electrode film (5). Are deposited for 3000 mm each. Thereafter, the laminated substrate is heat-treated at 1000 ° C. for about 5 minutes. Thus, the Ni electrode film (4) becomes the n-type SiC substrate (1)
Alloys to obtain ohmic properties. Further, the Pd electrode film (5) does not react with the Ni electrode film (4) in the heat treatment at 1000 ° C. Therefore, Ni in the Ni electrode film (4) does not appear on the surface of the Pd electrode film (5) through the inside of the Pd electrode film (5).

第1図(c)は第3の工程を示し、p型SiC層(3)
上に、フッ酸(HF)によるウェットエッチングにて表面
処理を施した後、真空蒸着法を用いて、Si膜を1000Å、
Al膜を7000Å、夫々蒸着しAl/Si電極膜(6)を形成す
る。しかる後、斯る積層基板を900〜1000℃、例えば950
℃で約5分間熱処理する。これによりAl/Si電極膜
(6)はp型SiC層(3)と合金化し、オーミック性を
得る。斯る工程の中の、フッ酸によるp型SiC層(3)
の表面処理の際に、Pd電極膜(5)表面に酸化膜は形成
されない。これは、Pd電極膜(5)が酸化されにくい性
質を有すること及びPd電極膜(5)表面に下層中のNiが
現われないことによる。
FIG. 1 (c) shows a third step, in which a p-type SiC layer (3) is used.
After applying a surface treatment by wet etching with hydrofluoric acid (HF), the Si film was 1000 mm thick using a vacuum evaporation method.
An Al film is deposited at 7000 ° to form an Al / Si electrode film (6). Thereafter, the laminated substrate is heated at 900 to 1000 ° C, for example, 950 ° C.
Heat treatment at about 5 minutes. Thereby, the Al / Si electrode film (6) is alloyed with the p-type SiC layer (3) to obtain ohmic properties. P-type SiC layer by hydrofluoric acid in such a process (3)
No oxide film is formed on the surface of the Pd electrode film (5) at the time of the surface treatment. This is because the Pd electrode film (5) has the property of being hardly oxidized and Ni in the lower layer does not appear on the surface of the Pd electrode film (5).

第1図(d)は第4の工程を示し、Pd電極膜(5)上
に、真空蒸着法を用いて、例えばTi膜を1000Å、Pd膜を
2000Å、Au膜を3000Å蒸着し、ワイヤボンド用電極とし
て周知のAu/Pd/Ti電極膜(7)を形成する。斯るAu/Pd/
Ti電極膜(7)はPd電極膜(5)表面に酸化膜が存在し
ないため、Pd電極膜(5)と強固に結合する。
FIG. 1 (d) shows a fourth step, in which, for example, a Ti film is formed on the Pd electrode film (5) by using a vacuum evaporation method to a thickness of 1000 ° and a Pd film.
An Au film is deposited by 2000 mm and an Au film is deposited by 3000 mm to form a well-known Au / Pd / Ti electrode film (7) as a wire bonding electrode. Such Au / Pd /
Since the Ti electrode film (7) has no oxide film on the surface of the Pd electrode film (5), it is strongly bonded to the Pd electrode film (5).

本実施例においてNi電極膜(4)、Pd電極膜(5)は
n型SiC基板(1)上に形成したが、n型SiCエピタキシ
ャル層の上に形成しても同様の効果が得られる。
In the present embodiment, the Ni electrode film (4) and the Pd electrode film (5) are formed on the n-type SiC substrate (1), but the same effects can be obtained by forming them on the n-type SiC epitaxial layer.

また、本発明方法におけるPd電極膜は高融点を有する
ため、熱処理の際に変形しない。これに伴い下層のNi電
極膜も変形を生じにくくなる。このため本発明方法にお
いては、Ni電極膜の膜厚を厚くして電極膜の変形による
素子内の電界不均一を抑える必要はなく、Ni電極膜の膜
厚を自由に設定できる。また、Ni電極膜の厚さが、熱処
理の際に、Ni電極膜中のNiのSiCへの拡散深さに関係す
ること、及び熱処理の際にNi電極膜とPd電極膜が反応し
ないため、Ni電極膜中のNiの拡散がSiCへのみ起こるこ
とから本発明方法においては、Ni電極膜の膜厚を適宜変
化させることによって、Niの拡散深さを容易に制御でき
る。斯るNiの拡散した部分のSiCは導通状態となるの
で、Ni電極膜が被着されるSiCの厚さは拡散深さより厚
くしなければならない。本発明方法では上述の如くNi電
極膜の膜厚を薄くすることによって、拡散深さを極力浅
くすることができるので、Ni電極膜が被着されるSiCの
厚さを薄くすることができる。これにより、素子の比抵
抗が下がるため、動作時の発熱量を抑えることができ、
素子劣化が起こりにくくなるため、素子の信頼性が向上
する。さらに、本発明方法を、pnp型SiCバイポーラトラ
ンジスタにおけるベース用電極の形成に適用すれば、ベ
ース層となるn型SiC層の層厚を、上記理由により極力
薄くすることができるので、応答特性の良いバイポーラ
トランジスタが得られる。
Further, since the Pd electrode film in the method of the present invention has a high melting point, it does not deform during heat treatment. Along with this, the lower Ni electrode film is less likely to be deformed. For this reason, in the method of the present invention, it is not necessary to increase the thickness of the Ni electrode film to suppress the electric field unevenness in the element due to the deformation of the electrode film, and the thickness of the Ni electrode film can be freely set. Also, since the thickness of the Ni electrode film is related to the diffusion depth of Ni in the Ni electrode film to SiC during the heat treatment, and since the Ni electrode film and the Pd electrode film do not react during the heat treatment, In the method of the present invention, the Ni diffusion depth can be easily controlled by appropriately changing the thickness of the Ni electrode film since the diffusion of Ni in the Ni electrode film occurs only to SiC. Since the SiC in the Ni-diffused portion becomes conductive, the thickness of the SiC on which the Ni electrode film is deposited must be larger than the diffusion depth. In the method of the present invention, the diffusion depth can be made as small as possible by reducing the thickness of the Ni electrode film as described above, so that the thickness of the SiC on which the Ni electrode film is deposited can be reduced. As a result, the specific resistance of the element decreases, so that the amount of heat generated during operation can be suppressed,
Since the element is less likely to deteriorate, the reliability of the element is improved. Furthermore, if the method of the present invention is applied to the formation of a base electrode in a pnp-type SiC bipolar transistor, the thickness of the n-type SiC layer serving as the base layer can be reduced as much as possible for the above-described reason, and the response characteristics are improved. A good bipolar transistor is obtained.

(ト) 発明の効果 本発明方法によれば、Ni電極膜上にPd電極膜を被着す
ることによって、熱処理の後、Pd電極膜表面に酸化膜が
形成されない。このためPd電極膜上に形成するワイヤボ
ンド用電極膜は当該Pd電極膜と強固に結合することがで
きる。さらに容易にNiのSiCへの拡散深さを制御できる
ので、n型SiC層の厚さを薄くでき、素子の特性を向上
させることができる。
(G) Effects of the Invention According to the method of the present invention, an oxide film is not formed on the surface of the Pd electrode film after the heat treatment by depositing the Pd electrode film on the Ni electrode film. Therefore, the electrode film for wire bonding formed on the Pd electrode film can be strongly bonded to the Pd electrode film. Further, since the diffusion depth of Ni into SiC can be easily controlled, the thickness of the n-type SiC layer can be reduced, and the characteristics of the device can be improved.

【図面の簡単な説明】 第1図は本発明方法の一実施例を示す工程別断面図、第
2図は従来装置を示す断面図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view showing steps of an embodiment of the method of the present invention, and FIG. 2 is a sectional view showing a conventional apparatus.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭化ケイ素に電極を形成する方法におい
て、n型炭化ケイ素上にNi電極膜を被着する工程、該Ni
電極膜上にPd電極膜を被着する工程、及び上記Ni電極膜
及び上記Pd電極膜を熱処理する工程、を備えることを特
徴とする炭化ケイ素の電極形成方法。
1. A method for forming an electrode on silicon carbide, comprising the steps of: depositing a Ni electrode film on n-type silicon carbide;
A method for forming an electrode of silicon carbide, comprising: a step of applying a Pd electrode film on an electrode film; and a step of heat-treating the Ni electrode film and the Pd electrode film.
JP32092388A 1988-12-19 1988-12-19 Method of forming electrode of silicon carbide Expired - Fee Related JP2708829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32092388A JP2708829B2 (en) 1988-12-19 1988-12-19 Method of forming electrode of silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32092388A JP2708829B2 (en) 1988-12-19 1988-12-19 Method of forming electrode of silicon carbide

Publications (2)

Publication Number Publication Date
JPH02164028A JPH02164028A (en) 1990-06-25
JP2708829B2 true JP2708829B2 (en) 1998-02-04

Family

ID=18126789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32092388A Expired - Fee Related JP2708829B2 (en) 1988-12-19 1988-12-19 Method of forming electrode of silicon carbide

Country Status (1)

Country Link
JP (1) JP2708829B2 (en)

Also Published As

Publication number Publication date
JPH02164028A (en) 1990-06-25

Similar Documents

Publication Publication Date Title
US3339274A (en) Top contact for surface protected semiconductor devices
US6395572B1 (en) Method of producing semiconductor light-emitting element
JP4802380B2 (en) Manufacturing method of semiconductor substrate
JPH0783050B2 (en) Method for manufacturing semiconductor device
JP2940699B2 (en) Method for forming p-type SiC electrode
JP2708829B2 (en) Method of forming electrode of silicon carbide
US4698901A (en) Mesa semiconductor device
JP2911122B2 (en) Method for forming ohmic electrode of silicon carbide semiconductor device
JP3128344B2 (en) Method for forming electrode of n-type silicon carbide
JP2708814B2 (en) Method for forming electrode of silicon carbide semiconductor device
IE51997B1 (en) Semiconductor device
JPH0245976A (en) Method for forming silicon carbide electrode
JPS60136270A (en) Manufacture of semiconductor device
JP3465765B2 (en) Method for manufacturing semiconductor substrate for IGBT
JPS60236243A (en) Manufacture of semiconductor device
JPH0518470B2 (en)
JPH0620984A (en) Formation of rear plane electrode for semiconductor device
JPS62221122A (en) Manufacture of semiconductor device
JP2017069366A (en) Semiconductor device and method of manufacturing the same
US3401316A (en) Semiconductor device utilizing an aual2 layer as a diffusion barrier that prevents "purple plague"
JPS61224457A (en) Semiconductor device and manufacture thereof
JPS63234562A (en) Electrode of semiconductor device
JPS62262471A (en) Manufacture of semiconductor device
JPH0670981B2 (en) Electrode forming method
JPS62234322A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees