JP2911122B2 - Method for forming ohmic electrode of silicon carbide semiconductor device - Google Patents

Method for forming ohmic electrode of silicon carbide semiconductor device

Info

Publication number
JP2911122B2
JP2911122B2 JP9730288A JP9730288A JP2911122B2 JP 2911122 B2 JP2911122 B2 JP 2911122B2 JP 9730288 A JP9730288 A JP 9730288A JP 9730288 A JP9730288 A JP 9730288A JP 2911122 B2 JP2911122 B2 JP 2911122B2
Authority
JP
Japan
Prior art keywords
silicon carbide
film
carbide semiconductor
ohmic electrode
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9730288A
Other languages
Japanese (ja)
Other versions
JPH01268121A (en
Inventor
潔 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP9730288A priority Critical patent/JP2911122B2/en
Publication of JPH01268121A publication Critical patent/JPH01268121A/en
Application granted granted Critical
Publication of JP2911122B2 publication Critical patent/JP2911122B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0485Ohmic electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は、炭化ケイ素半導体素子のオーミック電極形
成方法に関する。
The present invention relates to a method for forming an ohmic electrode of a silicon carbide semiconductor device.

(ロ) 従来の技術 炭化ケイ素(SiC)は高温高圧下で動作可能な半導体
材料として注目されており、また光学的バンドギャップ
が広く容易にPn接合が形成できることから青色発光素子
材料としても期待されている。
(B) Conventional technology Silicon carbide (SiC) has attracted attention as a semiconductor material that can operate at high temperatures and pressures, and is expected to be a blue light emitting device material because of its wide optical band gap and easy formation of a Pn junction. ing.

斯るSiC半導体素子には、従来オーミック電極とし
て、1987年秋期応用物理学会予稿集、29a−W−1,586頁
に示されている如く、P型SiC上にAl/Si,n型SiC上にNi
が用いられている。
Such an SiC semiconductor device has been conventionally used as an ohmic electrode, as shown in Proceedings of the Japan Society of Applied Physics Fall 1987, 29a-W-1, page 586, Al / Si on P-type SiC, Ni
Is used.

第2図に従来のSiC半導体素子を示す。斯るSiC半導体
素子の製造方法は、例えばn型SiC基板(1)の一主面
上に、n型SiC層(2)、P型SiC層(3)をLPE法を用
いて順次成長する次いで斯る積層基板をウェットエッチ
ング等の表面処理した後P型SiC層(3)上にAl/Si電極
膜(5)を、n型SiC基板(1)の他主面上にNi電極膜
(6)をそれぞれ真空蒸着する。しかる後、斯る積層基
板に900〜1000℃の高温で5分程度熱処理を施すことに
よって、各電極はSiCと合金化し、オーミック性を得る
ものである。
FIG. 2 shows a conventional SiC semiconductor device. The method for manufacturing such a SiC semiconductor device is, for example, to sequentially grow an n-type SiC layer (2) and a P-type SiC layer (3) on one main surface of an n-type SiC substrate (1) by using the LPE method. After the laminated substrate is subjected to surface treatment such as wet etching, an Al / Si electrode film (5) is formed on the P-type SiC layer (3), and a Ni electrode film (6) is formed on the other main surface of the n-type SiC substrate (1). ) Is vacuum deposited. Thereafter, by subjecting such a laminated substrate to a heat treatment at a high temperature of 900 to 1000 ° C. for about 5 minutes, each electrode is alloyed with SiC to obtain ohmic properties.

(ハ) 発明が解決しようとする課題 斯る従来方法を用いて、p型SiC上にAl/Si電極膜を複
数に分割して形成し、隣り合う電極間でそれぞれV−I
特性を調べたところ、第3図に示す如く、オーミック性
が得られている部分(実線)と得られていない部分(破
線)が生じていることがわかった。即ち、従来方法では
SiC上に形成したオーミック電極は場所的にオーミック
性が得られず、電極むらが生じるといった問題を有して
いる。
(C) Problems to be Solved by the Invention By using such a conventional method, an Al / Si electrode film is divided into a plurality of pieces on p-type SiC, and VI-
When the characteristics were examined, it was found that, as shown in FIG. 3, a part where the ohmic property was obtained (solid line) and a part where the ohmic property was not obtained (dashed line) occurred. That is, in the conventional method
The ohmic electrode formed on SiC has a problem that the ohmic property cannot be obtained locally and electrode unevenness occurs.

斯る電極むらの発生は、しきい値電流を増加する原因
となり、素子の特性は低下することになる。さらに電極
のオーミック性を示す部分に電流が集中するため、その
部分の発熱量が増え、熱劣化が著しくなる。即ち、素子
の寿命が短くなり不都合である。
The occurrence of such electrode unevenness causes the threshold current to increase, and the characteristics of the element are degraded. Further, since current concentrates on a portion of the electrode exhibiting ohmic properties, the amount of heat generated in that portion increases, and thermal degradation becomes significant. That is, the life of the element is shortened, which is inconvenient.

またn型SiC上に形成されるNi電極も同様な問題が生
じる。
Similar problems also occur with Ni electrodes formed on n-type SiC.

(ニ) 課題を解決するための手段 本発明は炭化ケイ素半導体素子にオーミック性電極を
形成する方法において、上記課題を解決するため、先ず
p型炭化ケイ素半導体層上に当該p型炭化ケイ素半導体
層よりも酸素と強い反応を示す金属膜を形成し、次いで
その上にオーミック電極用Al/Si膜を積層した後、該オ
ーミック電極用Al/Si膜の構成元素が前記金属膜中を拡
散し、前記p型炭化ケイ素半導体層に到達する温度で熱
処理することを特徴とする。或いは、先ずn型炭化ケイ
素半導体層上に当該n型炭化ケイ素半導体層よりも酸素
と強い反応を示す金属膜を形成し、次いでその上にオー
ミック電極用Ni膜を積層した後、該オーミック電極用Ni
膜の構成元素が前記金属膜中を拡散し、前記n型炭化ケ
イ素半導体層に到達する温度で熱処理することを特徴と
する。
(D) Means for Solving the Problems In the present invention, in a method for forming an ohmic electrode on a silicon carbide semiconductor device, in order to solve the above problems, first, the p-type silicon carbide semiconductor layer is formed on the p-type silicon carbide semiconductor layer. Forming a metal film that shows a stronger reaction with oxygen than, and then stacking an Al / Si film for the ohmic electrode thereon, the constituent elements of the Al / Si film for the ohmic electrode diffuse in the metal film, The heat treatment is performed at a temperature reaching the p-type silicon carbide semiconductor layer. Alternatively, first, a metal film showing a stronger reaction with oxygen than the n-type silicon carbide semiconductor layer is formed on the n-type silicon carbide semiconductor layer, and then a Ni film for an ohmic electrode is laminated thereon, Ni
The heat treatment is performed at a temperature at which constituent elements of the film diffuse in the metal film and reach the n-type silicon carbide semiconductor layer.

(ホ) 作用 本発明は、先ずp型或いはn型の炭化ケイ素半導体層
上に、当該炭化ケイ素半導体層よりも酸素と強い反応を
示す金属膜を形成することにより、当該金属膜は上記炭
化ケイ素半導体層表面に生成された自然酸化膜と反応
し、当該自然酸化膜を還元する。
(E) Action The present invention first forms a metal film that reacts more strongly with oxygen than the silicon carbide semiconductor layer on a p-type or n-type silicon carbide semiconductor layer, so that the metal film is It reacts with the natural oxide film formed on the surface of the semiconductor layer to reduce the natural oxide film.

さらに、その金属膜上にオーミック電極用のAl/Si膜
或いはNi膜を積層した後、これらオーミック電極用金属
膜の構成元素が前記金属膜中を拡散し、前記p型或いは
n型の炭化ケイ素半導体層に到達する温度で熱処理する
ので、オーミック電極用のAl/Si膜或いはNi膜は自然酸
化膜に遮られることなく炭化ケイ素半導体層とオーミッ
ク接触し、良好なオーミック電極を形成することができ
る。
Further, after laminating an Al / Si film or a Ni film for an ohmic electrode on the metal film, the constituent elements of the metal film for an ohmic electrode diffuse in the metal film, and the p-type or n-type silicon carbide Since heat treatment is performed at a temperature that reaches the semiconductor layer, the Al / Si film or Ni film for the ohmic electrode makes ohmic contact with the silicon carbide semiconductor layer without being blocked by the natural oxide film, and a good ohmic electrode can be formed. .

(ヘ) 実施例 第1図は本発明方法の一実施例を示す工程別断面図で
ある。以下図を参照して本発明方法を説明する。
(F) Example FIG. 1 is a sectional view of each step showing an example of the method of the present invention. The method of the present invention will be described below with reference to the drawings.

先ず、第1図(a)に示す如く、n型SiC基板(1)
を用意し、該n型SiC基板(1)の一主面上にn型SiC
(2)を周知のLPE法、CVD法等でエピタキシャル成長さ
せる。次いで、同図(b)に示す如く、n型SiC層
(2)上に、同様に、P型SiC層(3)をエピタキシャ
ル成長させる。しかる後、SiC表面をウェットエッチン
グ等により表面処理をする。表面処理後、本発明者が斯
るSiC表面を分析したところ、その表面には数十Å程度
のSiC自然酸化膜が新たに生成されていた。また、本発
明者が検討した結果、従来方法には斯るSiC自然酸化膜
がSiCとオーミック電極とのオーミック接触形成時に電
極むらを生じさせる原因になることが判明した。したが
って本実施例では、斯るSiC自然酸化膜の影響を避ける
ため次のような手段を用いる。即ち、同図(c)に示す
如く、P型SiC層(3)上に、SiCよりも強く酸素と反応
する金属、例えばTi薄膜(4)を真空蒸着法を用いて、
500Å程度積層する。このTi薄膜(4)は、P型SiC層
(3)表面に生成されているSiC自然酸化膜中の酸素と
反応し、当該SiC自然酸化膜を還元する。次に、同図
(d)に示す如く、Ti薄膜(4)上にAl/Si電極膜
(5)を、またn型SiC基板(1)の他主面にNi電極膜
(6)を真空蒸着法を用いて、それぞれ形成する。しか
る後、斯かる積層基板を、オーミック電極用Al/Si膜の
構成元素が前記金属膜中を拡散し、前記p型SiC層に到
達する温度である800〜1000℃、例えば950℃で5分程度
熱処理する。ここで、基板温度が800℃以上でAl/Si電極
膜(5)は、酸素と反応したTi薄膜(4)中を均一に拡
散していくことができる。そして、Al/Si電極膜(5)
は従来のようにSiC自然酸化膜に妨げられることなくP
型SiC層(3)に到達して均一なオーミック接触を形成
する。
First, as shown in FIG. 1 (a), an n-type SiC substrate (1)
And an n-type SiC substrate is provided on one main surface of the n-type SiC substrate (1).
(2) is epitaxially grown by a known LPE method, a CVD method, or the like. Next, as shown in FIG. 3B, a P-type SiC layer (3) is similarly epitaxially grown on the n-type SiC layer (2). After that, the SiC surface is subjected to surface treatment by wet etching or the like. After the surface treatment, the present inventor analyzed the SiC surface, and found that about several tens of SiC natural oxide films were newly formed on the surface. Further, as a result of the study by the present inventors, it has been found that in the conventional method, the SiC natural oxide film causes electrode unevenness when forming ohmic contact between SiC and the ohmic electrode. Therefore, in the present embodiment, the following means is used to avoid the influence of the SiC natural oxide film. That is, as shown in FIG. 3C, a metal that reacts with oxygen more strongly than SiC, for example, a Ti thin film (4) is formed on the P-type SiC layer (3) by using a vacuum deposition method.
Laminate about 500mm. This Ti thin film (4) reacts with oxygen in the SiC natural oxide film generated on the surface of the P-type SiC layer (3) to reduce the SiC natural oxide film. Next, as shown in FIG. 4D, an Al / Si electrode film (5) is placed on the Ti thin film (4) and a Ni electrode film (6) is placed on the other main surface of the n-type SiC substrate (1). Each is formed using an evaporation method. Thereafter, such a laminated substrate is heated at 800 to 1000 ° C., which is a temperature at which the constituent elements of the Al / Si film for an ohmic electrode diffuse through the metal film and reach the p-type SiC layer, for example, at 950 ° C. for 5 minutes. Heat treatment to a degree. Here, when the substrate temperature is 800 ° C. or higher, the Al / Si electrode film (5) can diffuse uniformly in the Ti thin film (4) reacted with oxygen. And Al / Si electrode film (5)
Is P without being hindered by the SiC native oxide film as in the past.
A uniform ohmic contact is formed by reaching the type SiC layer (3).

本実施例ではTi薄膜(4)の膜厚を500Åとしたが本
発明はこれに限ることなく、数十Å程度のSiC自然酸化
膜を還元する厚さがあればよい。ただし、Ti薄膜(4)
が厚すぎると、熱処理の間にAl/Si電極膜(5)がP型S
iC層(3)に到達しなくなるので注意が必要である。
In this embodiment, the thickness of the Ti thin film (4) is set to 500 Å. However, the present invention is not limited to this, and it is sufficient that the Ti thin film (4) has a thickness of about several tens of Å to reduce the SiC natural oxide film. However, Ti thin film (4)
Is too thick, the Al / Si electrode film (5) becomes P-type S during heat treatment.
It is necessary to be careful because it does not reach the iC layer (3).

本発明者が本実施例において、Al/Si電極膜(5)を
複数に分割して形成し、隣り合う電極間でそれぞれV−
I特性を調べたところ、従来のようなオーミック性が得
られていない部分は測定されず、すべての電極でオーミ
ック性が得られていることが確認された。
In the present embodiment, the inventor formed the Al / Si electrode film (5) by dividing it into a plurality of pieces, and set V-
When the I characteristic was examined, a portion where the ohmic property was not obtained as in the related art was not measured, and it was confirmed that the ohmic property was obtained in all the electrodes.

本実施例では、SiCよりも強く酸素と反応する金属膜
としてTi薄膜(4)を用いたが、他に、Pd,Cr,Ni,Mg等
を用いても同様な効果が得られる。また、これらの金属
膜は、P型SiC上に積層するものに限らずn型SiC上に積
層する場合においても同様に効果的であることは言うま
でもない。
In the present embodiment, the Ti thin film (4) is used as the metal film that reacts more strongly with oxygen than SiC, but the same effect can be obtained by using Pd, Cr, Ni, Mg or the like. It is needless to say that these metal films are not limited to those laminated on P-type SiC, but are similarly effective when laminated on n-type SiC.

(ト) 発明の効果 本発明は、上述の説明からも明らかな如く、炭化ケイ
素半導体素子にオーミック電極を形成するにあたって、
先ずp型或いはn型の炭化ケイ素半導体層上に、当該炭
化ケイ素半導体層よりも酸素と強い反応を示す金属膜を
形成することによって、上記炭化ケイ素半導体層表面に
生成された自然酸化膜を還元している。
(G) Effects of the Invention As is clear from the above description, the present invention provides a method for forming an ohmic electrode on a silicon carbide semiconductor device.
First, a natural film formed on the surface of the silicon carbide semiconductor layer is reduced by forming a metal film showing a stronger reaction with oxygen than the silicon carbide semiconductor layer on the p-type or n-type silicon carbide semiconductor layer. doing.

さらに、その金属膜上にオーミック電極用のAl/Si膜
或いはNi膜を積層した後、これらのオーミック電極用金
属膜の構成元素が前記金属膜中を拡散し、前記p型或い
はn型の炭化ケイ素半導体層に到達する温度で熱処理す
るので、オーミック電極用のAl/Si膜或いはNi膜は自然
酸化膜に遮られることなく炭化ケイ素半導体層とオーミ
ック接触し、良好なオーミック電極を形成することがで
きる。
Further, after the Al / Si film or the Ni film for the ohmic electrode is laminated on the metal film, the constituent elements of the metal film for the ohmic electrode diffuse in the metal film to form the p-type or n-type carbonized film. Since heat treatment is performed at a temperature that reaches the silicon semiconductor layer, the Al / Si film or Ni film for the ohmic electrode can be in ohmic contact with the silicon carbide semiconductor layer without being blocked by the natural oxide film, and a good ohmic electrode can be formed. it can.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)乃至同図(d)は本発明方法の一実施例を
示す工程別断面図、第2図は従来のSiC半導体素子の構
造を示す断面図、第3図は従来方法で作製したSiC半導
体素子のオーミック電極の特性を示すV−I特性図であ
る。 (1)……n型SiC基板、(2)……n型SiC層、(3)
……p型SiC層、(4)……Ti薄膜、(5)……Al/Si電
極膜、(6)……Ni電極膜。
1 (a) to 1 (d) are sectional views showing steps of an embodiment of the method of the present invention, FIG. 2 is a sectional view showing the structure of a conventional SiC semiconductor device, and FIG. FIG. 6 is a VI characteristic diagram showing characteristics of an ohmic electrode of the manufactured SiC semiconductor element. (1) ... n-type SiC substrate, (2) ... n-type SiC layer, (3)
... p-type SiC layer, (4) ... Ti thin film, (5) ... Al / Si electrode film, (6) ... Ni electrode film.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭化ケイ素半導体素子にオーミック性電極
を形成する方法において、先ずp型炭化ケイ素半導体層
上に当該p型炭化ケイ素半導体層よりも酸素と強い反応
を示す金属膜を形成し、次いでその上にオーミック電極
用Al/Si膜を積層した後、オーミック電極用Al/Si膜の構
成元素が前記金属膜中を拡散し、前記p型炭化ケイ素半
導体層に到達する温度で熱処理することを特徴とした炭
化ケイ素半導体素子のオーミック電極形成方法。
In a method of forming an ohmic electrode on a silicon carbide semiconductor device, first, a metal film showing a stronger reaction with oxygen than the p-type silicon carbide semiconductor layer is formed on a p-type silicon carbide semiconductor layer, After laminating the Al / Si film for the ohmic electrode thereon, heat treatment is performed at a temperature at which the constituent elements of the Al / Si film for the ohmic electrode diffuse in the metal film and reach the p-type silicon carbide semiconductor layer. A method for forming an ohmic electrode of a silicon carbide semiconductor device.
【請求項2】炭化ケイ素半導体素子にオーミック性電極
を形成する方法において、先ずn型炭化ケイ素半導体層
上に当該n型炭化ケイ素半導体層よりも酸素と強い反応
を示す金属膜を形成し、次いでその上にオーミック電極
用Ni膜を積層した後、該オーミック電極用Ni膜の構成元
素が前記金属膜中を拡散し、前記n型炭化ケイ素半導体
層に到達する温度で熱処理することを特徴とした炭化ケ
イ素半導体素子のオーミック電極形成方法。
2. A method for forming an ohmic electrode on a silicon carbide semiconductor device, comprising first forming a metal film on the n-type silicon carbide semiconductor layer that reacts more strongly with oxygen than on the n-type silicon carbide semiconductor layer; After laminating a Ni film for the ohmic electrode thereon, the constituent elements of the Ni film for the ohmic electrode diffuse in the metal film and are heat-treated at a temperature reaching the n-type silicon carbide semiconductor layer. A method for forming an ohmic electrode of a silicon carbide semiconductor device.
【請求項3】上記酸素と強い反応を示す金属が、Ti,Pd,
Cr,Ni,Mgの中から選ばれた1つであることを特徴とする
請求項1又は2記載の炭化ケイ素半導体素子のオーミッ
ク電極形成方法。
3. The metal having a strong reaction with oxygen is Ti, Pd,
3. The method for forming an ohmic electrode of a silicon carbide semiconductor device according to claim 1, wherein the method is one selected from Cr, Ni, and Mg.
JP9730288A 1988-04-20 1988-04-20 Method for forming ohmic electrode of silicon carbide semiconductor device Expired - Fee Related JP2911122B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9730288A JP2911122B2 (en) 1988-04-20 1988-04-20 Method for forming ohmic electrode of silicon carbide semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9730288A JP2911122B2 (en) 1988-04-20 1988-04-20 Method for forming ohmic electrode of silicon carbide semiconductor device

Publications (2)

Publication Number Publication Date
JPH01268121A JPH01268121A (en) 1989-10-25
JP2911122B2 true JP2911122B2 (en) 1999-06-23

Family

ID=14188693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9730288A Expired - Fee Related JP2911122B2 (en) 1988-04-20 1988-04-20 Method for forming ohmic electrode of silicon carbide semiconductor device

Country Status (1)

Country Link
JP (1) JP2911122B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4026339B2 (en) * 2001-09-06 2007-12-26 豊田合成株式会社 SiC electrode and manufacturing method thereof
JP4690485B2 (en) * 2007-10-24 2011-06-01 パナソニック株式会社 Manufacturing method of semiconductor device
JP5449786B2 (en) * 2009-01-15 2014-03-19 昭和電工株式会社 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
JP4858791B2 (en) * 2009-05-22 2012-01-18 住友電気工業株式会社 Semiconductor device and manufacturing method thereof
JP5581642B2 (en) 2009-10-05 2014-09-03 住友電気工業株式会社 Manufacturing method of semiconductor device
EP2560194A4 (en) 2010-04-14 2013-11-20 Sumitomo Electric Industries Silicon carbide semiconductor device and method for manufacturing same
JP6686581B2 (en) 2016-03-16 2020-04-22 富士電機株式会社 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5856977B2 (en) * 1977-03-18 1983-12-17 株式会社東芝 Manufacturing method of semiconductor device
JPS59163822A (en) * 1983-03-09 1984-09-14 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPH01268121A (en) 1989-10-25

Similar Documents

Publication Publication Date Title
JP2775903B2 (en) Diamond semiconductor element
JP3930561B2 (en) Ohmic contact and method for manufacturing a semiconductor device comprising such an ohmic contact
US6943376B2 (en) Electrode for p-type SiC
US6395572B1 (en) Method of producing semiconductor light-emitting element
US5124779A (en) Silicon carbide semiconductor device with ohmic electrode consisting of alloy
JP3705016B2 (en) Translucent electrode film and group III nitride compound semiconductor device
JP4100652B2 (en) SiC Schottky diode
US20060003514A1 (en) Method of forming ohmic contact to a semiconductor body
WO2019009021A1 (en) Schottky barrier diode
JPH01196873A (en) Silicon carbide semiconductor device
JP2911122B2 (en) Method for forming ohmic electrode of silicon carbide semiconductor device
JP2940699B2 (en) Method for forming p-type SiC electrode
JP3755904B2 (en) Diamond rectifier
JP4038814B2 (en) Semiconductor device and field effect transistor
JPH0661475A (en) Group iv semiconductor element containing carbon and its manufacture
JPH04233277A (en) Transistor provided with layer of cubic boron nitride
JP2708798B2 (en) Method of forming electrode of silicon carbide
JPH02196421A (en) Electrode forming method for silicon carbide semiconductor element
JPH0831767A (en) Manufacture of electrode structure
JPH0373573A (en) Schottky barrier semiconductor device
JP4036075B2 (en) Method for manufacturing electrode for p-type SiC
JPH08316498A (en) Diamond semiconductor rectifying element
JP7516827B2 (en) pn junction diode
JP2708829B2 (en) Method of forming electrode of silicon carbide
JPH03160763A (en) Manufacture of photovoltaic device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees