JP2940699B2 - Method for forming p-type SiC electrode - Google Patents

Method for forming p-type SiC electrode

Info

Publication number
JP2940699B2
JP2940699B2 JP2202030A JP20203090A JP2940699B2 JP 2940699 B2 JP2940699 B2 JP 2940699B2 JP 2202030 A JP2202030 A JP 2202030A JP 20203090 A JP20203090 A JP 20203090A JP 2940699 B2 JP2940699 B2 JP 2940699B2
Authority
JP
Japan
Prior art keywords
film
type sic
electrode
sic
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2202030A
Other languages
Japanese (ja)
Other versions
JPH0485972A (en
Inventor
潔 太田
和幸 古賀
康博 上田
隆夫 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2202030A priority Critical patent/JP2940699B2/en
Publication of JPH0485972A publication Critical patent/JPH0485972A/en
Application granted granted Critical
Publication of JP2940699B2 publication Critical patent/JP2940699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/048Making electrodes
    • H01L21/0485Ohmic electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To reduce contact resistance of a p-type SiC with an electrode and to make ohmic properties in the electrode uniform by laminating an Ni film, a Ti film in an arbitrary sequence on the SiC, laminating an Al film thereon, and then heat-treating it. CONSTITUTION:An n-type SiC layer 2, a p-type SiC layer 3 are sequentially epitaxially grown on one main surface la of an n-type SiC substrate 1. Then, an Ni film 4, a Ti film 5, an Al film 6 are sequentially deposited on the layer 3, and a p-type side electrode 7 is formed. Further, an Ni film 8, an Au film 9 are sequentially deposited on the other main surface 1b of the substrate 1, and an n-type electrode 10 is formed. Thereafter, this laminate is heat-treated in an inert gas to obtain ohmic properties at the electrodes 7, 10 to contact SiC. Thus, a light emitting diode having excellent electric characteristics is obtained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、p型SiC上にオートミック性の電極を形成
する方法に関する。
The present invention relates to a method of forming an electrode having automatism on p-type SiC.

(ロ)従来の技術 炭化ケイ素(SiC)は高温高圧下で動作可能な半導体
材料として注目されており、また光学的バンドキャップ
が広く、且つ容易にpn接合が形成できることから青色発
光素子材料として期待されている。
(B) Conventional technology Silicon carbide (SiC) is attracting attention as a semiconductor material that can operate under high temperature and high pressure, and is expected as a blue light emitting device material because of its wide optical band cap and easy formation of a pn junction. Have been.

斯るSiC半導体素子のp側電極として、例えば、雑誌
「月刊 Semiconductor World 1986.11」40〜48頁、1987
年秋季応用物理学会予稿集,29a−W−1,586頁等に記載
されている如く、p型SiC上にSi、Alをこの順に積層形
成したAl/Si電極が用いられている。
As the p-side electrode of such a SiC semiconductor element, for example, a magazine "Monthly Semiconductor World 1986.11", pp. 40-48, 1987
Al / Si electrodes in which Si and Al are stacked in this order on p-type SiC are used, as described in the Proceedings of the Japan Society of Applied Physics Fall, pp. 29a-W-1, page 586.

斯るAl/Si電極は、p型SiC上にSi、Alをこの順に積層
した後、これらを900〜1000℃の高温で5分程度熱処理
を施すことによって、上記p型SiCとオートミック接触
する。
Such an Al / Si electrode, after laminating Si and Al in this order on p-type SiC, performs heat treatment at a high temperature of 900 to 1000 ° C. for about 5 minutes, thereby making an automatic contact with the p-type SiC. .

しかし乍ら、斯るAl/Si電極の形成においては、Al
膜、Si膜の積層前のp型SiC上に自然酸化膜が存在し、
この自然酸化膜の存在によって、電極とp型SiCとの間
でオートミック性のむらが生じ、さらに自然酸化膜のス
ルーホール部分で電極とSiCとの激しい反応が起こり、S
iC界面が荒れ、その結晶性が低下するといった問題が生
じる。斯る電極のオートミック性のむらや結晶性の低下
は、例えば発光ダイオードに用いたとき、光学特性の経
時変化の原因となる。
However, in the formation of such an Al / Si electrode, Al
Natural oxide film exists on p-type SiC before laminating film and Si film,
Due to the presence of the natural oxide film, non-uniformity of automicity occurs between the electrode and the p-type SiC, and a vigorous reaction between the electrode and the SiC occurs in a through-hole portion of the natural oxide film, and S
There is a problem that the iC interface is roughened and its crystallinity is reduced. Such non-uniform automic properties and reduced crystallinity of the electrodes, for example, when used in light-emitting diodes, cause changes in optical characteristics over time.

そこで、本出願人は、特開平1−268121号公報におい
て、p型SiCとAl/Si電極の間に酸素と強く反応する金
属、例えばTi膜を介在させることによって、後の熱処理
の際に斯るTi膜でp型SiC上の自然酸化膜を還元してこ
れを除去し、p型SiCとAl/Si電極とで均一な反応をさ
せ、均一なオーミック性を得ることを提案した。
In view of this, the present applicant disclosed in Japanese Patent Application Laid-Open No. 1-268121 that a metal that strongly reacts with oxygen, for example, a Ti film is interposed between the p-type SiC and the Al / Si electrode, so It has been proposed that a native oxide film on p-type SiC is reduced and removed with a Ti film, and a uniform reaction between the p-type SiC and the Al / Si electrode is obtained to obtain a uniform ohmic property.

(ハ)発明が解決しようとする課題 然るに、SiCとAl/Si電極との間にTi膜を介在させた場
合においても、一般的にp型SiCと電極との接触抵抗が
高く、p型SiCの不純物濃度が1×1017cm-3以下のと
き、オーミック性が得られにくくなるといった問題が生
じる。
(C) Problems to be Solved by the Invention Even when a Ti film is interposed between SiC and an Al / Si electrode, the contact resistance between the p-type SiC and the electrode is generally high, and the p-type SiC When the impurity concentration is 1 × 10 17 cm −3 or less, there is a problem that it becomes difficult to obtain ohmic properties.

従って、本発明は、p型SiCと電極との接触抵抗を低
くでき、且つ電極内で均一なオーミック性を得ることを
技術的課題とする。
Accordingly, it is a technical object of the present invention to reduce the contact resistance between p-type SiC and an electrode and to obtain uniform ohmic properties within the electrode.

(ニ)課題を解決するための手段 本発明は、p型SiC上にオーミック性の電極を形成す
る方法にあって、上記課題を解決するため、上記p型Si
Cの上に、Ni膜、Ti膜を任意の順序で積層形成し、この
上にAl膜を積層形成した後、これらの金属膜を上記p型
SiCと共に熱処理することを特徴とする。
(D) Means for Solving the Problems The present invention relates to a method for forming an ohmic electrode on p-type SiC.
A Ni film and a Ti film are formed in any order on C, and an Al film is formed on the Ni film and the Ti film.
It is characterized by heat treatment with SiC.

(ホ)作用 本発明によれば、p型SiCの上に形成されるNi膜が、
熱処理の際にSiC及びAlのオーミック接触を促進させ
る。
(E) Function According to the present invention, the Ni film formed on the p-type SiC is:
Promotes ohmic contact between SiC and Al during heat treatment.

(ヘ)実施例 本発明方法をSiC発光ダイオードに用いる場合の一実
施例を第1図を参照して説明する。
(F) Embodiment An embodiment in which the method of the present invention is applied to a SiC light emitting diode will be described with reference to FIG.

第1図(a)は第1の工程を示し、n型SiC基板
(1)の一主面(1a)上に周知のLPE法を用いて、n型S
iC層(2)、p型SiC層(3)を順次エピタキシャル成
長させる。
FIG. 1 (a) shows a first step, in which n-type SiC is formed on one main surface (1a) of an n-type SiC substrate (1) using a well-known LPE method.
An iC layer (2) and a p-type SiC layer (3) are sequentially epitaxially grown.

第1図(b)は第2の工程を示し、p型SiC層(3)
上に電子ビーム蒸着法を用いて、Ni膜(4)、Ti膜
(5)、Al膜(6)を夫々0.2μm、0.02μm、0.5μm
の厚さで順次蒸着し、p側電極(7)を形成する。
FIG. 1 (b) shows a second step, in which a p-type SiC layer (3) is used.
The Ni film (4), Ti film (5), and Al film (6) were formed on top of each other by using an electron beam evaporation method at 0.2 μm, 0.02 μm, and 0.5 μm, respectively.
To form a p-side electrode (7).

第1図(c)は第3の工程を示し、n型SiC基板
(1)の他主面(1b)上に電子ビーム蒸着法を用いて、
Ni膜(8)、Au膜(9)を夫々0.4μm、1.0μmの厚さ
で順次蒸着し、n側電極(10)を形成する。
FIG. 1 (c) shows a third step, on the other main surface (1b) of the n-type SiC substrate (1), using an electron beam evaporation method.
An Ni film (8) and an Au film (9) are sequentially deposited to a thickness of 0.4 μm and 1.0 μm, respectively, to form an n-side electrode (10).

しかる後、この積層体を900〜1000℃の不活性ガス、
例えば950℃のアルゴンガス中で5〜10分熱処理を施す
ことによって、電極(7)(10)は夫々接触するSiCと
の間でオーミック性を得る。
Thereafter, the laminated body is heated at 900 to 1000 ° C. with an inert gas,
For example, by performing a heat treatment for 5 to 10 minutes in an argon gas at 950 [deg.] C., the electrodes (7) and (10) obtain ohmic properties with the SiC that is in contact with each of them.

また、以上のようにして得られる発光ダイオードにお
いて、第2図に示すように、p側電極(7)上さらに電
子ビーム蒸着法を用いて、Ti膜(11)、Pt膜(12)、Au
膜(13)を夫々0.1μm、0.2μm、1.0μmの厚さで順
次蒸着し、400℃のアルゴンガス中で熱処理を施すこと
によって、ワイヤボンディング等に用いるパット電極
(14)を形成してもよい。
In the light emitting diode obtained as described above, as shown in FIG. 2, a Ti film (11), a Pt film (12), and an Au film are further formed on the p-side electrode (7) by using an electron beam evaporation method.
It is also possible to form a pad electrode (14) used for wire bonding or the like by sequentially depositing the film (13) to a thickness of 0.1 μm, 0.2 μm, and 1.0 μm, and performing a heat treatment in an argon gas at 400 ° C. Good.

斯る実施例において得られるSiC発光ダイオードで
は、p型SiC層(3)の不純物濃度が5×1016cm-3のと
きのp型SiC層(3)とp側電極(7)との接触抵抗が
1〜5×10-5Ω・cm2となる。
In the SiC light emitting diode obtained in such an embodiment, when the impurity concentration of the p-type SiC layer (3) is 5 × 10 16 cm −3 , the contact between the p-type SiC layer (3) and the p-side electrode (7) The resistance becomes 1 to 5 × 10 −5 Ω · cm 2 .

これに対して、p側電極をAl/Si電極、あるいは斯るA
l/Si電極とp型SiC層との間にTi膜を介在させたものと
した従来のSiC発光ダイオードでは、p型SiC層の不純物
濃度が5×1016cm-3のときのp型SiC層とp側電極との
接触抵抗がいずれも1×10-4Ω・cm2程度である。即
ち、本実施例では従来例よりも接触抵抗の小さい、電気
的特性に優れた発光ダイオードが得られている。
In contrast, the p-side electrode is an Al / Si electrode,
In a conventional SiC light emitting diode in which a Ti film is interposed between an l / Si electrode and a p-type SiC layer, p-type SiC when the impurity concentration of the p-type SiC layer is 5 × 10 16 cm −3 The contact resistance between the layer and the p-side electrode is about 1 × 10 −4 Ω · cm 2 . That is, in this embodiment, a light emitting diode having a smaller contact resistance than the conventional example and having excellent electrical characteristics is obtained.

これは、以下に示す理由によるものと考えられる。即
ち、本発明方法で用いられるp側電極(7)内のNiは、
Ti、Alに比して拡散速度が大きいため、熱処理の際にp
型SiC層(3)内に容易に拡散していき、SiCのCと結合
する。一方、NiとCとの反応によりCと分離したSiは、
Niに代わりp側電極(7)内に拡散していき、Alと反応
してアルミシリサイドを形成し、オーミック接触をな
す。即ち、本発明において、p側電極(7)内のNiは、
p型SiC層(3)中のSiをp側電極(7)中に拡散させ
易くする作用をなすものである。そしてその結果、オー
ミック接触が増え、より良好なオーミック性が得られる
ものである。従って、本発明においては、p型SiC層
(3)の不純物濃度が低い場合、即ち1×1017cm-3以下
の時のみ効果があるものではなく、1×1017cm-3以上に
おいても従来より良好なオーミック接触が得られるもの
である。
This is considered to be due to the following reason. That is, Ni in the p-side electrode (7) used in the method of the present invention is:
Since the diffusion rate is higher than that of Ti and Al, p
It easily diffuses into the mold SiC layer (3) and combines with C of SiC. On the other hand, Si separated from C by the reaction between Ni and C is
Instead of Ni, it diffuses into the p-side electrode (7), reacts with Al to form aluminum silicide, and makes ohmic contact. That is, in the present invention, Ni in the p-side electrode (7)
This serves to facilitate the diffusion of Si in the p-type SiC layer (3) into the p-side electrode (7). As a result, the number of ohmic contacts increases, and better ohmic properties can be obtained. Accordingly, in the present invention, when the impurity concentration of the p-type SiC layer (3) is low, i.e., 1 × 10 17 cm -3 and not that there is only effective when the following, in 1 × 10 17 cm -3 or more A better ohmic contact than before can be obtained.

また、本実施例において、Ti膜(5)は、熱処理の際
にp型SiC層(3)とp側電極(7)との界面に存在す
るCO,SiO2等の酸化物を還元し、p型SiC層(3)とp側
電極(7)とを均一に反応させる作用をなすものであ
る。
In the present embodiment, the Ti film (5) reduces oxides such as CO and SiO 2 existing at the interface between the p-type SiC layer (3) and the p-side electrode (7) during the heat treatment. This serves to uniformly react the p-type SiC layer (3) with the p-side electrode (7).

以上、本実施例においてはp側電極(7)を、p型Si
C層(3)上に、Ni膜(4)、Ti膜(5)、Al膜(6)
の順に積層して形成したが、Ti膜(5)、Ni膜(4)、
Al膜(6)の順に積層しても、同様の効果が得られる。
また、本発明はSiC発光ダイオードに限ることなく、SiC
を用いたバイポーラトランジスタ、FET等他の半導体素
子にも適用できることは言うまでもない。
As described above, in this embodiment, the p-side electrode (7) is
Ni film (4), Ti film (5), Al film (6) on C layer (3)
The layers were formed in the following order: Ti film (5), Ni film (4),
The same effect can be obtained by laminating in the order of the Al film (6).
Also, the present invention is not limited to SiC light emitting diodes,
It is needless to say that the present invention can be applied to other semiconductor elements such as a bipolar transistor and an FET using the same.

(ト)発明の効果 本発明方法によれば、p型SiC上に、Ni膜、Ti膜を積
層形成し、この上にAl膜を積層形成した後、これらの膜
を熱処理することによって、p型SiCの上に形成されたN
i膜が、熱処理の際にSiC中のSiの電極内における拡散を
促進させるので、AlとSiによるオーミック接触が増え、
素子の電気的特性が改善される。
(G) Effects of the Invention According to the method of the present invention, a Ni film and a Ti film are formed on p-type SiC, and an Al film is formed on the Ni film and Ti film. N formed on type SiC
Since the i-film promotes the diffusion of Si in SiC within the electrode during heat treatment, the ohmic contact between Al and Si increases,
The electrical characteristics of the device are improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法の一実施例を説明するための工程別
断面図、第2図は本実施例装置のp側電極上にパット電
極を設けた例を示す断面図である。
FIG. 1 is a cross-sectional view for explaining one embodiment of the method of the present invention, and FIG. 2 is a cross-sectional view showing an example in which a pad electrode is provided on a p-side electrode of the apparatus of this embodiment.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山口 隆夫 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 平1−268121(JP,A) 特開 昭62−71271(JP,A) 特開 平3−97275(JP,A) 特開 昭59−214224(JP,A) 特開 昭50−57784(JP,A) 特開 昭58−138027(JP,A) 特開 昭60−136223(JP,A) 特開 昭64−20616(JP,A) 特公 昭45−14010(JP,B1) 特公 昭44−17302(JP,B1) (58)調査した分野(Int.Cl.6,DB名) H01L 33/00 H01L 21/28 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takao Yamaguchi 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-1-268121 (JP, A) JP-A Sho JP-A-3-97275 (JP, A) JP-A-59-214224 (JP, A) JP-A-50-57784 (JP, A) JP-A-58-138027 (JP, A) A) JP-A-60-136223 (JP, A) JP-A-64-20616 (JP, A) JP-B-45-14010 (JP, B1) JP-B-44-17302 (JP, B1) (58) Survey Field (Int.Cl. 6 , DB name) H01L 33/00 H01L 21/28

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】p型SiC上にオーミック性の電極を形成す
る方法において、上記p型SiCの上に、Ni膜、Ti膜を任
意の順序で積層形成し、この上にAl膜を積層形成した
後、これらの金属膜を上記p型SiCと共に熱処理するこ
とを特徴とするp型SiCの電極形成方法。
In a method of forming an ohmic electrode on p-type SiC, a Ni film and a Ti film are laminated on the p-type SiC in an arbitrary order, and an Al film is laminated on the Ni film and the Ti film. And then heat-treating these metal films together with the p-type SiC.
JP2202030A 1990-07-30 1990-07-30 Method for forming p-type SiC electrode Expired - Fee Related JP2940699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2202030A JP2940699B2 (en) 1990-07-30 1990-07-30 Method for forming p-type SiC electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2202030A JP2940699B2 (en) 1990-07-30 1990-07-30 Method for forming p-type SiC electrode

Publications (2)

Publication Number Publication Date
JPH0485972A JPH0485972A (en) 1992-03-18
JP2940699B2 true JP2940699B2 (en) 1999-08-25

Family

ID=16450764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2202030A Expired - Fee Related JP2940699B2 (en) 1990-07-30 1990-07-30 Method for forming p-type SiC electrode

Country Status (1)

Country Link
JP (1) JP2940699B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013886A1 (en) * 2007-07-20 2009-01-29 Panasonic Corporation Silicon carbide semiconductor device and method for manufacturing the same
CN102187464A (en) * 2008-10-23 2011-09-14 本田技研工业株式会社 Electrode, semiconductor device, and method for manufacturing the semiconductor device
CN107993926A (en) * 2017-12-01 2018-05-04 西安电子科技大学 The preparation method of carborundum Ohmic contact
CN108550523A (en) * 2018-03-23 2018-09-18 西安理工大学 A method of preparing silicon carbide Ohmic electrode with photoresist

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114302A (en) * 1998-10-08 2000-04-21 Fuji Electric Co Ltd Semiconductor device
JP4026339B2 (en) * 2001-09-06 2007-12-26 豊田合成株式会社 SiC electrode and manufacturing method thereof
JP4036075B2 (en) * 2002-10-29 2008-01-23 豊田合成株式会社 Method for manufacturing electrode for p-type SiC
JP4501488B2 (en) * 2004-03-26 2010-07-14 豊田合成株式会社 Silicon carbide semiconductor ohmic electrode and method of manufacturing the same
JP5286677B2 (en) * 2007-03-13 2013-09-11 トヨタ自動車株式会社 Method for forming ohmic electrode on P-type 4H-SiC substrate
JP4935741B2 (en) 2008-04-02 2012-05-23 三菱電機株式会社 Method for manufacturing silicon carbide semiconductor device
JP5401356B2 (en) * 2010-02-09 2014-01-29 昭和電工株式会社 Manufacturing method of semiconductor device
JP6206159B2 (en) * 2013-12-17 2017-10-04 三菱電機株式会社 Manufacturing method of semiconductor device
CN109994376B (en) * 2017-12-30 2021-10-15 无锡华润微电子有限公司 Ohmic contact structure formed on silicon carbide substrate and forming method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009013886A1 (en) * 2007-07-20 2009-01-29 Panasonic Corporation Silicon carbide semiconductor device and method for manufacturing the same
US7829374B2 (en) 2007-07-20 2010-11-09 Panasonic Corporation Silicon carbide semiconductor device and method for manufacturing the same
CN102187464A (en) * 2008-10-23 2011-09-14 本田技研工业株式会社 Electrode, semiconductor device, and method for manufacturing the semiconductor device
CN102187464B (en) * 2008-10-23 2014-04-16 本田技研工业株式会社 Electrode, semiconductor device, and method for manufacturing the semiconductor device
CN107993926A (en) * 2017-12-01 2018-05-04 西安电子科技大学 The preparation method of carborundum Ohmic contact
CN108550523A (en) * 2018-03-23 2018-09-18 西安理工大学 A method of preparing silicon carbide Ohmic electrode with photoresist
CN108550523B (en) * 2018-03-23 2020-10-27 西安理工大学 Method for preparing silicon carbide ohmic electrode by using photoresist

Also Published As

Publication number Publication date
JPH0485972A (en) 1992-03-18

Similar Documents

Publication Publication Date Title
JP3739951B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP2940699B2 (en) Method for forming p-type SiC electrode
JP2000277804A (en) Nitride semiconductor device and manufacture thereof, and light emitting element
JP2001339100A (en) Light emitting element and its manufacturing method
US6610589B2 (en) Semiconductor light emitting device and method of manufacturing the same
TW200411953A (en) Light emitting diode and method of making the same
JP2002057321A (en) Compound semiconductor device and its manufacturing method
JP3917223B2 (en) Manufacturing method of semiconductor light emitting device
JPH07263751A (en) Ii-vi compound semiconductor device and manufacture of it
JP2000077713A (en) Semiconductor light-emitting element
JPH10341039A (en) Semiconductor light emitting element and fabrication thereof
JP2003524901A (en) Semiconductor structural element for emitting electromagnetic radiation and method of manufacturing the same
JP2836685B2 (en) Method for manufacturing p-type gallium nitride-based compound semiconductor
JP2001015852A (en) Electrode structure of p-type group iii nitride semiconductor layer and method for forming the same
JP2002368270A (en) Method of manufacturing iii nitride compound semiconductor device
JP3047960B2 (en) N-type nitride semiconductor electrode
JP3776538B2 (en) Semiconductor light emitting device and manufacturing method thereof
JP3516433B2 (en) Compound semiconductor light emitting device
JP2004146541A (en) Light emitting element and method of manufacturing same
JP2911122B2 (en) Method for forming ohmic electrode of silicon carbide semiconductor device
JP3344296B2 (en) Electrodes for semiconductor light emitting devices
JP3360945B2 (en) Electrode structure and manufacturing method thereof
JP2708798B2 (en) Method of forming electrode of silicon carbide
JP3519950B2 (en) Electrode structure
JP3638413B2 (en) Semiconductor light emitting device and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees