JPH02164028A - Formation of electrode of silicon carbide semiconductor element - Google Patents

Formation of electrode of silicon carbide semiconductor element

Info

Publication number
JPH02164028A
JPH02164028A JP32092388A JP32092388A JPH02164028A JP H02164028 A JPH02164028 A JP H02164028A JP 32092388 A JP32092388 A JP 32092388A JP 32092388 A JP32092388 A JP 32092388A JP H02164028 A JPH02164028 A JP H02164028A
Authority
JP
Japan
Prior art keywords
electrode film
electrode
film
type sic
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32092388A
Other languages
Japanese (ja)
Other versions
JP2708829B2 (en
Inventor
Kiyoshi Ota
潔 太田
Toshitake Nakada
中田 俊武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP32092388A priority Critical patent/JP2708829B2/en
Publication of JPH02164028A publication Critical patent/JPH02164028A/en
Application granted granted Critical
Publication of JP2708829B2 publication Critical patent/JP2708829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To tightly bond a wire bonding electrode film formed on a Pd electrode film and the Pd electrode film by depositing the Pd electrode film on a Ni electrode film and heat-treating them. CONSTITUTION:An Ni electrode film 4 and a Pd electrode film 5 are deposited on another principal surface of an n type SiC substrate 1 utilizing vacuum deposition, respectively, and a laminate substrate is heat-treated at 1000 deg.C for about 5 minutes. The Ni electrode film 4 is allowed with the n type SiC substrate 1 to obtain an ohmic contact. No reaction is found between the Pd electrode film 5 and the Ni electrode film 4 by said 1000 deg.C heat treatment, and Ni improved in the Ni electrode film 4 is prevented from appearing on a Pd electrode film 5 surface through the interior of the Pd electrode film 5. An Au/Pd/Ti electrode film 7 is formed as a wire-bonding electrode on the Pd electrode film 5 utilizing vacuum deposition. The Au/Pd/Ti electrode film 7 tightly bonds with the Pd electrode film 5 because there is no oxide film present on the Pd electrode film 5 surface.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は炭化ケイ素半導体素子の電極形成方法に関する
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for forming electrodes of silicon carbide semiconductor devices.

(ロ) 従来の技術 炭化ケイ素(SiC)は高温高圧下で動作可能な半導体
材料として注目されており、また光学的バンドギャップ
が広く容易にpn接合が形成できることから青色発光素
子材料としても期待されている。
(b) Conventional technology Silicon carbide (SiC) is attracting attention as a semiconductor material that can operate under high temperature and high pressure, and is also expected to be used as a material for blue light-emitting devices because it has a wide optical bandgap and can easily form p-n junctions. ing.

斯るSiC半導体素子には、従来オーミック電極として
、1987年秋期応用物理学会予稿集、29a−W−1
,586頁に示されている如く、p型SiC上にA6/
Si、nをSiC上にNiが用いられている。
Such SiC semiconductor devices are conventionally used as ohmic electrodes, Proceedings of the Japan Society of Applied Physics, Autumn 1987, 29a-W-1.
, page 586, A6/A6/
Ni is used on Si, n and SiC.

第2図に従来のSi半導体素子、例えばSiC八 発光ダイオードの構造を示す。斯るSiC発光ダイオー
ドの製造方法は1例えばn型SiC基板(8)の−主面
上に、n型SiC層(9)、p型SiC層+IQ)をL
PE法を用いて順次成長する。次いで上記n型SiC基
板(8)の他主面上にNi電極IBI (11)を真空
蒸着し、これを1000℃で約5分間熱処理する。これ
により、n型SiC基板(8)とNi電極IBI(11
)は合金化し、オーミック性を得る。次に、斯るn型S
iC基板(8)をフッ酸〈HF)によるウェットエツチ
ングで表面処理した後、n型SiC層(10)上にA+
2./Si電極膜(12)を真空蒸着し、これを900
〜950℃で約5分間熱処理する。これによりn型Si
C層(10)とAQ / S i電極115I(12+
は合金化し、オーミック性を得る。最後にワイヤボンド
用電極として周知であるAu/Cr電極膜(13)をN
i電極膜(11)上に積層してSiC発光ダイオードを
得る。
FIG. 2 shows the structure of a conventional Si semiconductor device, such as a SiC eight light emitting diode. The manufacturing method of such a SiC light emitting diode is as follows: 1. For example, on the - main surface of an n-type SiC substrate (8), an n-type SiC layer (9), a p-type SiC layer + IQ) is formed
Sequential growth is performed using the PE method. Next, a Ni electrode IBI (11) is vacuum-deposited on the other main surface of the n-type SiC substrate (8) and heat-treated at 1000° C. for about 5 minutes. As a result, the n-type SiC substrate (8) and the Ni electrode IBI (11
) becomes alloyed and acquires ohmic properties. Next, such n-type S
After surface-treating the iC substrate (8) by wet etching with hydrofluoric acid (HF), A+
2. /Si electrode film (12) was vacuum deposited and
Heat treatment at ~950°C for about 5 minutes. As a result, n-type Si
C layer (10) and AQ/Si electrode 115I (12+
is alloyed and acquires ohmic properties. Finally, the Au/Cr electrode film (13), which is well known as a wire bond electrode, is
It is laminated on the i-electrode film (11) to obtain a SiC light emitting diode.

しかし乍ら、斯る従来の発光ダイオードではその製造工
程中のHFによる表面処理の際にNi電極H(11)が
若干酸化し、このためワイヤボンド用電極として形成し
たA u / Cを−電極膜(13)との密着性が低下
し、Ni電極膜(11)とA u / Cr電極膜(5
1(13]との界面でMmが発生することが多い。この
問題を解決するなめ、例えば「電子技術」日刊工業新聞
発行、第26巻14号(1984)128〜130頁に
示されている様に酸化されにくいAu/Ni電f!膜が
Ni電極膜(11)に変わって用いられる。しかし、こ
の方法においてもA u / Ni電極膜形成後に施さ
れる1000°Cの熱処理の際に、AuとNiが反応し
て一部のAuが電極下層に移動するため、電極表面では
Auが島状に残り、池の場所でNiが現れる。そして表
面に現われたNi上で自然酸化膜が形成されるため、結
局、斯る電極とワイヤボンド線又はワイヤボンド用電極
であるA u / Cr電4f!膜との結合力が弱くな
ってしまう。
However, in such conventional light emitting diodes, the Ni electrode H (11) is slightly oxidized during the surface treatment with HF during the manufacturing process, and for this reason, the A u / C formed as the wire bonding electrode is used as the - electrode. The adhesion with the film (13) decreases, and the Ni electrode film (11) and the Au/Cr electrode film (5
Mm often occurs at the interface with 1(13).Methods for solving this problem are shown, for example, in "Electronic Technology", published by Nikkan Kogyo Shimbun, Vol. 26, No. 14 (1984), pp. 128-130. An Au/Ni electrode film (11), which is difficult to oxidize, is used in place of the Ni electrode film (11). However, even in this method, during the 1000°C heat treatment performed after forming the Au/Ni electrode film, , Au and Ni react and some Au moves to the lower layer of the electrode, so Au remains in the form of islands on the electrode surface, and Ni appears at the pond.A natural oxide film forms on the Ni that appears on the surface. As a result, the bonding force between such an electrode and the A u /Cr film, which is a wire bond line or a wire bond electrode, becomes weak.

(ハ) 発明が解決しようとする課題 したがって本発明は、強固にワイヤボンド可能なn型S
iCの電極形成方法を提供するものである。
(c) Problems to be Solved by the Invention Therefore, the present invention provides an n-type S that can be firmly wire bonded.
A method for forming an iC electrode is provided.

(ニ)課題を解決するための手段 本発明は、炭化ケイ素半導体素子に電極を形成する方法
において、上記課題を解決するため、n型炭化ケイ素上
にNi電極膜を被着する工程、該Ni電極膜上にPd電
極膜を被着する工程、上記Ni電電膜膜び上記pd電極
膜を熱処理する工程、を備えることを特徴とする。
(d) Means for Solving the Problems In order to solve the above problems, the present invention provides a method for forming electrodes on silicon carbide semiconductor devices, including a step of depositing a Ni electrode film on n-type silicon carbide, and a step of depositing a Ni electrode film on n-type silicon carbide. The method is characterized by comprising a step of depositing a Pd electrode film on the electrode film, and a step of heat-treating the Ni electrolytic film and the Pd electrode film.

(ホ)作用 本発明方法は、n型SiCとオーミック接触可能なNi
′rf、f!膜の上にPd電極膜を被着する。このPd
電極膜は1200°C以下ではNi電極膜と反応しない
、またPd電極膜は酸化しにくい性質を有する。
(E) Effect The method of the present invention is based on Ni which can make ohmic contact with n-type SiC.
'rf, f! A Pd electrode film is deposited on top of the film. This Pd
The electrode film does not react with the Ni electrode film at temperatures below 1200°C, and the Pd electrode film has a property of not being easily oxidized.

(へ)実施例 第1図は本発明方法の一実施例を示す工程別断面図であ
る。以下図を参照して本発明方法を詳述する。
(f) Example FIG. 1 is a sectional view of each step showing an example of the method of the present invention. The method of the present invention will be explained in detail below with reference to the figures.

第1図(a)は第1の工程を示し、先ずn型SiC基板
(1)を準備する。そして、その−主面上に、LPE法
、CVD法等の周知のエピタキシャル法を用いてn型S
iC層(2)、n型SiC層(3)を順次積層する。
FIG. 1(a) shows the first step, in which an n-type SiC substrate (1) is first prepared. Then, on the main surface, an n-type S
An iC layer (2) and an n-type SiC layer (3) are sequentially laminated.

第1図(b)は第2の工程を示し、n型SiC基板(1
)の他主面上に、真空蒸着法を用いて、Ni電)NJN
 (4)ヲ50 OA、PdtaiJli(5)を30
00人、夫々蒸着する。しかる後、斯る積層基板を10
00℃で約5分間熱処理する。これによりNi電極膜(
4)はn型SiC基板(1)と合金化しオーミック性を
得る。また、この1000℃の熱処理においてPd電極
膜(5)はNi電極膜(4)と反応しない。したがって
、Ni電極11!+41中のNiはPd電極膜(5)内
を通ってPd電′JF!i1膜(5)表面に現われない
FIG. 1(b) shows the second step, in which the n-type SiC substrate (1
) on the other main surface using a vacuum evaporation method.
(4) 50 OA, PdtaiJli (5) 30
00 people each deposited. After that, 10 such laminated substrates were
Heat treatment at 00°C for about 5 minutes. This allows the Ni electrode film (
4) is alloyed with the n-type SiC substrate (1) to obtain ohmic properties. Further, in this heat treatment at 1000° C., the Pd electrode film (5) does not react with the Ni electrode film (4). Therefore, Ni electrode 11! The Ni in +41 passes through the Pd electrode film (5) and becomes a Pd electrode 'JF! It does not appear on the i1 film (5) surface.

第1図(c)は第3の工程を示し、n型SiC層(3)
上に、フッ酸(HF)によるウェットエツチングにて表
面処理を施した後、真空蒸着法を用いて、5iJ11を
100o人、Aρ膜を7000人、夫々蒸着しAg/S
i電極膜(6)を形成する。しかる後、斯る積層基板を
900〜1000℃、例えば950℃で約5分間熱処理
する。これによりAR/Si電極M(6)はP型SiC
層(3)と合金化し、オーミック性を得る。斯る工程の
中の、フッ酸によるp型5iCJil(3)の表面処理
の際に、Pd電極膜(5)表面に酸化膜は形成されない
。これは、Pd電tfsM(5>が酸化されにくい性質
を有すること及びPd電極膜(5)表面に下層中のNi
が現われないことによる。
FIG. 1(c) shows the third step, in which the n-type SiC layer (3)
After surface treatment by wet etching with hydrofluoric acid (HF), 100 layers of 5iJ11 and 7000 layers of Aρ film were deposited using vacuum evaporation method to form Ag/S.
An i-electrode film (6) is formed. Thereafter, the laminated substrate is heat-treated at 900 to 1000°C, for example, 950°C, for about 5 minutes. As a result, the AR/Si electrode M(6) is made of P-type SiC
Alloyed with layer (3) to obtain ohmic properties. During the surface treatment of the p-type 5iCJil (3) with hydrofluoric acid in this process, no oxide film is formed on the surface of the Pd electrode film (5). This is because the Pd electrode film (5) has a property of being difficult to oxidize and the surface of the Pd electrode film (5) has Ni in the lower layer.
This is due to the fact that it does not appear.

第1図(d)は第4の工程を示し、Pd電極膜(5)上
に、真空蒸着法を用いて、例えばT i 11%を10
00人、Pd膜を2000人、Au膜を3000人蒸着
し、ワイヤボンド用電極として周知のA u / P 
d / T i電極fi(7)を形成する。斯るA u
 / P d / T i電極膜(7)はPd電極[(
5)表面に酸化膜が存在しないため、Pd電4i11(
51と強固に結合する。
FIG. 1(d) shows the fourth step, in which, for example, 10% of Ti 11% is deposited on the Pd electrode film (5) using a vacuum evaporation method.
00 people, 2000 people deposited Pd film, 3000 people deposited Au film, and A u / P which is well known as a wire bond electrode.
Form a d/Ti electrode fi (7). Such A u
/ P d / Ti electrode film (7) is a Pd electrode [(
5) Since there is no oxide film on the surface, Pd electron 4i11(
51 and is strongly connected.

本実施例においてNi電f!115! (4)、Pd電
4ili!膜(5)はn型SiC基板(1)上に形成し
たが、n型SiCエピタキシャル層の上に形成しても同
様の効果が得られる。
In this example, Ni electric f! 115! (4), Pdden4ili! Although the film (5) was formed on the n-type SiC substrate (1), the same effect can be obtained even if it is formed on the n-type SiC epitaxial layer.

また、本発明方法におけるPd電極膜は高融点を有する
ため、熱処理の際に変形しない、これに伴い下層のNi
電極膜も変形を生じにくくなる。
In addition, since the Pd electrode film in the method of the present invention has a high melting point, it does not deform during heat treatment, and as a result, the underlying Ni
The electrode film also becomes less likely to be deformed.

このため本発明方法においては、N1tf!膜の膜厚を
厚くして電極膜の変形による素子内の電界不均一を抑え
る必要はなく、Ni電極膜の膜厚を自由に設定できる。
Therefore, in the method of the present invention, N1tf! There is no need to increase the thickness of the film to suppress non-uniformity of the electric field within the device due to deformation of the electrode film, and the thickness of the Ni electrode film can be set freely.

また、N1電極膜の厚さが、熱処理の際に、Ni電f!
膜中のNiのSiCへの拡散深さに関係すること、及び
熱処理の際にNi電極膜とPd電極膜が反応しないなめ
、Ni電極膜中のNiの拡散がSiCへのみ起こること
から本発明方法においては、Ni電極膜の膜厚を適宜変
化させることによって、Niの拡散深さを容易に制御で
きる。斯るNiの拡散した部分のStCは導通状態とな
るので、Ni電f!膜が被着されるSiCの厚さは拡散
深さより厚くしなければならない0本発明方法では上述
の如(Ni電極膜の膜厚を薄くすることによって、拡散
深さを極力浅くすることができるので、Ni電極膜が被
着されるSiCの厚さを薄くすることができる。これに
より、素子の比抵抗が下がるため、動作時の発熱量を抑
えることができ、素子劣化が起こりにくくなるため、素
子の信顆性が向上する。さらに、本発明方法を、pnp
型SiCバイポーラトランジスタにおけるベース用電極
の形成に適用すれば、ベース層となるn型SiC層の層
厚を、上記理由により極力薄くすることができるので、
応答特性の良いバイポーラトランジスタが得られる。
In addition, the thickness of the N1 electrode film changes during heat treatment.
The present invention is related to the depth of diffusion of Ni in the film into SiC, and because the Ni electrode film and Pd electrode film do not react during heat treatment, the diffusion of Ni in the Ni electrode film occurs only into SiC. In this method, the depth of Ni diffusion can be easily controlled by appropriately changing the thickness of the Ni electrode film. Since the StC in the part where Ni is diffused becomes conductive, the Ni electric f! The thickness of the SiC to which the film is deposited must be thicker than the diffusion depth. In the method of the present invention, as described above (by reducing the thickness of the Ni electrode film, the diffusion depth can be made as shallow as possible). Therefore, the thickness of the SiC on which the Ni electrode film is adhered can be made thinner.This reduces the specific resistance of the element, which reduces the amount of heat generated during operation, making it less likely that the element will deteriorate. , the reliability of the device is improved.Furthermore, the method of the present invention can be applied to pnp
If applied to the formation of a base electrode in a type SiC bipolar transistor, the layer thickness of the n-type SiC layer serving as the base layer can be made as thin as possible for the above reasons.
A bipolar transistor with good response characteristics can be obtained.

(ト)発明の効果 本発明方法によれば、N1電極膜上にPd電極膜を被着
することによって、熱処理の後、Pd電極膜表面に酸化
膜が形成されない。このためPd電極膜上に形成するワ
イヤボンド用型fIwAは当該Pd電極膜と強固に結合
することができる。さらに容易にNiのSiCへの拡散
深さを制御できるので、n型SiC層の厚さを薄くでき
、素子の特性を向上させることができる。
(G) Effects of the Invention According to the method of the present invention, by depositing the Pd electrode film on the N1 electrode film, no oxide film is formed on the surface of the Pd electrode film after heat treatment. Therefore, the wire bonding mold fIwA formed on the Pd electrode film can be firmly bonded to the Pd electrode film. Furthermore, since the depth of diffusion of Ni into SiC can be easily controlled, the thickness of the n-type SiC layer can be reduced, and the characteristics of the device can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の一実施例を示す工程別断面図、第
2図は従来装置を示す断面図である。 第1図
FIG. 1 is a sectional view of each step showing an embodiment of the method of the present invention, and FIG. 2 is a sectional view of a conventional apparatus. Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)炭化ケイ素半導体素子に電極を形成する方法にお
いて、n型炭化ケイ素上にNi電極膜を被着する工程、
該Ni電極膜上にPd電極膜を被着する工程、上記Ni
電極膜及び上記Pd電極膜を熱処理する工程、を備える
ことを特徴とする炭化ケイ素半導体素子の電極形成方法
(1) In a method of forming an electrode on a silicon carbide semiconductor device, a step of depositing a Ni electrode film on n-type silicon carbide;
a step of depositing a Pd electrode film on the Ni electrode film;
A method for forming an electrode for a silicon carbide semiconductor device, comprising the step of heat-treating an electrode film and the Pd electrode film.
JP32092388A 1988-12-19 1988-12-19 Method of forming electrode of silicon carbide Expired - Fee Related JP2708829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32092388A JP2708829B2 (en) 1988-12-19 1988-12-19 Method of forming electrode of silicon carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32092388A JP2708829B2 (en) 1988-12-19 1988-12-19 Method of forming electrode of silicon carbide

Publications (2)

Publication Number Publication Date
JPH02164028A true JPH02164028A (en) 1990-06-25
JP2708829B2 JP2708829B2 (en) 1998-02-04

Family

ID=18126789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32092388A Expired - Fee Related JP2708829B2 (en) 1988-12-19 1988-12-19 Method of forming electrode of silicon carbide

Country Status (1)

Country Link
JP (1) JP2708829B2 (en)

Also Published As

Publication number Publication date
JP2708829B2 (en) 1998-02-04

Similar Documents

Publication Publication Date Title
US20020115229A1 (en) Semiconductor light-emitting elements
TWI287880B (en) Group III nitride semiconductor light-emitting device and method of producing the same
JPH03278466A (en) Thin film transistor and manufacture thereof
JPH07142502A (en) Manufacturing for bonded semiconductor substrate and dielectric separation bipolar transistor
JPS6173345A (en) Semiconductor device
TW200828626A (en) Light-emitting diode and method for manufacturing the same
JP2002280531A (en) Semiconductor substrate and its manufacturing method
CN101471413B (en) Light-emitting element and method for manufacturing the same
JP2940699B2 (en) Method for forming p-type SiC electrode
JP3128344B2 (en) Method for forming electrode of n-type silicon carbide
JPH02164028A (en) Formation of electrode of silicon carbide semiconductor element
JP2708814B2 (en) Method for forming electrode of silicon carbide semiconductor device
CN102646768B (en) Light-emitting element and manufacturing method therefor
JPS61182242A (en) Manufacture of semiconductor device
JPH0245976A (en) Method for forming silicon carbide electrode
JP3465765B2 (en) Method for manufacturing semiconductor substrate for IGBT
JP2002083997A (en) Semiconductor luminous element and its manufacturing method
JPS60236243A (en) Manufacture of semiconductor device
JPS61182240A (en) Manufacture of semiconductor device
JPS61182241A (en) Manufacture of dielectric isolation-type semiconductor
JPS62221122A (en) Manufacture of semiconductor device
JPH0518470B2 (en)
JPH0670981B2 (en) Electrode forming method
JPS60136270A (en) Manufacture of semiconductor device
JPS62262471A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees