JP2707575B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2707575B2
JP2707575B2 JP63043733A JP4373388A JP2707575B2 JP 2707575 B2 JP2707575 B2 JP 2707575B2 JP 63043733 A JP63043733 A JP 63043733A JP 4373388 A JP4373388 A JP 4373388A JP 2707575 B2 JP2707575 B2 JP 2707575B2
Authority
JP
Japan
Prior art keywords
exposure
ultraviolet light
wavelength
coating film
monochromatic ultraviolet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63043733A
Other languages
Japanese (ja)
Other versions
JPH01217911A (en
Inventor
省市 松葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63043733A priority Critical patent/JP2707575B2/en
Publication of JPH01217911A publication Critical patent/JPH01217911A/en
Application granted granted Critical
Publication of JP2707575B2 publication Critical patent/JP2707575B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にフォト・
リソグラフィの工程技術に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and
The present invention relates to a lithography process technology.

〔従来の技術〕[Conventional technology]

従来、半導体装置の素子パターンはフォト・リソグラ
フィ工程を経て形成される。
Conventionally, an element pattern of a semiconductor device is formed through a photolithography process.

第6図(a)〜(d)は従来フォト・リソグラフィ工
程の工程順序図である。これによれば、半導体ウェーハ
1上の例えば多結晶シリコン膜2上にフォト・レジスト
膜3(例えば、ポジティブ・タイプ)を塗布した後〔第
6図(a)参照〕プリ・ベークを行い、つぎに第6図
(b)に示すように、フォト・マスク4を通し単色紫外
光(例えば、波長435.8nmのg線)5を照射して素子パ
ターン6の転写露光を行い、ついで現象およびポスト・
ベーク工程とを経て第6図(c)に示す如きフォト・レ
ジスト・パターン7を得るものである。
6 (a) to 6 (d) are process sequence diagrams of a conventional photolithography process. According to this, after a photoresist film 3 (for example, a positive type) is applied on a polycrystalline silicon film 2 on a semiconductor wafer 1 (see FIG. 6 (a)), a pre-bake is performed. Then, as shown in FIG. 6 (b), monochromatic ultraviolet light (for example, g-line having a wavelength of 435.8 nm) 5 is irradiated through a photomask 4 to transfer and expose the element pattern 6, and then the phenomenon and the post
Through a baking process, a photoresist pattern 7 as shown in FIG. 6 (c) is obtained.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、上述した従来のフォト・リソグラフィ
では、半導体ウェーハ面の凹凸に起因してフォト・レジ
ストの塗布膜に厚さの“むら”が生じている為、単色紫
外光による素子パターンの転写露光が行われた際、この
膜厚“むら”の存在によって、フォト・レジスト内にお
ける紫外光定在波の発生のしかたに異同が生じ、これが
露光感度の差となって現われ、中央を上下に通るフォト
・レジスト・パターン7が段差近傍で細い“くびれ”を
持った形状に転写される〔第6図(d)参照〕。従来の
フォト・リソグラフィ工程では、フォト・レジストを塗
布する際生じる膜厚の微小な違いに対しては、これによ
る露光感度の変動を小さく押さえ込めるように、露光感
度が極値をとる膜厚を適宜選択することが通常行われ
る。しかし、このような手法がとられたとしても、例え
ば、ウェーハ面の凹凸に起因して塗布膜厚に“むら”が
生じている場合では、余りにも膜厚差が大きいため一部
の領域における露光感度に急峻な勾配が生じる。従っ
て、露光感度の違いによる転写露光が進行し、形成され
るフォト・レジスト・パターンに上記の如き寸法形状の
異同を生ぜしめるようになる。
However, in the above-described conventional photolithography, the unevenness of the surface of the semiconductor wafer causes unevenness in the thickness of the photo-resist coating film. In this case, the existence of this unevenness in film thickness causes a difference in the manner in which an ultraviolet light standing wave is generated in the photoresist, which appears as a difference in exposure sensitivity. The resist pattern 7 is transferred to a shape having a narrow "constriction" near the step (see FIG. 6 (d)). In the conventional photolithography process, the film thickness at which the exposure sensitivity takes an extreme value is adjusted to minimize the fluctuation in exposure sensitivity caused by the slight difference in film thickness caused when applying a photoresist. It is common practice to select appropriately. However, even if such a method is employed, for example, in the case where “unevenness” occurs in the coating film thickness due to the unevenness of the wafer surface, the difference in the film thickness is too large, and thus, in some regions, A steep gradient occurs in exposure sensitivity. Therefore, the transfer exposure due to the difference in exposure sensitivity progresses, and the difference in size and shape as described above occurs in the formed photoresist pattern.

本発明の目的は、上記の情況に鑑み、フォト・レジス
ト塗布膜の膜厚“むら”に基因する転写露光感度の差異
を効果的に極小化することのできるフォト・リソグラフ
ィ工程を備えた半導体装置の製造方法を提供することで
ある。
In view of the above circumstances, an object of the present invention is to provide a semiconductor device having a photolithography step capable of effectively minimizing a difference in transfer exposure sensitivity due to a film thickness "unevenness" of a photoresist coating film. Is to provide a method of manufacturing the same.

〔課題を解決するための手段〕[Means for solving the problem]

本発明の特徴は、凹凸面を有する半導体ウェーハ上に
該凹凸面に起因して厚さにむらのあるフォト・レジスト
塗布膜を形成し、第1の単色紫外光を前記フォト・レジ
スト塗布膜に選択的に照射する素子パターンの転写露光
工程および第2の単色紫外光を前記フォト・レジスト塗
布膜の全面に照射する全面照射工程を有するフォト・リ
ソグラフィにより前記フォト・レジスト塗布膜のパター
ンを形成する半導体の製造方法であって、前記第1の単
色紫外光は、前記フォト・レジスト塗布膜の最も薄い膜
厚の第1の箇所にその露光感度の極小値がくるように波
長を選択された露光光であり、前記第2の単色紫外光
は、前記第1の箇所よりその膜内波長の1/8だけ膜厚の
厚い前記フォト・レジスト塗布膜の第2の箇所にその露
光感度の極小値がくるように波長を選択された露光光で
ある半導体装置の製造方法にある。ここで、前記第1の
単色紫外光はg線であり、前記第2の単色紫外光は波長
が447.0nm,425.2nmまたは458.7nmの露光光のうちから選
択されたいずれか一つの露光光であることができる。
The feature of the present invention is that a photoresist coating film having an uneven thickness due to the uneven surface is formed on a semiconductor wafer having an uneven surface, and a first monochromatic ultraviolet light is applied to the photoresist coating film. Forming a pattern of the photoresist coating film by photolithography including a transfer exposure step of an element pattern to be selectively irradiated and an entire irradiation step of irradiating the entire surface of the photoresist coating film with second monochromatic ultraviolet light; A method of manufacturing a semiconductor, wherein the first monochromatic ultraviolet light has a wavelength selected such that the minimum value of the exposure sensitivity comes to a first portion having the smallest thickness of the photoresist coating film. The second monochromatic ultraviolet light is the minimum value of the exposure sensitivity at the second location of the photoresist coating film, which is thicker than the first location by 1/8 of the film wavelength. Will come In a method of manufacturing a semiconductor device as the exposure light to the selected wavelength. Here, the first monochromatic ultraviolet light is g-line, and the second monochromatic ultraviolet light is any one of exposure light having a wavelength of 447.0 nm, 425.2 nm or 458.7 nm. There can be.

〔実施例〕〔Example〕

以下図面を参照して本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図(a)〜(e)は本発明の一実施例を示すフォ
ト・リソグラフィの工程順序図である。本実施例によれ
ば、半導体ウェーハ1上に堆積された多結晶シリコン22
の表面には、最も薄い部分の膜厚Tが1.33μmとなるよ
うにフォト・レジスト塗布膜3が先ず被着される〔第1
図(a)参照〕。つぎに、半導体ウェーハ1はプリ・ベ
ークされ、ついで第1図(b)に示すようにフォト・マ
スク4を介し単色紫外光Aによる素子パターン6の転写
露光が行われる。本実施例ではこの単色紫外光Aには水
銀ランプのg線が使用される。つぎに波長(λ)447.
0nmの単色紫外光Bが転写露光工程の1/2〜1/10の露光量
でウェーハ全面に照射される〔第1図(c)参照〕。つ
いで、従来と同じく現象およびポスト・ベーク工程を行
いフォト・レジスト・パターン7を得る〔第1図(d)
参照〕。ここで、フォト・レジスト塗布膜3の屈折率を
1.64とすると、最も薄い部分の膜厚T;1.33μmにおける
波長(λ)435.8nmのg線の膜内波長λ′は265.7nm
となる。すなわち、 の関係にある。従って、フォト・レジスト塗布膜3にお
ける最も薄い膜厚Tの領域では、g線の定在波が最も強
く発生し露光感度が極小となるので、感光量も極小にな
り、また、膜厚が最も薄い膜厚Tより厚い他の近傍領域
では、これとは逆に膜厚が厚くなるに従って露光感度が
増し、感光量も増す。他方、全面照射される波長
(λ)447.0nmの単色紫外光の膜内波長λ′は272.5
nmとなり、最も薄い部分の膜厚Tとは の関係にある。すなわち、波長(λ)447.0nmの単色
紫外光はg線とは異なり、定在波を最も薄い膜厚Tから
多少ずれた近傍の厚い膜厚領域内で発生せしめる。従っ
て、露光感度は膜厚Tからずれたこの近傍の厚い膜厚領
域で極小となり、最も薄い膜厚Tの領域および近傍のよ
り厚膜の領域ではそれぞれ大きな露光感度と感光量とを
示す。
1 (a) to 1 (e) are process diagrams of photolithography showing an embodiment of the present invention. According to the present embodiment, the polycrystalline silicon 22 deposited on the semiconductor wafer 1
Is coated first so that the film thickness T of the thinnest part is 1.33 μm [1st.
See FIG. Next, the semiconductor wafer 1 is pre-baked, and then a transfer exposure of the element pattern 6 with monochromatic ultraviolet light A is performed via a photomask 4 as shown in FIG. In this embodiment, the g-line of a mercury lamp is used for the monochromatic ultraviolet light A. Next, the wavelength (λ 2 ) 447.
The entire surface of the wafer is irradiated with 0 nm monochromatic ultraviolet light B at an exposure amount of 1/2 to 1/10 of the transfer exposure step [see FIG. 1 (c)]. Next, a phenomenon and a post-bake process are performed in the same manner as in the prior art to obtain a photoresist pattern 7 (FIG. 1 (d)).
reference〕. Here, the refractive index of the photoresist coating 3 is
Assuming 1.64, the film thickness T of the thinnest portion; the wavelength (λ 1 ) at 1.33 μm, the in-film wavelength λ 1 ′ of the 435.8 nm g-line is 265.7 nm.
Becomes That is, In a relationship. Therefore, in the region of the thinnest film thickness T in the photo-resist coating film 3, the standing wave of the g-line is generated most strongly and the exposure sensitivity is minimized, so that the photosensitive amount is minimized and the film thickness is minimized. In other neighboring regions thicker than the thin film thickness T, on the contrary, as the film thickness increases, the exposure sensitivity increases, and the photosensitive amount also increases. On the other hand, the in-film wavelength λ 2 ′ of the monochromatic ultraviolet light having the wavelength (λ 2 ) of 447.0 nm irradiated on the entire surface is 272.5 nm.
nm and the film thickness T of the thinnest part In a relationship. That is, the monochromatic ultraviolet light having a wavelength (λ 2 ) of 447.0 nm, unlike the g-line, generates a standing wave in a thick film thickness region slightly shifted from the thinnest film thickness T. Therefore, the exposure sensitivity is minimized in the thick film thickness region in the vicinity deviating from the film thickness T, and the region having the thinnest film thickness T and the region of the thicker film in the vicinity show large exposure sensitivity and light exposure, respectively.

第2図は上記実施例におけるフォト・レジスト塗布膜
の膜厚と2つの単色紫外光の露光感度との関係を表わす
グラフ図で、g線(λ;435.8nm)の露光感度が膜厚1.
33μmのところで極小となり、また波長(λ)447.0n
mの単色紫外光の露光感度がこの極小点から膜内波長換
算でλ′/8だけずれたところで極小となることが示さ
れている。この“ずれ”の大きさλ′/8は、膜厚Tと
膜内波長λ′,λ′の半波長λ′/2,λ′/2と
の関係式を用い、膜厚Tに相当する距離内に半波長
λ′/2,λ′/2がそれぞれ幾つ収まるかを数え、両
者の差を波長換算することによって求めたものである。
すなわち、上記関係式を用いれば膜厚Tに相当する距離
内に収まるλ′/2,λ′/2の個数はそれぞれ10個お
よび9.75個で、両者の差は0.25個と算出される。従っ
て、この差の波長換算により“ずれ”の大きさがλ
/8であることを知る。
FIG. 2 is a graph showing the relationship between the thickness of the photoresist coating film and the exposure sensitivities of two monochromatic ultraviolet lights in the above embodiment. The exposure sensitivity at the g-line (λ 1 ; 435.8 nm) is .
It is extremely small at 33 μm, and the wavelength (λ 2 ) 447.0n
It is shown that the exposure sensitivity of the m-color monochromatic ultraviolet light deviates from this minimum point by λ 2 ′ / 8 in terms of in-film wavelength, and becomes minimum. The magnitude of the “shift” λ 2 ′ / 8 is calculated using the relational expression between the film thickness T and the half wavelengths λ 1 ′ / 2, λ 2 ′ / 2 of the in-film wavelengths λ 1 ′, λ 2 ′. It is obtained by counting how many half-wavelengths λ 1 '/ 2 and λ 2 ' / 2 fall within the distance corresponding to the thickness T, and converting the difference between the two by wavelength.
That is, using the above relational expression, the numbers of λ 1 '/ 2 and λ 2 ' / 2 falling within the distance corresponding to the film thickness T are 10 and 9.75, respectively, and the difference between them is calculated as 0.25. . Accordingly, the magnitude of the “shift” is λ 2 ′ due to the wavelength conversion of this difference.
Know that it is / 8.

このように、2つの単色紫外光A,Bが照射された場合
では、フォト・レジスト塗布膜3の各領域における総感
光量は、転写露光における感光量と全面露光における感
光量の和となり、フォト・レジスト塗布膜の膜厚差に基
因する感光量の違いは相互に補償され平均化されるの
で、領域による感光量の変動は極めて有効に平滑化され
る。
As described above, when the two monochromatic ultraviolet lights A and B are irradiated, the total exposure amount in each region of the photoresist coating 3 is the sum of the exposure amount in the transfer exposure and the exposure amount in the overall exposure, and The difference in the light exposure caused by the difference in the thickness of the resist coating film is mutually compensated and averaged, so that the fluctuation in the light exposure depending on the region is extremely effectively smoothed.

第3図および第4図はそれぞれ上記実施例における2
つの単色紫外光によるフォト・レジスト膜の各領域別感
光量および総合感光量を示す模式図で、フォト・レジス
ト塗布膜の膜厚差に基因する感光量の違いが、2つの単
色紫外光の照射により相互に補償され平均化され平滑化
される有様を模式的に表わしたものである。この模式図
から明らかなように、最も薄い部分の膜厚Tの領域およ
びその近傍におけるg線による感光量の落込みは、波長
477.0nmの単色紫外光による大きな感光量で補償され、
また、その他の領域における波長477.0nmの単色紫外光
による感光量の落込みは、g線による大きな感光量で補
償される。従って、フォト・レジスト塗布膜3の全領域
における感光量はその表面の凹凸とは関係なく常に平均
化され表面全体にわたって平滑化されるので、フォト・
レジスト塗布膜3上には第1図(e)に示すような寸法
精度のきわめて高きフォト・レジスト・パターン7が効
率良く転写される。
FIG. 3 and FIG.
FIG. 4 is a schematic diagram showing the exposure amount and the total exposure amount of each region of the photoresist film by two single-color ultraviolet light beams. , And schematically show how they are mutually compensated, averaged and smoothed. As is apparent from this schematic diagram, the decrease in the exposure amount due to the g-line in the region with the thinnest film thickness T and its vicinity is caused by the wavelength
Compensated by a large amount of light by 477.0nm monochromatic ultraviolet light,
In addition, the decrease in the exposure amount due to the monochromatic ultraviolet light having a wavelength of 477.0 nm in other regions is compensated by the large exposure amount due to the g-line. Accordingly, the photosensitivity in the entire area of the photoresist coating 3 is always averaged and smoothed over the entire surface irrespective of the surface irregularities.
An extremely high dimensional accuracy photo resist pattern 7 as shown in FIG. 1 (e) is efficiently transferred onto the resist coating film 3.

第5図(a)〜(d)は本発明の他の実施例を示すフ
ォト・リソグラフィの工程順序図である。本実施例によ
れば、半導体ウェーハ1上に堆積された多結晶シリコン
膜2の表面には、最も薄い部分の膜厚Tが前実施例と同
じく1.33μmとなるようにフォト・レジスト塗布膜3が
形成され〔第5図(a)参照〕、プリ・ベークを経た
後、まず波長(λ)447.0nmの単色紫外光Bが転写露
光の1/2〜1/10の露光量で全面照射される〔第5図
(b)参照〕。ついで、フォト・マスク4を介する素子
パターン6の露光転写をg線(λ)を使って行い、フ
ォト・レジスト・パターン7を得る〔第5図(c)およ
び(d)参照〕。本実施例の如く、単色紫外光A,Bによ
る転写露光と全面露光の工程順序を反対にした場合で
も、諸条件を変えない限り前実施例と同一の効果を得る
ことが可能である。
FIGS. 5 (a) to 5 (d) are process charts of photolithography showing another embodiment of the present invention. According to the present embodiment, the photo-resist coating film 3 is formed on the surface of the polycrystalline silicon film 2 deposited on the semiconductor wafer 1 so that the thickness T of the thinnest portion becomes 1.33 μm as in the previous embodiment. Is formed (see FIG. 5 (a)), and after pre-baking, first, monochromatic ultraviolet light B having a wavelength (λ 2 ) of 447.0 nm is irradiated on the entire surface at an exposure amount of 1/2 to 1/10 of the transfer exposure. (See FIG. 5 (b)). Next, exposure transfer of the element pattern 6 through the photomask 4 is performed using g-rays (λ 1 ) to obtain a photoresist pattern 7 (see FIGS. 5 (c) and (d)). As in the present embodiment, even when the steps of the transfer exposure using monochromatic ultraviolet light A and B and the entire surface exposure are reversed, the same effect as in the previous embodiment can be obtained as long as various conditions are not changed.

以上は転写露光および全面露光にそれぞれg線および
447.0nmの単色紫外光を用いた場合を説明したが、この
他にもg線と425.2nm或いはg線と458.7nmの組合せの如
く、その膜内波長が転写露光光のg線の膜内波長と1/8
波長の“ずれ”を生じるものであればこれと同等の効果
を奏ぜしめ得る。勿論、転写露光光にg線以外の単色紫
外光を用いることも何等妨げるものではなく、また、2
つの単色紫外光の膜内波長の“ずれ”が最適値の1/8波
長を満足せずその周辺に散在した場合であっても実効的
にほぼ同等の効果をあげることができる。
The above are the g-ray and transfer exposure and transfer exposure, respectively.
The case where the monochromatic ultraviolet light of 447.0 nm is used has been described. In addition, the in-film wavelength of the transfer exposure light is g-line, such as a combination of g-line and 425.2 nm or g-line and 458.7 nm. And 1/8
As long as a "shift" of the wavelength occurs, the same effect can be obtained. Of course, the use of monochromatic ultraviolet light other than the g-ray as the transfer exposure light does not hinder at all.
Even if the "shift" in the wavelength of the monochromatic ultraviolet light in the film does not satisfy the 1/8 wavelength of the optimum value and is scattered around the wavelength, substantially the same effect can be obtained.

〔発明の効果〕〔The invention's effect〕

以上詳細に説明したように、本発明によれば、フォト
・レジスト塗布膜内において互いに異なる膜内波長を生
じる2つの単色紫外光を用いてフォト・リソグラフィを
行うことにより、フォト・レジスト塗布膜の“むら”に
基因する感光量の違いを相互に補償し合い平均化し得る
ので、従来、最も薄い膜厚の部分に生じる転写パターン
のくびれ問題は完全に解決され、寸法精度のきわめて高
きフォト・レジスト・パターンを効率良く転写すること
ができる。すなわち、半導体集積回路装置の高密度パタ
ーンの形成に顕著なる効果をあげることが可能である。
As described above in detail, according to the present invention, by performing photolithography using two monochromatic ultraviolet lights that generate mutually different in-film wavelengths in the photoresist coating film, the photoresist coating film can be formed. Since the differences in exposure due to "unevenness" can be compensated for each other and averaged, the problem of constriction in the transfer pattern at the thinnest film thickness has been completely solved, and the photoresist with extremely high dimensional accuracy has been completely solved. -The pattern can be efficiently transferred. That is, it is possible to obtain a remarkable effect in forming a high-density pattern of a semiconductor integrated circuit device.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(e)は本発明の一実施例を示すフォト
・リソグラフィの工程順序図、第2図は上記実施例にお
けるフォト・レジスト塗布膜の膜厚と2つの単色紫外光
の露光感度との関係を示すグラフ図、第3図および第4
図はそれぞれ上記実施例における2つの単色紫外光によ
るフォト・レジスト膜の各領域別感光量および総合感光
量を示す模式図、第5図(a)〜(d)は本発明の他の
実施例を示すフォト・リソグラフィの工程順序図、第6
図(a)〜(d)は従来フォト・リソグラフィ工程の工
程順序図である。 1……半導体ウェーハ、2……多結晶シリコン膜、3…
…フォト・レジスト塗布膜、4……フォト・マスク、6
……素子パターン、7……フォト・レジスト・パター
ン、単色紫外光A……転写露光光、単色紫外光B……全
面露光光。
1 (a) to 1 (e) are flow charts of a photolithography process showing an embodiment of the present invention, and FIG. 2 is a diagram showing the film thickness of a photoresist coating film and two monochromatic ultraviolet rays in the above embodiment. FIG. 3, FIG. 3 and FIG.
FIGS. 5A to 5D are schematic diagrams respectively showing the exposure amount and the total exposure amount of each region of the photoresist film by two monochromatic ultraviolet lights in the above embodiment, and FIGS. 5A to 5D show other embodiments of the present invention. 6 is a photolithography process sequence diagram showing
FIGS. 3A to 3D are process sequence diagrams of a conventional photolithography process. 1 ... Semiconductor wafer, 2 ... Polycrystalline silicon film, 3 ...
... Photo resist coating film, 4 ... Photo mask, 6
... Element pattern, 7... Photoresist pattern, monochromatic ultraviolet light A...

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】凹凸面を有する半導体ウェーハ上に該凹凸
面に起因して厚さにむらのあるフォト・レジスト塗布膜
を形成し、第1の単色紫外光を前記フォト・レジスト塗
布膜に選択的に照射する素子パターンの転写露光工程お
よび第2の単色紫外光を前記フォト・レジスト塗布膜の
全面に照射する全面照射工程を有するフォト・リソグラ
フィにより前記フォト・レジスト塗布膜のパターンを形
成する半導体の製造方法であって、 前記第1の単色紫外光は、前記フォト・レジスト塗布膜
の最も薄い膜厚の第1の箇所にその露光感度の極小値が
くるように波長を選択された露光光であり、 前記第2の単色紫外光は、前記第1の箇所よりその膜内
波長の1/8だけ膜厚の厚い前記フォト・レジスト塗布膜
の第2の箇所にその露光感度の極小値がくるように波長
を選択された露光光であることを特徴とする半導体装置
の製造方法。
1. A photo-resist coating film having an uneven thickness due to the uneven surface is formed on a semiconductor wafer having an uneven surface, and a first monochromatic ultraviolet light is selected as the photo-resist coating film. A semiconductor for forming a pattern of the photo-resist coating film by photolithography including a transfer exposure process of an element pattern to be irradiated and an entire irradiation process of irradiating the entire surface of the photo-resist coating film with second monochromatic ultraviolet light Wherein the first monochromatic ultraviolet light is an exposure light whose wavelength is selected such that the minimum value of the exposure sensitivity comes to a first portion having the smallest thickness of the photoresist coating film. Wherein the second monochromatic ultraviolet light has a minimum value of the exposure sensitivity at a second location of the photoresist coating film which is thicker than the first location by 1/8 of the film wavelength. To come The method of manufacturing a semiconductor device, characterized in that wavelength as the exposure light to a selected.
【請求項2】前記第1の単色紫外光にg線を使用し、前
記第2の単色紫外光に波長が447.0nm,425.2nmまたは45
8.7nmの何れか一つの露光光を選択して使用することを
特徴とする請求項(1)記載の半導体装置の製造方法。
2. The g-line is used for the first monochromatic ultraviolet light, and the second monochromatic ultraviolet light has a wavelength of 447.0 nm, 425.2 nm, or 45 nm.
2. The method of manufacturing a semiconductor device according to claim 1, wherein one of the exposure lights having a wavelength of 8.7 nm is selected and used.
JP63043733A 1988-02-25 1988-02-25 Method for manufacturing semiconductor device Expired - Lifetime JP2707575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63043733A JP2707575B2 (en) 1988-02-25 1988-02-25 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63043733A JP2707575B2 (en) 1988-02-25 1988-02-25 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01217911A JPH01217911A (en) 1989-08-31
JP2707575B2 true JP2707575B2 (en) 1998-01-28

Family

ID=12671983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63043733A Expired - Lifetime JP2707575B2 (en) 1988-02-25 1988-02-25 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2707575B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263223A (en) * 1985-05-17 1986-11-21 Fujitsu Ltd Manufacture of semiconductor device
JP2768670B2 (en) * 1987-02-13 1998-06-25 株式会社東芝 Pattern formation method

Also Published As

Publication number Publication date
JPH01217911A (en) 1989-08-31

Similar Documents

Publication Publication Date Title
US5358808A (en) Exposure mask, method of manufacturing the same, and exposure method using the same
JP2002299205A (en) Method for controlling semiconductor manufacturing device
KR100263900B1 (en) Mask and the manufacturing method
TWI695220B (en) Phase shift mask, chromeless phase shift mask, and method for integrated circuit fabrication
US6333213B2 (en) Method of forming photomask and method of manufacturing semiconductor device
JP4613364B2 (en) Resist pattern formation method
US20040224242A1 (en) Focus monitor method and mask
US20020030802A1 (en) Projection exposure apparatus
JP2001272766A (en) Method for manufacturing photomask
JP2707575B2 (en) Method for manufacturing semiconductor device
JPH10254122A (en) Photomask for exposure
JP2810061B2 (en) Method for manufacturing semiconductor device
JPH03144453A (en) Mask for exposing and production of semiconductor device
JPS63170917A (en) Formation of fine pattern
JPH0423816B2 (en)
JP4328572B2 (en) Projection exposure apparatus, reticle used in projection exposure apparatus, projection exposure method, and semiconductor device manufacturing method
JP3574729B2 (en) Lens aberration measurement method
JP3110801B2 (en) Photomask manufacturing method and photomask
JPH0664337B2 (en) Photomask for semiconductor integrated circuit
JP3082747B2 (en) Exposure equipment evaluation method
JPH0833651B2 (en) Photo mask
JP2000082650A (en) Projection exposure method
JP2000260705A (en) Method of exposure and aligner manufacture thereby and its manufacture
JP2685872B2 (en) Manufacturing method of resist pattern
JP2791757B2 (en) Semiconductor mask and method of manufacturing the same