JPH01217911A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01217911A
JPH01217911A JP63043733A JP4373388A JPH01217911A JP H01217911 A JPH01217911 A JP H01217911A JP 63043733 A JP63043733 A JP 63043733A JP 4373388 A JP4373388 A JP 4373388A JP H01217911 A JPH01217911 A JP H01217911A
Authority
JP
Japan
Prior art keywords
exposure
film
ultraviolet light
monochromatic ultraviolet
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63043733A
Other languages
Japanese (ja)
Other versions
JP2707575B2 (en
Inventor
Shiyouichi Matsuba
松葉 省市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63043733A priority Critical patent/JP2707575B2/en
Publication of JPH01217911A publication Critical patent/JPH01217911A/en
Application granted granted Critical
Publication of JP2707575B2 publication Critical patent/JP2707575B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To prevent a transfer pattern from necking by performing a photolithography with two monochromatic ultraviolet lights for generating different wavelengths in films in a photoresist-coating film. CONSTITUTION:The surface of a polycrystalline silicon 2 deposited on a semiconductor wafer is covered with a photoresist-coating film 3 in which the thickness of the thinnest part is 1.33mum. The wafer 1 is prebaked and transfer-exposed with an element pattern 6 with monochromatic ultraviolet light A through a photomask 4. A monochromatic ultraviolet light B having 447.0nm of wavelength is irradiated onto the whole wafer by 1/2-1/10 exposure amount in a transfer exposure step, the wafer is then developed, and postbaked, thereby obtaining a photoresist pattern 7. When the two lights A, B are irradiated, the total photosensing amount on the regions of the film 3 becomes the sum of the exposure amounts of the transfer exposure and whole surface photosensing, the difference of the exposure amounts due to the difference of the thicknesses of the film 3 is compensated each other to be averaged.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にフォト・リ
ソグラフィの工程技術に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a process technology of photolithography.

〔従来の技術〕[Conventional technology]

従来、半導体装置の素子パターンはフォト・リングラフ
ィ工程を経て形成される。
Conventionally, element patterns of semiconductor devices are formed through a photolithography process.

第6図(a)〜(d)は従来フォト・リソグラフィ工程
の工程順序図である。これによれば、半導体ウェーハ1
上の例えば多結晶シリコンM2上にフォト・レジスト膜
3(例えば、ポジティブ・タイプ)を塗布した後〔第6
図(a)参照〕ブリ・ベークを行い、つぎに第6図(b
)に示すように、フォト・マスク4を通し単色紫外光(
例えば、波長435.8 n mのg線)5を照射して
素子パターン6の転写露光を行い、ついで現像およびボ
スト・ベーク工程とを経て第6図(C)に示す如きフォ
ト・レジスト・パターン7を得るものである。
FIGS. 6(a) to 6(d) are process sequence diagrams of conventional photolithography processes. According to this, semiconductor wafer 1
After coating a photoresist film 3 (for example, positive type) on the upper polycrystalline silicon M2,
Refer to Figure (a)] Brie-baking is performed, and then Figure 6 (b)
), monochromatic ultraviolet light (
For example, transfer exposure of the element pattern 6 is carried out by irradiating with G-ray (G-ray) 5 having a wavelength of 435.8 nm, and then through development and a boss baking process, a photoresist pattern as shown in FIG. 6(C) is formed. 7.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来のフォト・リソグラフィで
は、半導体ウェーへ面の凹凸に起因してフォト・レジス
トの塗布膜に厚さの“むら”が生じている為、単色紫外
光による素子パターンの転写露光が行われた際、この膜
厚“むら″の存在によって、フォト・レジスト内におけ
る紫外光定在波の発生のしかたに異同が生じ、これが露
光感度の差となって現われ、中央を上下に通るフォト・
レジスト・パターン7が段血近傍で細い“くびれ”を持
った形状に転写される。〔第6図(d)参照〕、従来の
フォト・リソグラフィ工程では、フォト・レジストを塗
布する除土じる膜厚の微小な違いに対しては、これによ
る露光感度の変動を小さく押さえ込めるように、露光感
度が極値をとる膜厚を適宜選択することが通常行われる
。しかし、このような手法がとられたとしても、例えば
、ウェーハ而の凹凸に起因して塗布膜厚に“むらパが生
じている場合では、余りにも膜厚差が大きいため一部の
領域における露光感度に急峻な勾配が生じる。従って、
露光感度の違いによる転写露光が進行し、形成されるフ
ォト・レジスト・パターンに上記の如き寸法形状の異同
を生ぜしめるようになる。
However, in the conventional photolithography described above, the thickness of the photoresist coating film is uneven due to the unevenness of the surface of the semiconductor wafer, so the transfer exposure of the device pattern using monochromatic ultraviolet light is difficult. When photoresist is processed, the existence of this film thickness "unevenness" causes differences in the way ultraviolet light standing waves are generated within the photoresist, and this appears as a difference in exposure sensitivity.・
The resist pattern 7 is transferred in a shape having a narrow "waist" near the step blood. [See Figure 6(d)] In the conventional photolithography process, variations in exposure sensitivity due to minute differences in the thickness of the photoresist coating can be kept to a minimum. Generally, a film thickness at which the exposure sensitivity takes an extreme value is appropriately selected. However, even if such a method is adopted, for example, if the coating film thickness is uneven due to the unevenness of the wafer, the difference in film thickness is too large and it may be difficult to A steep gradient occurs in exposure sensitivity. Therefore,
As the transfer exposure progresses due to the difference in exposure sensitivity, the formed photoresist patterns come to have the above-mentioned differences in size and shape.

本発明の目的は、上記の情況に鑑み、フォト・レジスト
塗布膜の膜厚“むら”に基因する転写露光感度の差異を
効果的に極小化することのできるフォト・リングラフィ
工程を備えた半導体装置の製造方法を提供すること、で
ある。
In view of the above circumstances, an object of the present invention is to provide a semiconductor device equipped with a photophosphorography process that can effectively minimize the difference in transfer exposure sensitivity caused by the "unevenness" in the thickness of a photoresist coating film. An object of the present invention is to provide a method for manufacturing a device.

〔課題を解決するための手段〕[Means to solve the problem]

本発明によれば、半導体装置の製造方法は、半導体ウェ
ーハ上のフォト・レジスト塗布膜に第1の単色紫外光を
照射する素子パターンの転写露光工程と、前記フォト・
レジスト塗布膜の一つの特定膜厚内において前記第1の
単色紫外光と異なる膜内波長を生じる第2の単色紫外光
による前記フォト・レジスト塗布膜に対する全面照射工
程とがら成るフォト・リソグラフィ工程を含んで構成さ
れる。この際、第2の単色紫外光の膜内波長が第1の単
色紫外光の膜内波長との間に1/8波長の“ずれ”があ
ることが最も好ましい効果を生む。
According to the present invention, a method for manufacturing a semiconductor device includes a device pattern transfer exposure step of irradiating a photoresist coating film on a semiconductor wafer with a first monochromatic ultraviolet light;
a photolithography process comprising a step of irradiating the entire surface of the photoresist coating film with a second monochromatic ultraviolet light that produces an in-film wavelength different from that of the first monochromatic ultraviolet light within one specific film thickness of the resist coating film; Consists of. At this time, it is most preferable that there is a "shift" of 1/8 wavelength between the in-film wavelength of the second monochromatic ultraviolet light and the in-film wavelength of the first monochromatic ultraviolet light.

従って、第1の単色紫外光に水銀ランプのg線を用いた
場合は第2の単色紫外光に波長447.0n m 、 
425.2 n m或いは458.7 n mの何れか
一つを選択すると望ましい効果をあげることができる。
Therefore, when the g-line of a mercury lamp is used as the first monochromatic ultraviolet light, the second monochromatic ultraviolet light has a wavelength of 447.0 nm,
Desired effects can be achieved by selecting either 425.2 nm or 458.7 nm.

〔実施例〕〔Example〕

以下図面を参照して本発明の詳細な説明する。 The present invention will be described in detail below with reference to the drawings.

第1図(a)〜(e)は本発明の一実施例を示すフォト
・リソグラフィの工程順序図である0本実施例によれば
、半導体ウェーハ1上に堆積、された多結晶シリコン2
の表面には、最も薄い部分の膜厚Tが1.33μmとな
るようにフォト・レジスト塗布膜3が先ず被着される〔
第1図(a)参照〕、つぎに、半導体ウェーハ1はブリ
・ベークされ、ついで第1図(b)に示すようにフォト
・マスク4を介し単色紫外光Aによる素子パターン6の
転写露光が行われる0本実施例ではこの単色紫外光Aに
は水銀ランプのg線が使用される。つぎに波長(λ2 
) 447.0 n mの単色紫外光Bが転写露光工程
の1/2〜1/10の露光量でウェーハ全面に照射され
る〔第1図(c)参照〕、ついで、従来と同じく現像お
よびポスト・ベーク工程を行いフォト・レジスト・パタ
ーン7を得る〔第1図(d)参照〕、ここで、フォト・
レジスト塗布[3の屈折率を1.64とすると、最も薄
い部分の膜厚T : 1.33μmにおける波長(λs
 ) 435.8nmのg線の膜内波長λl′は265
.7nmとな^!′ る、すなわち、T = n −(n = 10 >の関
係にある、従って、フォト・レジスト塗布膜3における
最も薄い膜厚Tの領域では、g線の定在波が最も強く発
生し露光感度が極小となるので、感光量も極小になり、
また、膜厚が最も薄い膜FJTより厚い他の近傍領域で
は、これとは逆に膜厚が厚くなるに従って露光感度が増
し、感光量も増す。
FIGS. 1(a) to 1(e) are process order diagrams of photolithography showing an embodiment of the present invention. According to this embodiment, polycrystalline silicon 2 deposited on a semiconductor wafer 1.
A photoresist coating film 3 is first deposited on the surface of the photoresist film 3 so that the film thickness T at the thinnest part is 1.33 μm.
1(a)], the semiconductor wafer 1 is pre-baked, and then, as shown in FIG. 1(b), the device pattern 6 is transferred and exposed to monochromatic ultraviolet light A through a photomask 4. In this embodiment, the monochromatic ultraviolet light A is the g-line of a mercury lamp. Next, the wavelength (λ2
) Monochromatic ultraviolet light B of 447.0 nm is irradiated onto the entire surface of the wafer at an exposure dose of 1/2 to 1/10 of that of the transfer exposure process [see Figure 1(c)], and then development and A post-bake process is performed to obtain a photoresist pattern 7 [see FIG. 1(d)]. Here, a photoresist pattern 7 is obtained.
Assuming that the refractive index of resist coating [3] is 1.64, the film thickness at the thinnest part T: wavelength at 1.33 μm (λs
) The internal wavelength λl' of the g-line of 435.8 nm is 265
.. 7nm! In other words, there is a relationship of T = n - (n = 10 > is minimal, so the amount of light exposure is also minimal,
In other neighboring regions where the film is thicker than the thinnest film FJT, on the contrary, as the film thickness increases, the exposure sensitivity increases and the amount of exposure also increases.

他方、全面照射される波長(λ2 ) 447.Onm
の単色紫外光の膜内波長λ2′は272.5 n mと
なり、最も薄い部分の膜厚TとはT=(n−−)λ2′ ++++、  (n = 10 >の関係にある。すな
わち、波長(λ2 ) 447.On mの単色紫外光
はg線とは異なり、定在波を最も薄い膜厚Tから多少ず
れた近傍の厚い膜厚領域内で発生せしめる。従って、露
光感度は膜W、Tからずれたこの近傍の厚い膜厚領域で
極小となり、最も薄い膜W、Tの領域および近傍のより
厚膜の領域ではそれぞれ大きな露光感度と感光量とを示
す。
On the other hand, the wavelength (λ2) at which the entire surface is irradiated is 447. Onm
The internal wavelength λ2' of the monochromatic ultraviolet light is 272.5 nm, and the relationship with the film thickness T at the thinnest part is T=(n--)λ2' +++++, (n = 10>. That is, Monochromatic ultraviolet light with a wavelength (λ2) of 447.On m, unlike g-line, generates a standing wave in a thick film thickness region in the vicinity of the thinnest film thickness T. Therefore, the exposure sensitivity is , T becomes minimum in the thick film thickness region in the vicinity of this region, and exhibits large exposure sensitivity and exposure amount in the regions of the thinnest films W and T and the thicker film region in the vicinity, respectively.

第2図は上記実施例におけるフォト・レジスト塗布膜の
膜厚と2つの単色紫外光の露光感度との関係を表わすグ
ラフ図で、g線(λ、、435.8nm)の露光感度が
膜厚1,33μmのところで極小となり、また波長(λ
2)447゜Onmの単色紫外光の露光感度がこの極小
点から膜内波長換算でλ2′/8だけずれたところで極
小となることが示されている。この“ずれ7の大きさλ
2′/8は、膜厚Tと膜内波長λ /、  λ2′の半
波−長λt ’ / 2 、λ2′/2との関係式を用
い、膜厚Tに相当する距離内に半波4 X 1 ’ /
 2 、 λ2 ′/2がそれぞれ幾つ収まるかを数え
、両者の差を波長換算することによって求めたものであ
る。すなわち、上記関係式を用いれば膜厚Tに相当する
距離内に収まるλ1’/2.^2′/2の個数はそれぞ
れ10個および9.75個で、両者の差は0.25個と
算出される。従って、この差の波長換算により“ずれ”
の大きさがλ2′/8であることを知る。
Figure 2 is a graph showing the relationship between the film thickness of the photoresist coating film and the exposure sensitivity of two monochromatic ultraviolet lights in the above example. It becomes minimum at 1.33 μm, and the wavelength (λ
2) It has been shown that the exposure sensitivity of monochromatic ultraviolet light of 447° Onm reaches a minimum at a position deviated from this minimum point by λ2'/8 in terms of the film wavelength. The size of this “shift 7” λ
2'/8 uses the relational expression between the film thickness T and the film internal wavelength λ/, the half-wave length of λ2'λt'/2, and λ2'/2. 4 x 1'/
2 and λ2'/2 are counted, and the difference between the two is converted into a wavelength. That is, using the above relational expression, λ1'/2. which falls within the distance corresponding to the film thickness T. The numbers of ^2'/2 are 10 and 9.75, respectively, and the difference between the two is calculated to be 0.25. Therefore, by converting this difference into wavelength, "shift"
We know that the size of is λ2'/8.

このように、2つの単色紫外光A、Bが照射された場合
では、フォト・レジスト塗布膜3の各領域における総感
光量は、転写露光における感光量と全面露光における感
光量の和となり、フォト・レジスト塗布膜の膜厚差に基
因する感光量の違いは相互に補償され平均化されるので
、領域による感光量の変動は極めて有効に平滑化される
In this way, when two monochromatic ultraviolet lights A and B are irradiated, the total exposure amount in each area of the photoresist coating film 3 is the sum of the exposure amount in the transfer exposure and the exposure amount in the entire surface exposure, and the photoresist coating film 3 is - Differences in the amount of exposure due to differences in the thickness of the resist coating film are mutually compensated and averaged, so variations in the amount of exposure depending on the area are smoothed out extremely effectively.

第3図および第4図はそれぞれ上記実施例における2つ
の単色紫外光によるフォト・レジスト膜の各領域別感光
量および総合感光量を示す模式図で、フォト・レジスト
塗布膜の膜厚差に基因する感光量の違いが、2つの単色
紫外光の照射により相互に補償され平均化され平滑化さ
れる有様を模式的に表わしたものである。この模式図か
ら明らかなように、最も薄い部分の膜厚Tの領域および
その近傍におけるg線による感光量の落込みは、波長4
77.0 n mの単色紫外光による大きな感光量で補
償され、また、その他の領域における波長477.0n
mの単色紫外光による感光量の落込みは、g線による大
きな感光量で補償される。従って、フォト・レジスト塗
布M3の全領域における感光量はその表面の凹凸とは関
係なく常に平均化され表面全体にわたって平滑化される
ので、フォト・レジスト塗布膜3上には第1図(e)に
示すような寸法精度のきわめて高きフォト・レジスト・
パターン7が効率良く転写される。
FIGS. 3 and 4 are schematic diagrams showing the amount of exposure for each area and the total amount of exposure of the photoresist film by two monochromatic ultraviolet lights in the above example, respectively. This is a schematic representation of how the difference in exposure amount is mutually compensated for, averaged, and smoothed by irradiation with two monochromatic ultraviolet lights. As is clear from this schematic diagram, the decrease in the amount of exposure due to the g-line in the area of the thinnest film thickness T and its vicinity is
Compensated with a large amount of exposure due to monochromatic ultraviolet light of 77.0 nm, and the wavelength of 477.0 nm in other regions
The decrease in the amount of exposure due to the monochromatic ultraviolet light of m is compensated by the large amount of exposure due to the g-line. Therefore, the amount of exposure in the entire area of the photoresist coating M3 is always averaged and smoothed over the entire surface, regardless of the unevenness of the surface. Photoresist with extremely high dimensional accuracy as shown in
Pattern 7 is efficiently transferred.

第5図(a)〜(d)は本発明の他の実施例を示すフォ
ト・リソグラフィの工程順序図である。
FIGS. 5(a) to 5(d) are photolithography process steps showing another embodiment of the present invention.

本実施例によれば、半導体ウェーハ1上に堆積された多
結晶シリコン膜2の表面には、最も薄い部分の膜厚Tが
前実施例と同じ<1j3μmとなるようにフォト・レジ
スト塗布膜3が形成され〔第5図(a)参照〕、ブリ・
ベークを経た後、まず波長(λ2 ) 447.0 n
mの単色紫外光Bが転写露光の1/2〜1/10の露光
量で全面照射される〔第5図(b)参照〕、ついで、フ
ォト・マスク4を介する素子パターン6の露光転写をg
線(λりを使って行い、フォト・レジスト・パターン7
を得る〔第5図(c)および(d)参照〕0本実施例の
如く、単色紫外光A、Bによる転写露光と全面露光の工
程順序を反対にした場合でも、諸条件を変えない限り前
実施例と同一の効果を得ることが可能である。
According to this embodiment, a photoresist coating film 3 is applied to the surface of a polycrystalline silicon film 2 deposited on a semiconductor wafer 1 so that the film thickness T at the thinnest part is <1j3 μm, the same as in the previous embodiment. is formed [see Figure 5(a)], and yellowtail is formed.
After baking, first the wavelength (λ2) 447.0 n
m monochromatic ultraviolet light B is irradiated over the entire surface with an exposure amount of 1/2 to 1/10 of the transfer exposure [see FIG. g
photoresist pattern 7
[See Figures 5 (c) and (d)] 0 Even if the process order of the transfer exposure using monochromatic ultraviolet light A and B and the entire surface exposure is reversed as in this example, as long as the various conditions are not changed. It is possible to obtain the same effects as in the previous embodiment.

以上は転写露光および全面露光にそれぞれg線および4
47.0 n mの単色紫外光を用いた場合を説明した
が、この他にもg線と425.2 n m或いはg線と
458.7 n mの組合せの如く、その膜内波長が転
写露光光のg線の膜内波長と1/8波、長の“ずれパを
生じるものであればこれと同等の効果を奏ぜしめ得る。
The above is for transfer exposure and full surface exposure, respectively, for g-line and 4
Although we have explained the case where monochromatic ultraviolet light of 47.0 nm is used, there are also other cases where the wavelength within the film is transferred, such as a combination of g-line and 425.2 nm or g-line and 458.7 nm. The same effect can be achieved as long as it produces a shift of 1/8 wavelength from the film wavelength of the g-line of the exposure light.

勿論、転写露光光にg線以外の単色紫外光を用いること
も何等妨げるもσ)ではなく、また、2つの単色紫外光
の膜内波長の′ずれ”が最適値の1/8波長を満足せず
その周辺に散在した場合であってら実効的にほぼ同等の
効果をあげることができる。
Of course, the use of monochromatic ultraviolet light other than g-line as the transfer exposure light is not prohibited in any way, but it is also important that the 'shift' in the film wavelengths of the two monochromatic ultraviolet lights satisfies the optimum value of 1/8 wavelength. Almost the same effect can be achieved even if they are scattered around the surrounding area.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明によれば、フォト・
レジスト塗布膜内において互いに異なる膜内波長を生じ
る2つの単色紫外光を用いてフォト・リソグラフィを行
うことにより、フォト・レジスト塗布膜の“むら”に基
因する感光量の違いを相互に補償し合い平均化し得?)
ので、従来、最も薄い膜厚の部分に生じる転写パターン
のくびれ間趙は完全に解決され、寸法精度のきわめて高
きフォト・レジスト・パターンを効率良く転写すること
ができる。すなわち、半導体S積回路装置の高密度パタ
ーンの形成に顕著なる効果をあげることが可能である。
As explained in detail above, according to the present invention, photo
By performing photolithography using two monochromatic ultraviolet lights that produce different wavelengths within the resist coating, the difference in exposure due to unevenness in the photoresist coating can be mutually compensated for. Can it be averaged? )
Therefore, the constriction of the transfer pattern that conventionally occurs at the thinnest portion of the film is completely resolved, and a photoresist pattern with extremely high dimensional accuracy can be efficiently transferred. That is, it is possible to achieve a remarkable effect in forming a high-density pattern of a semiconductor S integrated circuit device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜・(e)は本発明の一実施例を示すフォ
ト・リングラフィの工程順序図、第2図は上記実施例に
おけるフォト・レジスト塗布膜の膜厚と2つの単色紫外
光の露光感度との関係を示すグラフ図、第3図および第
4図はそれぞれ上記実施例における2つの単色紫外光に
よるフォト・レジスト膜の各領域別感光豆および総合感
光量を示す模式図、第5図(a)〜(d)は本発明の他
の実施例を示すフォト・リングラフィの工程順序図、第
6図(a)〜(d)は従来フォト・・リングラフィ工程
の工程順序図である。 1・・・半導体ウェーハ、2・・・・多結晶シリコン膜
、3・・・フォト・し・シスト塗布1i1.4・・・フ
ォト・マスク、6・・・素子バター・ン、7・・・フオ
)〜・レジスト・パターン、単色紫外光A・・・転写露
光光、単色紫外光B・・・全面露光光。 代理人 弁理士  内 原  晋 単巴紫9眺A(1株、λt: 4J5.5M)躬 j 
図 一77升ル5“ストへ°ブ″″″ 第 1 図 第 2 図 !J5Jl!! M 4凹 蔦5 図 牟色紫y咬A(3株、 ’lJ6.htり懲5図 増e蒙外農 第 6 図
Figures 1 (a) to (e) are process order diagrams of photo phosphorography showing one embodiment of the present invention, and Figure 2 shows the thickness of the photoresist coating film and two monochromatic ultraviolet rays in the above embodiment. Graphs showing the relationship with light exposure sensitivity, FIGS. 3 and 4 are schematic diagrams showing the sensitivity of each region of the photoresist film and the total sensitization amount by two monochromatic ultraviolet lights in the above example, respectively. FIGS. 5(a) to (d) are process order diagrams of photophosphorography showing another embodiment of the present invention, and FIGS. 6(a) to (d) are process orders of the conventional photophosphorography process. It is a diagram. DESCRIPTION OF SYMBOLS 1... Semiconductor wafer, 2... Polycrystalline silicon film, 3... Photo cyst coating 1i1.4... Photo mask, 6... Element butter, 7... Resist pattern, monochromatic ultraviolet light A... transfer exposure light, monochromatic ultraviolet light B... entire surface exposure light. Agent Patent Attorney Shintan Uchihara Tomoe Shi9cho A (1 share, λt: 4J5.5M) 謬 j
Figure 1 77 squares 5 “Storage °bu”” Figure 1 Figure 2! J5Jl! ! M 4 concave ivy 5 Fig. 6. Fig. 6. Fig. 6.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体ウェーハ上のフォト・レジスト塗布膜に第
1の単色紫外光を照射する素子パターンの転写露光工程
と、前記フォト・レジスト塗布膜の一つの特定膜厚内に
おいて前記第1の単色紫外光と異なる膜内波長を生じる
第2の単色紫外光による前記フォト・レジスト塗布膜に
対する全面照射工程とから成るフォト・リソグラフィ工
程を含むことを特徴とする半導体装置の製造方法。
(1) A device pattern transfer exposure step of irradiating a first monochromatic ultraviolet light onto a photoresist coating film on a semiconductor wafer; A method for manufacturing a semiconductor device, comprising a photolithography step comprising a step of irradiating the entire surface of the photoresist coating film with a second monochromatic ultraviolet light that produces an internal wavelength different from light.
(2)前記第2の単色紫外光の膜内波長が第1の単色紫
外光の膜内波長と1/8波長の位相差に設定されること
を特徴とする請求項(1)記載の半導体装置の製造方法
(2) The semiconductor according to claim (1), wherein the in-film wavelength of the second monochromatic ultraviolet light is set to a phase difference of 1/8 wavelength from the in-film wavelength of the first monochromatic ultraviolet light. Method of manufacturing the device.
(3)前記第1および第2の単色紫外光にそれぞれ水銀
ランプのg線および波長447.0nm、425.2n
mまたは458.7nmの何れか一つが選択使用される
ことを特徴とする請求項(1)記載の半導体装置の製造
方法。
(3) The first and second monochromatic ultraviolet lights are the g-line of a mercury lamp and wavelengths of 447.0 nm and 425.2 nm, respectively.
2. The method of manufacturing a semiconductor device according to claim 1, wherein either one of m and 458.7 nm is selectively used.
JP63043733A 1988-02-25 1988-02-25 Method for manufacturing semiconductor device Expired - Lifetime JP2707575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63043733A JP2707575B2 (en) 1988-02-25 1988-02-25 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63043733A JP2707575B2 (en) 1988-02-25 1988-02-25 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01217911A true JPH01217911A (en) 1989-08-31
JP2707575B2 JP2707575B2 (en) 1998-01-28

Family

ID=12671983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63043733A Expired - Lifetime JP2707575B2 (en) 1988-02-25 1988-02-25 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2707575B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263223A (en) * 1985-05-17 1986-11-21 Fujitsu Ltd Manufacture of semiconductor device
JPS63198324A (en) * 1987-02-13 1988-08-17 Toshiba Corp Forming method for pattern

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263223A (en) * 1985-05-17 1986-11-21 Fujitsu Ltd Manufacture of semiconductor device
JPS63198324A (en) * 1987-02-13 1988-08-17 Toshiba Corp Forming method for pattern

Also Published As

Publication number Publication date
JP2707575B2 (en) 1998-01-28

Similar Documents

Publication Publication Date Title
US5358808A (en) Exposure mask, method of manufacturing the same, and exposure method using the same
JP4613364B2 (en) Resist pattern formation method
US20040224242A1 (en) Focus monitor method and mask
US6569605B1 (en) Photomask and method for forming micro patterns of semiconductor device using the same
TW201738651A (en) Extreme ultraviolet lithography photomasks
JPH01217911A (en) Manufacture of semiconductor device
JPS6379322A (en) Formation of resist pattern
JPH0423816B2 (en)
JPS6043827A (en) Formation of fine pattern
JPH03144453A (en) Mask for exposing and production of semiconductor device
JPH0311345A (en) Photomask and pattern forming method using same
JPH0664337B2 (en) Photomask for semiconductor integrated circuit
JPH05142745A (en) Phase shift mask and manufacture of mask
JPH02140914A (en) Manufacture of semiconductor device
JPH0371133A (en) Mask for semiconductor device
JP2000082650A (en) Projection exposure method
JPH0613309A (en) Formation of resist pattern
JPS61290721A (en) Manufacture of semiconductor device
JPS61213846A (en) Pattern forming method
JP3243043B2 (en) Pattern formation method
JPS63308316A (en) Manufacture of semiconductor device
JPH0281048A (en) Method and material for forming pattern
JPS63202025A (en) Manufacture or semiconductor device
JPS61271837A (en) Manufacture of semiconductor device
JPS63275116A (en) Manufacture of semiconductor device