JP2001272766A - Method for manufacturing photomask - Google Patents

Method for manufacturing photomask

Info

Publication number
JP2001272766A
JP2001272766A JP2000087652A JP2000087652A JP2001272766A JP 2001272766 A JP2001272766 A JP 2001272766A JP 2000087652 A JP2000087652 A JP 2000087652A JP 2000087652 A JP2000087652 A JP 2000087652A JP 2001272766 A JP2001272766 A JP 2001272766A
Authority
JP
Japan
Prior art keywords
pattern
coverage
focus
exposure
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000087652A
Other languages
Japanese (ja)
Other versions
JP4068281B2 (en
Inventor
Tsukasa Azuma
司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000087652A priority Critical patent/JP4068281B2/en
Publication of JP2001272766A publication Critical patent/JP2001272766A/en
Application granted granted Critical
Publication of JP4068281B2 publication Critical patent/JP4068281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To lessen the influence of stray light by exactly recognizing the deterioration of the resolution of the resist occurring in the stray light and the dependence on exposure likelihood and the degree the deterioration of depth of focus. SOLUTION: The coverage in a region within a distance R from the central coordinates of a test pattern in the method for manufacturing a photomask is defined as C% and after the patterns of the mask for measurement varying in the values of R and C are exposed to the resist, the pattern line widths L formed by varying the values of R and C are measured from the formed resist patterns. The process likelihood in the regions C and R is measured from the values obtained by measuring the exposure of the line widths L and the dependence of the depth of focus. A contour graph is formed by determining the maximum depth of focus at the prescribed exposure likelihood determined from the measured process likelihood as a function of C and R. Where the prescribed maximum depth of focus is necessary, the distance Rn satisfying the same and the range Cn% of the coverage are determined and the patterns are rearranged in such a manner that the region within Rn satisfies Cn% in designing the patterns of the mask.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体のリソグラ
フィに用いるフォトマスクに係わり、特にレジストパタ
ーンのプロセス裕度を劣化させる迷光の影響の定量化を
基にして、フォトマスクのLSIパターン配置に補正を
かけるためのフォトマスクの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photomask used for lithography of a semiconductor, and more particularly, to correction of an LSI pattern arrangement of a photomask based on quantification of the influence of stray light which degrades a process margin of a resist pattern. The present invention relates to a method for manufacturing a photomask for applying a mask.

【0002】[0002]

【従来の技術】半導体基板上にLSIパターンを形成す
る場合、基板上の被加工膜上にレジストなどの放射線感
光材料を塗布し、ステッパやスキャナなどの縮小投影露
光装置を用いて露光及び現像を行う。LSIパターンを
感光材料に形成する工程において、屈折光学系型露光装
置を用いる場合、光源から出た光は縮小レンズ系と投影
レンズ系によって、その間に位置するフォトマスク上に
形成されたLSIパターン像をレジストに忠実にパター
ン転写することになる。そして、形成されたレジストパ
ターンを基に被加工膜をパターニングする。
2. Description of the Related Art When an LSI pattern is formed on a semiconductor substrate, a radiation-sensitive material such as a resist is applied to a film to be processed on the substrate, and exposure and development are performed using a reduction projection exposure apparatus such as a stepper or a scanner. Do. In the case of using a refractive optical type exposure apparatus in the step of forming an LSI pattern on a photosensitive material, light emitted from a light source is reflected by a reduction lens system and a projection lens system on an LSI pattern image formed on a photomask located therebetween. Is faithfully transferred to the resist. Then, the film to be processed is patterned based on the formed resist pattern.

【0003】ところで、この種のパターン転写に用いら
れるフォトマスクは、一般に厚いガラス基板の上に遮光
膜として薄膜状のクロムや酸化クロムなどのパターンが
形成された構造となっている。しかし、実際には光が通
過する際には、ガラスとクロム、或いはクロムと空気の
屈折率の差は非常に大きく、このような光は露光装置内
で複雑な散乱や干渉を生じる。このために、光源から出
た全露光量の光の中には、理論的に予想される光学経路
以外の光学経路を通過する光となってレジスト上に照射
されるものが存在する。
A photomask used for this type of pattern transfer generally has a structure in which a thin-film pattern such as chromium or chromium oxide is formed as a light-shielding film on a thick glass substrate. However, when light actually passes, the difference in the refractive index between glass and chromium or between chromium and air is very large, and such light causes complicated scattering and interference in the exposure apparatus. For this reason, among the light of the total exposure amount emitted from the light source, there is light that is irradiated on the resist as light passing through an optical path other than the optical path that is theoretically expected.

【0004】このような現象は迷光と呼ばれ、露光光源
の短波長化や低コントラストでもパターン転写できるレ
ジストの使用などにより、無視できないノイズとなって
レジストの解像力を低下させたり、露光量裕度や焦点深
度を劣化させることが知られている。しかも、このよう
な現象は、マスク上のクロムや酸化クロムの被覆率に応
じて大きく異なることから、マスクにおける遮光膜の被
覆率とレジストの解像力の劣化、露光量裕度や焦点深度
の劣化の程度を正確に把握することが、安定な半導体デ
バイスを製造する上で不可欠となっている。
[0004] Such a phenomenon is called stray light, and it becomes nonnegligible noise due to the use of a resist capable of transferring a pattern even with a short wavelength of an exposure light source or a low contrast, thereby lowering the resolution of the resist or exposing an exposure tolerance. And degrade the depth of focus. In addition, since such phenomena vary greatly depending on the coverage of chromium or chromium oxide on the mask, the coverage of the light-shielding film on the mask and the resolution of the resist deteriorate, and the exposure tolerance and the depth of focus deteriorate. Accurate grasp of the degree is indispensable for manufacturing a stable semiconductor device.

【0005】[0005]

【発明が解決しようとする課題】このように従来、フォ
トマスクのパターンをレジストに転写する工程において
は、迷光の影響でレジストの解像力が低下したり、露光
量裕度や焦点深度が劣化する問題があり、このような現
象はマスク上の遮光膜の被覆率に応じて異なってくると
いう問題があった。
As described above, conventionally, in the process of transferring the pattern of the photomask to the resist, the resolution of the resist is reduced due to the influence of stray light, and the exposure latitude and the depth of focus are deteriorated. However, there is a problem that such a phenomenon differs depending on the coverage of the light shielding film on the mask.

【0006】本発明は、上記事情を考慮して成されたも
ので、その目的とするところは、迷光に起因するレジス
トの解像力の劣化、露光量裕度や焦点深度の劣化の程度
に対する依存性を正確に把握することができ、迷光の影
響が低減されたリソグラフィプロセスの実現に寄与し得
るフォトマスクの製造方法を提供することにある。
The present invention has been made in consideration of the above circumstances, and has as its object to reduce the resolving power of a resist due to stray light, and to the dependence on the degree of deterioration of exposure latitude and depth of focus. It is an object of the present invention to provide a method for manufacturing a photomask, which can accurately grasp the influence of stray light and can contribute to the realization of a lithography process in which the influence of stray light is reduced.

【0007】[0007]

【課題を解決するための手段】(構成)上記課題を解決
するために本発明は次のような構成を採用している。
(Structure) In order to solve the above problem, the present invention employs the following structure.

【0008】即ち本発明は、フォトマスクの製造方法に
おいて、テストパターンの中心座標から距離Rだけ離れ
た領域内にのみ開口があり、該開口における遮光部の被
覆率をC%(100≧C≧0)とし、被覆率C%,半径
Rの領域でのプロセス裕度を測定する工程と、測定され
たプロセス裕度から求まる、所定の露光量裕度での最大
焦点深度或いは所定の焦点深度での最大露光量裕度を、
被覆率C%と距離Rの関数にして等高線グラフとして出
力する工程と、所定の最大焦点深度A或いはある最大露
光量裕度Bが必要であると考えた場合に、これらを満足
する等高線グラフ中の任意の距離Rnと被覆率の範囲C
n%を求める工程と、パターン設計時に前記距離Rn内
の領域が被覆率Cn%を満足するように、パターンを再
配置する工程とを含むことを特徴とする。
That is, according to the present invention, in a method for manufacturing a photomask, an opening is provided only in a region separated by a distance R from the center coordinates of a test pattern, and the coverage of the light shielding portion in the opening is defined as C% (100 ≧ C ≧ 0), the process of measuring the process allowance in the area of the coverage C% and the radius R, and the maximum depth of focus at the predetermined exposure allowance or the predetermined focus depth obtained from the measured process allowance. The maximum exposure tolerance of
A step of outputting a contour graph as a function of the coverage C% and the distance R, and a contour graph satisfying these when it is considered that a predetermined maximum depth of focus A or a certain maximum exposure latitude B is required. Distance Rn and coverage C
It is characterized by including a step of obtaining n% and a step of rearranging the pattern so that a region within the distance Rn satisfies the coverage Cn% at the time of pattern design.

【0009】また本発明は、フォトマスクの製造方法に
おいて、テストパターンの中心座標から距離R以内のパ
ターン領域の外側を遮光領域とし、パターン領域におけ
る遮光部の被覆率をC%(100≧C≧0)とし、Rと
Cの値をそれぞれ変化させた測定用マスクを用い、この
測定用マスクのパターンを試料上のレジストに露光し、
且つ露光量と焦点深度を異ならせた露光条件で複数回の
露光を行う工程と、前記露光により前記試料上に形成さ
れたレジストパターンから、前記露光条件,R,Cの値
が異なる各パターンの線幅Lをそれぞれ測定する工程
と、前記測定された線幅Lに基づいて、該線幅Lにおけ
る露光量と焦点深度の依存性をマトリックス状に測定し
た値から、被覆率C%,半径Rの領域でのプロセス裕度
を測定する工程と、前記測定されたプロセス裕度から求
まる、所定の露光量裕度での最大焦点深度或いは所定の
焦点深度での最大露光量裕度を、被覆率C%と距離Rの
関数にして等高線グラフとして出力する工程と、所定の
最大焦点深度A或いは最大露光量裕度Bが必要であると
考えた場合に、これらを満足する等高線グラフ中の任意
の距離Rnと被覆率の範囲Cn%を求める工程と、フォ
トマスクのパターン設計時に前記距離Rn内の領域が被
覆率Cn%を満足するように、パターンを再配置する工
程とを含むことを特徴とする。
According to the present invention, in a method of manufacturing a photomask, the outside of the pattern area within a distance R from the center coordinate of the test pattern is defined as a light-shielding area, and the coverage of the light-shielding portion in the pattern area is C% (100 ≧ C ≧ 0), using a measurement mask in which the values of R and C were respectively changed, exposing the pattern of the measurement mask to a resist on a sample,
Performing a plurality of exposures under exposure conditions with different amounts of exposure and different depths of focus; and determining, from the resist pattern formed on the sample by the exposure, each of the patterns having different exposure conditions and different values of R and C. A step of measuring the line width L; and a step of measuring the dependency of the exposure amount and the depth of focus on the line width L in a matrix based on the measured line width L. Measuring the process allowance in the area of, and the maximum focus depth at the predetermined exposure allowance or the maximum exposure allowance at the predetermined focus depth, obtained from the measured process allowance, When a predetermined maximum depth of focus A or a maximum exposure latitude B is considered necessary, a step of outputting a contour graph as a function of C% and the distance R, and an arbitrary graph in the contour graph satisfying these requirements. Distance Rn and coverage A step of determining a range Cn%, as a region within the distance Rn when pattern design of the photomask to satisfy the coverage Cn%, characterized in that it comprises a step of rearranging the pattern.

【0010】ここで、本発明の望ましい実施態様として
は次のものが挙げられる。 (1) パターンを再配置する工程として、被覆率が不足す
る場合には距離Rn内の領域の総面積を算出した後に所
定の面積分だけダミーパターンを配置し、被覆率が過剰
な場合には所定の面積分だけパターンを削除すること。 (2) 被覆率C%,半径Rの領域でのプロセス裕度をシミ
ュレーションにより求めること。
Here, preferred embodiments of the present invention include the following. (1) In the step of rearranging the pattern, if the coverage is insufficient, the dummy pattern is arranged by a predetermined area after calculating the total area of the region within the distance Rn, and if the coverage is excessive, To delete a pattern by a predetermined area. (2) The process margin in the area of the coverage C% and the radius R is obtained by simulation.

【0011】(作用)本発明の骨子は、マスクにおける
遮光膜の被覆率とレジストの解像力の劣化、露光量裕度
や焦点深度の劣化の程度に対する依存性を正確に把握
し、LSIパターン設計時の指針とするためのテストマ
スクパターンを提案することにある。即ち本発明では、
図1に示すように、線幅130nmのポジ型レジスト断
面形状が、様々なCr被覆率のマスクを使って露光した
場合に変化することが実験的に確認されており、このよ
うなレジスト特性のCr被覆率依存性をより厳密に定量
的に測定する方法を提供する。
(Function) The gist of the present invention is to accurately grasp the dependency of the coverage of the light-shielding film on the mask and the resolution of the resist, the degree of deterioration of the exposure latitude and the depth of focus in designing the LSI pattern. It is to propose a test mask pattern to be used as a guideline. That is, in the present invention,
As shown in FIG. 1, it has been experimentally confirmed that the cross-sectional shape of a positive resist having a line width of 130 nm changes when exposed using masks having various Cr coverages. Provided is a method for more strictly quantitatively measuring Cr coverage dependency.

【0012】定量化の方法は、図2に示すように、迷光
の影響が、ある特定のパターンの座標0から距離Rnだ
け離れた領域内からだけ迷光の影響を受けるようなテス
トマスクを使って、特定のパターンからどれだけ離れて
いる場合にどれだけ迷光の影響があるかを実験的に求め
る。実際には、マスクのCr被覆率をC%(100≧C
≧0)として、Cの値を様々に変化させたときの、特定
パターンの線幅Lを測定する。この線幅Lの露光量と焦
点深度の依存性をマトリックス状に測定した値から、例
えばED−Tree解析などの方法により、ある被覆率
C%で且つある半径Rnの領域でのプロセス裕度が測定
できる。
As shown in FIG. 2, the method of quantification uses a test mask in which the influence of stray light is affected only by an area within a distance Rn from the coordinates 0 of a specific pattern. Experimentally determine how far away from a particular pattern there is the effect of stray light. Actually, the Cr coverage of the mask is set to C% (100 ≧ C
≧ 0), the line width L of the specific pattern when the value of C is variously changed is measured. From a value obtained by measuring the dependency of the exposure amount and the depth of focus of the line width L in a matrix form, a process margin in a region having a certain coverage C% and a certain radius Rn is determined by a method such as ED-Tree analysis. Can be measured.

【0013】次に、例えばこれらのプロセス裕度から求
まる、ある露光量裕度での最大焦点深度(DOF)値
を、図3に示すような被覆率C%と特定パターンからの
距離Rの関数にして等高線グラフとして出力する。この
グラフを基に設計すべきLSIパターンへの補正のため
に、距離Rnで有限の被覆率C%が得られるように、D
OF値(a〜g)における最大距離Rよりも短い距離R
nを選択する。
Next, for example, the maximum depth of focus (DOF) at a certain exposure latitude, obtained from these process latitudes, is calculated as a function of the coverage C% and the distance R from a specific pattern as shown in FIG. And output as a contour graph. For correction to an LSI pattern to be designed based on this graph, D is adjusted so that a finite coverage C% is obtained at the distance Rn.
Distance R shorter than the maximum distance R in the OF values (a to g)
Select n.

【0014】そして、設計時には特定のパターンからの
距離Rn内の領域が図中の被覆率C%を満足するよう
に、例えば被覆率が不足する場合には領域内の総面積を
算出した後に所定の面積分だけダミーパターンを配置し
たり、被覆率が過剰な場合には所定の面積分だけパター
ンを削除する。
At the time of design, the area within a distance Rn from a specific pattern satisfies the coverage C% in the figure. For example, when the coverage is insufficient, a total area in the area is calculated and then determined. In this case, the dummy pattern is arranged in an area corresponding to a predetermined area, or when the coverage is excessive, the pattern is deleted in a predetermined area.

【0015】このようにして本発明によれば、迷光に起
因するレジストの解像力の劣化、露光量裕度や焦点深度
の劣化の程度に対する依存性を正確に把握することがで
き、これにより迷光の影響が低減されたリソグラフィプ
ロセスの実現に寄与することが可能となる。
As described above, according to the present invention, it is possible to accurately grasp the dependency of the resolution of the resist, the exposure latitude, and the degree of deterioration of the depth of focus due to stray light. It is possible to contribute to the realization of a lithography process with reduced effects.

【0016】[0016]

【発明の実施の形態】以下、本発明の詳細を図示の実施
形態によって説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the illustrated embodiments.

【0017】図4は測定用マスクに形成したテストパタ
ーンを示す図、図5はテストパターンを試料上に露光す
る様子を示す図、図6は本実施形態におけるパターン補
正操作を説明するためのフローチャートである。
FIG. 4 is a view showing a test pattern formed on a measurement mask, FIG. 5 is a view showing how the test pattern is exposed on a sample, and FIG. 6 is a flow chart for explaining a pattern correction operation in this embodiment. It is.

【0018】まず、図4(a)に示すように測定用マス
クのパターンとして、ウェハ上で半径5μmの円形にな
るような領域1に、ウェハ上で130nmのL/Sとな
るようなテストパターン2を配置し、その領域1の中心
から半径Rのパターン領域3内の被覆率をC%とした複
数のパターンを用意した。具体的には、図4(b)に示
すように、領域1の中心から半径1mm,2mm,3m
m,4mm,5mmと変化させた領域3内を、それぞれ
被覆率C%が10%,20%,30%,40%,50
%,60%,70%,80%,90%,100%となる
ように、ウェハ上で250nmのL/Sパターンを領域
3内に配置して変化させる。
First, as shown in FIG. 4A, a test pattern having a L / S of 130 nm on the wafer is formed in a region 1 having a circular shape with a radius of 5 μm on the wafer. 2 were arranged, and a plurality of patterns having a coverage of C% in a pattern area 3 having a radius R from the center of the area 1 were prepared. Specifically, as shown in FIG. 4 (b), radii of 1 mm, 2 mm, 3 m
In the region 3 changed to m, 4 mm, and 5 mm, the coverage C% is 10%, 20%, 30%, 40%, and 50%, respectively.
The L / S pattern of 250 nm is arranged in the region 3 on the wafer and changed so as to be%, 60%, 70%, 80%, 90%, and 100%.

【0019】なお、半径Rの領域3の外側は遮光膜によ
り完全に覆われている。つまり、遮光膜に半径R(1,
2,3,4,5mm)の開口(パターン領域3)が複数
個設けられ、これらの開口内に上記の各被覆率でテスト
パターン2がそれぞれ形成されている。
The outside of the region 3 having the radius R is completely covered with the light shielding film. That is, the radius R (1,
A plurality of (2, 3, 4, 5 mm) openings (pattern regions 3) are provided, and a test pattern 2 is formed in each of these openings at each of the above-described coverages.

【0020】このような様々なパターンを配置した測定
用マスクを準備し、図5に示すように露光装置を用い
て、測定用マスク10のパターンを投影レンズ20によ
り試料30上に転写した。
A measurement mask having such various patterns arranged thereon was prepared, and the pattern of the measurement mask 10 was transferred onto a sample 30 by a projection lens 20 using an exposure apparatus as shown in FIG.

【0021】具体的には、Siウェハ31上に膜厚60
nmの下層反射防止膜32(AR3:シプレイ社製)を
成膜後、膜厚300nmの化学増幅型レジスト33(K
RF−M60G:JSR製)をPAB(Post Apply Bak
e)で140℃,90秒の条件で塗布する。この試料3
0に対し、NA=0.68,σ=0.75,2/3輪帯
照明条件のKrFエキシマレーザ露光装置(NSR−S
203B:ニコン社製)を用い、上記のマスクパターン
をレジスト33に転写する(S1)。
Specifically, a film thickness of 60
After forming a lower antireflection film 32 (AR3: manufactured by Shipley Co., Ltd.), a chemically amplified resist 33 (K
RF-M60G: JSR) was converted to PAB (Post Apply Bak).
In e), the coating is performed at 140 ° C. for 90 seconds. This sample 3
0, NA = 0.68, σ = 0.75, 2/3 annular illumination condition, KrF excimer laser exposure apparatus (NSR-S
203B: Nikon Corporation), and the above mask pattern is transferred to the resist 33 (S1).

【0022】この転写工程においては、後述するED−
Tree解析を行うために、露光量と焦点深度を少しず
つ変え、異なる露光条件で試料上の複数箇所に上記のマ
スクパターンの転写を行った。
In this transfer step, ED-
In order to perform Tree analysis, the mask pattern was transferred to a plurality of locations on the sample under different exposure conditions while changing the exposure amount and the depth of focus little by little.

【0023】露光後にPEB(Post Exposure Bake)を
140℃で90秒間行い、2.38%の有機アルカリ現
像液(TMAH)で90秒間現像する(S2)。このと
きの露光量は、130nmのL/Sパターンが所望寸法
通りに仕上がるように設定する。そして、得られたL/
Sパターンの寸法をそれぞれ測定する(S3)。即ち、
RとCの異なるL/Sパターンの線幅を露光条件毎に測
定する。
After exposure, PEB (Post Exposure Bake) is performed at 140 ° C. for 90 seconds, and development is performed for 90 seconds with a 2.38% organic alkali developing solution (TMAH) (S2). The exposure amount at this time is set so that the L / S pattern of 130 nm is finished to a desired size. And the obtained L /
The dimensions of the S pattern are measured (S3). That is,
The line width of the L / S pattern different from R and C is measured for each exposure condition.

【0024】次いで、L/Sパターンの線幅130nm
の露光量と焦点深度の依存性をマトリックス状に測定し
た値から、ED−Tree解析により、ある被覆率C%
でかつ、ある半径Rnの領域でのプロセス裕度を測定す
る(S4)。
Next, the line width of the L / S pattern is 130 nm.
From a value obtained by measuring the dependence of the exposure amount and the depth of focus in a matrix on the basis of ED-Tree analysis, a certain coverage C% was obtained.
Then, the process margin in a region of a certain radius Rn is measured (S4).

【0025】次いで、このプロセス裕度の測定値から、
10%露光量裕度での最大焦点深度(DOF)を、前記
図3に示すような被覆率C%と特定パターンからの距離
Rの関数にして等高線グラフとして出力する(S5)。
図中のa,b,c,d,e,f,gはa<b<c<d<
e<f<gの関係にあり、DOFが大きいほど許容され
る被覆率C%の範囲が広くなっている。ちなみに、Rn
の距離において、DOF=dでは被覆率C%は35〜6
5%となり、DOF=eでは被覆率C%は25〜75%
となっている。
Next, from the measured value of the process margin,
The maximum depth of focus (DOF) at the 10% exposure latitude is output as a contour graph as a function of the coverage C% and the distance R from the specific pattern as shown in FIG. 3 (S5).
In the figure, a, b, c, d, e, f, and g are a <b <c <d <
There is a relationship of e <f <g, and the larger the DOF, the wider the permissible coverage C% range. By the way, Rn
At a distance of DOF = d, the coverage C% is 35 to 6
5%, and when DOF = e, the coverage C% is 25 to 75%.
It has become.

【0026】設計時には特定のパターンからの距離Rn
内の領域が図中の被覆率C%を満足するように、例えば
被覆率が不足する場合には領域内の総面積を算出した後
に所定の面積分だけダミーパターンを配置したり、被覆
率が過剰な場合には所定の面積分だけパターンを削除す
る(S6)。
At the time of design, the distance Rn from a specific pattern
For example, if the coverage is insufficient, for example, if the coverage is insufficient, a total area in the area is calculated, and then a dummy pattern is arranged for a predetermined area, so that the coverage in the area satisfies the coverage C% in the figure. If it is excessive, the pattern is deleted by a predetermined area (S6).

【0027】このようにしてパターンを再配置したフォ
トマスクを用いてLSIパターンを試料上に転写したと
ころ、レジストパターンにおける断面形状は先端部が細
ったり太ったりすることはなく、全ての位置で良好なも
のとなった。つまり、迷光の影響が低減されたリソグラ
フィプロセスを実現することができ、フォトマスクのパ
ターンを試料上に精度良く転写することができた。
When the LSI pattern was transferred onto the sample using the photomask in which the pattern was rearranged in this way, the cross-sectional shape of the resist pattern was good at all positions without the tip end becoming thin or thick. It became something. That is, a lithography process in which the influence of stray light was reduced could be realized, and the pattern of the photomask could be accurately transferred onto the sample.

【0028】なお、本発明は上述した実施形態に限定さ
れるものではない。実施形態では、図3に示すようなグ
ラフを得るために実際に測定用マスクを用いてそのパタ
ーンをレジストに転写したが、必ずしもこのような実験
を行う必要はなく、これをシミュレーションによって求
めてもよい。また、マスクの材料は石英やクロムに限る
ものではなく、仕様に応じて適宜変更可能である。
The present invention is not limited to the above embodiment. In the embodiment, the pattern was actually transferred to the resist using a measurement mask in order to obtain a graph as shown in FIG. 3, but it is not always necessary to perform such an experiment. Good. Further, the material of the mask is not limited to quartz or chromium, and can be appropriately changed according to specifications.

【0029】その他、本発明の要旨を逸脱しない範囲
で、種々変形して実施することができる。
In addition, various modifications can be made without departing from the scope of the present invention.

【0030】[0030]

【発明の効果】以上詳述したように本発明によれば、フ
ォトマスクにおける遮光部の被覆率とレジストの解像力
の劣化、露光量裕度や焦点深度の劣化の程度に対する依
存性を正確に把握できる測定用マスクを用いて予め実験
を行い、ある特定の照明条件におけるマスクの被覆率の
ルールを作成し、これをLSIパターン設計時の指針と
することにより、迷光の影響が低減されたリソグラフィ
プロセスを実現することができる。
As described above in detail, according to the present invention, the dependence of the coverage of the light shielding portion on the photomask, the resolution of the resist, the degree of exposure latitude and the degree of deterioration of the depth of focus can be accurately grasped. A lithography process that reduces the effects of stray light by conducting an experiment in advance using a measurement mask that can be used and creating a rule for the mask coverage under a specific illumination condition and using this as a guideline when designing an LSI pattern Can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の原理を説明するためのもので、Cr被
覆率に対するレジストパターン断面形状の変化を示す
図。
FIG. 1 is a view for explaining the principle of the present invention, showing a change in a resist pattern cross-sectional shape with respect to a Cr coverage.

【図2】本発明の原理を説明するためのもので、テスト
パターンと半径Rの開口領域との関係を示す図。
FIG. 2 is a view for explaining the principle of the present invention and showing a relationship between a test pattern and an opening region having a radius R.

【図3】本発明の原理を説明するためのもので、ある露
光量裕度でのDOF値を被覆率C%と特定パターンから
の距離Rの関数として等高線グラフとして示す図。
FIG. 3 is a diagram for explaining the principle of the present invention and showing a DOF value at a certain exposure latitude as a contour line graph as a function of a coverage ratio C% and a distance R from a specific pattern.

【図4】本発明の一実施形態を説明するためのもので、
測定用マスクに形成したテストパターンを示す図。
FIG. 4 is for explaining one embodiment of the present invention,
The figure which shows the test pattern formed in the mask for a measurement.

【図5】本発明の一実施形態を説明するためのもので、
テストパターンを試料上に露光する様子を示す図。
FIG. 5 is for explaining one embodiment of the present invention,
The figure which shows a mode that a test pattern is exposed on a sample.

【図6】本発明の一実施形態を説明するためのもので、
パターン補正操作を説明するためのフローチャート。
FIG. 6 is for explaining one embodiment of the present invention,
9 is a flowchart for explaining a pattern correction operation.

【符号の説明】[Explanation of symbols]

1…L/Sパターン形成領域 2…L/Sパターン 3…半径Rの領域(パターン領域) 10…測定用マスク 11…石英基板 12…クロムパターン 20…投影光学系 30…試料 31…Siウェハ 32…反射防止膜 33…レジスト DESCRIPTION OF SYMBOLS 1 ... L / S pattern formation area 2 ... L / S pattern 3 ... area | region (pattern area) of radius R 10 ... Measurement mask 11 ... Quartz substrate 12 ... Chrome pattern 20 ... Projection optical system 30 ... Sample 31 ... Si wafer 32 ... Anti-reflective coating 33 ... Resist

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】テストパターンの中心座標から距離Rだけ
離れた領域内にのみ開口があり、該開口における遮光部
の被覆率をC%(100≧C≧0)とし、被覆率C%,
半径Rの領域でのプロセス裕度を測定する工程と、測定
されたプロセス裕度から求まる、所定の露光量裕度での
最大焦点深度或いは所定の焦点深度での最大露光量裕度
を、被覆率C%と距離Rの関数にして等高線グラフとし
て出力する工程と、所定の最大焦点深度A或いはある最
大露光量裕度Bが必要であると考えた場合に、これらを
満足する等高線グラフ中の任意の距離Rnと被覆率の範
囲Cn%を求める工程と、パターン設計時に前記距離R
n内の領域が被覆率Cn%を満足するように、パターン
を再配置する工程とを含むことを特徴とするフォトマス
クの製造方法。
An opening is present only in a region separated by a distance R from a center coordinate of a test pattern, and a coverage of a light shielding portion in the opening is C% (100 ≧ C ≧ 0).
Measuring the process allowance in the region of radius R, and covering the maximum depth of focus at a predetermined exposure allowance or the maximum exposure allowance at a predetermined focus depth obtained from the measured process allowance. A step of outputting a contour graph as a function of the rate C% and the distance R, and a case where it is considered that a predetermined maximum depth of focus A or a certain maximum exposure latitude B is required. A step of obtaining an arbitrary distance Rn and a coverage ratio range Cn%;
and rearranging the pattern so that the area within n satisfies the coverage Cn%.
【請求項2】テストパターンの中心座標から距離R以内
のパターン領域の外側を遮光領域とし、パターン領域に
おける遮光部の被覆率をC%(100≧C≧0)とし、
RとCの値をそれぞれ変化させた測定用マスクを用い、
この測定用マスクのパターンを試料上のレジストに露光
し、且つ露光量と焦点深度を異ならせた露光条件で複数
回の露光を行う工程と、 前記露光により前記試料上に形成されたレジストパター
ンから、前記露光条件,R,Cの値が異なる各パターン
の線幅Lをそれぞれ測定する工程と、 前記測定された線幅Lに基づいて、該線幅Lにおける露
光量と焦点深度の依存性をマトリックス状に測定した値
から、被覆率C%,半径Rの領域でのプロセス裕度を測
定する工程と、 前記測定されたプロセス裕度から求まる、所定の露光量
裕度での最大焦点深度或いは所定の焦点深度での最大露
光量裕度を、被覆率C%と距離Rの関数にして等高線グ
ラフとして出力する工程と、 所定の最大焦点深度A或いは最大露光量裕度Bが必要で
あると考えた場合に、これらを満足する等高線グラフ中
の任意の距離Rnと被覆率の範囲Cn%を求める工程
と、 フォトマスクのパターン設計時に前記距離Rn内の領域
が被覆率Cn%を満足するように、パターンを再配置す
る工程とを含むことを特徴とするフォトマスクの製造方
法。
2. A method according to claim 1, wherein an area outside the pattern area within a distance R from the center coordinates of the test pattern is a light-shielding area, and a coverage of the light-shielding portion in the pattern area is C% (100 ≧ C ≧ 0)
Using measurement masks with different values of R and C,
Exposing the pattern of this measurement mask to a resist on a sample, and performing a plurality of exposures under exposure conditions with different exposure amounts and depths of focus; and from the resist pattern formed on the sample by the exposure Measuring the line width L of each pattern having different values of the exposure condition, R, and C; and determining the dependence of the exposure amount and the depth of focus on the line width L based on the measured line width L. Measuring the process latitude in the area of the coverage C% and the radius R from the values measured in the form of a matrix; and determining the maximum depth of focus at a predetermined exposure latitude obtained from the measured process latitude. A step of outputting a maximum exposure latitude at a predetermined depth of focus as a function of the coverage C% and the distance R as a contour graph, and a predetermined maximum depth of focus A or a maximum exposure latitude B is required. If you think A step of obtaining an arbitrary distance Rn and a coverage Cn% range in a contour graph satisfying the above conditions; and forming a pattern such that an area within the distance Rn satisfies the coverage Cn% at the time of photomask pattern design. And a step of rearranging the photomask.
【請求項3】前記パターンを再配置する工程として、被
覆率が不足する場合には前記距離Rn内の領域の総面積
を算出した後に所定の面積分だけダミーパターンを配置
し、被覆率が過剰な場合には所定の面積分だけパターン
を削除することを特徴とする請求項1又は2記載のフォ
トマスクの製造方法。
3. A step of rearranging the patterns, when the coverage is insufficient, calculating a total area of the regions within the distance Rn, and then arranging a dummy pattern by a predetermined area, and the coverage is excessive. 3. The method according to claim 1, wherein the pattern is deleted by a predetermined area.
【請求項4】前記被覆率C%,半径Rの領域でのプロセ
ス裕度をシミュレーションにより求めることを特徴とす
る請求項1記載のフォトマスクの製造方法。
4. The method of manufacturing a photomask according to claim 1, wherein a process margin in the area of the coverage C% and the radius R is obtained by simulation.
JP2000087652A 2000-03-27 2000-03-27 Photomask manufacturing method Expired - Fee Related JP4068281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000087652A JP4068281B2 (en) 2000-03-27 2000-03-27 Photomask manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000087652A JP4068281B2 (en) 2000-03-27 2000-03-27 Photomask manufacturing method

Publications (2)

Publication Number Publication Date
JP2001272766A true JP2001272766A (en) 2001-10-05
JP4068281B2 JP4068281B2 (en) 2008-03-26

Family

ID=18603627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000087652A Expired - Fee Related JP4068281B2 (en) 2000-03-27 2000-03-27 Photomask manufacturing method

Country Status (1)

Country Link
JP (1) JP4068281B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1387219A2 (en) * 2002-07-31 2004-02-04 Fujitsu Limited Test photomask, flare evaluation method, and flare compensation method
WO2004013695A1 (en) * 2002-07-31 2004-02-12 Fujitsu Limited Photomask
WO2005008754A1 (en) * 2003-07-18 2005-01-27 Nikon Corporation Flare measurement method, exposure method, and flare measurement mask
JP2006523039A (en) * 2003-04-10 2006-10-05 アクセント オプティカル テクノロジーズ,インク. Determining the focus center by parameter variability analysis
JP2007010312A (en) * 2005-03-30 2007-01-18 Fujifilm Holdings Corp Focus point measurement method for projection head and exposure method
US7408631B2 (en) 2003-08-04 2008-08-05 Carl Zeiss Smt Ag Device for the range-resolved determination of scattered light, operating method, illumination mask and image-field mask
JPWO2007043535A1 (en) * 2005-10-07 2009-04-16 株式会社ニコン Optical characteristic measuring method, exposure method, device manufacturing method, inspection apparatus and measuring method
US7691542B2 (en) 2004-01-16 2010-04-06 Kabushiki Kaisha Toshiba Exposure system, test mask for flare testing, method for evaluating lithography process, method for evaluating exposure tools, method for generating corrected mask pattern, and method for manufacturing semiconductor device
US8158958B2 (en) 2009-04-08 2012-04-17 Samsung Electronics Co. Ltd. Flare evaluation methods
US8443310B2 (en) 2011-03-23 2013-05-14 Kabushiki Kaisha Toshiba Pattern correcting method, mask forming method, and method of manufacturing semiconductor device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004013695A1 (en) * 2002-07-31 2004-02-12 Fujitsu Limited Photomask
EP1387219A3 (en) * 2002-07-31 2005-05-25 Fujitsu Limited Test photomask, flare evaluation method, and flare compensation method
US6986973B2 (en) 2002-07-31 2006-01-17 Fujitsu Limited Test photomask, flare evaluation method, and flare compensation method
EP1387219A2 (en) * 2002-07-31 2004-02-04 Fujitsu Limited Test photomask, flare evaluation method, and flare compensation method
KR100870333B1 (en) * 2002-07-31 2008-11-25 후지쯔 마이크로일렉트로닉스 가부시키가이샤 Test photomask, flare evaluation method, and flare compensation method
JP2006523039A (en) * 2003-04-10 2006-10-05 アクセント オプティカル テクノロジーズ,インク. Determining the focus center by parameter variability analysis
JP4704332B2 (en) * 2003-04-10 2011-06-15 ナノメトリクス インコーポレイテッド Determining the focus center by parameter variability analysis
WO2005008754A1 (en) * 2003-07-18 2005-01-27 Nikon Corporation Flare measurement method, exposure method, and flare measurement mask
US7755748B2 (en) 2003-08-04 2010-07-13 Carl Zeiss Smt Ag Device and method for range-resolved determination of scattered light, and an illumination mask
US7408631B2 (en) 2003-08-04 2008-08-05 Carl Zeiss Smt Ag Device for the range-resolved determination of scattered light, operating method, illumination mask and image-field mask
US7691542B2 (en) 2004-01-16 2010-04-06 Kabushiki Kaisha Toshiba Exposure system, test mask for flare testing, method for evaluating lithography process, method for evaluating exposure tools, method for generating corrected mask pattern, and method for manufacturing semiconductor device
JP2007010312A (en) * 2005-03-30 2007-01-18 Fujifilm Holdings Corp Focus point measurement method for projection head and exposure method
JPWO2007043535A1 (en) * 2005-10-07 2009-04-16 株式会社ニコン Optical characteristic measuring method, exposure method, device manufacturing method, inspection apparatus and measuring method
US8158958B2 (en) 2009-04-08 2012-04-17 Samsung Electronics Co. Ltd. Flare evaluation methods
US8443310B2 (en) 2011-03-23 2013-05-14 Kabushiki Kaisha Toshiba Pattern correcting method, mask forming method, and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP4068281B2 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
KR100714480B1 (en) systems and methods for detecting focus variation in photolithograph process using test features printed from photomask test pattern images
KR100763222B1 (en) Photomask structures providing improved photolithographic process windows and methods of manufacturing the same
KR100988987B1 (en) A pair of photo masks for measuring flare, flare measuring apparatus and flare measuring method
KR100674964B1 (en) Method and systematic apparatus for correcting photomask
JPH075675A (en) Mask and preparation thereof
JP2002122977A (en) Method for producing photomask, photomask and exposure method
JP4068281B2 (en) Photomask manufacturing method
JP4329333B2 (en) Exposure mask correction method
JP3177948B2 (en) Photomask for exposure
JP2004054092A (en) Mask and its manufacturing method
JP2007165704A (en) Pattern forming method, and manufacturing method for levenson type mask
KR100575355B1 (en) Photolithographic mask
US6261725B1 (en) Phase angle modulation of PSM by chemical treatment method
JP2001296646A (en) Photomask, method for producing the same, exposure method and aligner
JP3381933B2 (en) Exposure mask
US20050130047A1 (en) Method for printability enhancement of complementary masks
KR100604041B1 (en) Method for fabricating mask
US11036129B2 (en) Photomask and method for forming the same
KR20110012798A (en) Simulation method for lithography
JPH0511433A (en) Production of photomask and photomask
JP2005086119A (en) Forming method of micropattern
US7078133B2 (en) Photolithographic mask
JP3369462B2 (en) Evaluation method of optical characteristics of exposure process
KR100567383B1 (en) Optical Proximity Correction controlling the line width of Gate Cell
KR20120007978A (en) Lithography mask and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees