JP3574729B2 - Lens aberration measurement method - Google Patents

Lens aberration measurement method Download PDF

Info

Publication number
JP3574729B2
JP3574729B2 JP20417697A JP20417697A JP3574729B2 JP 3574729 B2 JP3574729 B2 JP 3574729B2 JP 20417697 A JP20417697 A JP 20417697A JP 20417697 A JP20417697 A JP 20417697A JP 3574729 B2 JP3574729 B2 JP 3574729B2
Authority
JP
Japan
Prior art keywords
light
pattern
light intensity
resist film
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20417697A
Other languages
Japanese (ja)
Other versions
JPH10288567A (en
Inventor
勝也 早野
昇雄 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to JP20417697A priority Critical patent/JP3574729B2/en
Publication of JPH10288567A publication Critical patent/JPH10288567A/en
Application granted granted Critical
Publication of JP3574729B2 publication Critical patent/JP3574729B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は半導体装置などの製造に用いる投影露光装置のレンズ収差測定方法に関する。
【0002】
【従来の技術】
半導体装置などの製造におけるリソグラフィ工程では縮小投影露光装置が主に用いられている、半導体装置の微細化は縮小投影露光装置の高性能化に依って達成されてきた。しかし、さらにパタンの微細化を進めるには縮小投影レンズの収差を低減することが必要である。従来、縮小投影露光装置に搭載されたレンズの収差の評価は形成したレジストパタンの形状から得られる情報を用い行っていた。図9にレンズのコマ収差の有無でのレジスト断面形状の変化の例をしめす。収差がない場合は、図9(a)に示すように、レジストパタン91の両側の側面の傾斜角はほぼ等しいのに対して、収差がある場合は、図9(b)に示すように、レジストパタン92の両側の側面の傾斜角は異なり、この場合は、右側の側面の傾斜角がなだらかになっている。通常は、この、両側の傾斜角の差、あるいは、傾斜幅93,94の差等を用いて、経験的に評価を行っていた。しかし、この評価法では基板の反射率、レジスト膜厚、レジストの特性によって、得られる値が異なり、正確に収差量を測定することができなかった。
【0003】
【発明が解決しようとする課題】
レンズの収差を低減するには、レンズの種々の収差を高精度に測定し、修正、選定する必要がある。本発明は、上記問題を解決し、縮小投影露光装置に搭載されたレンズの収差量を正確に測定する手段を提供することにある。
【0004】
【課題を解決するための手段】
上記目的を達成するために、本発明では、半透明位相シフトマスクを用いてパタンを形成する際に発生する第2の光強度ピークいわゆるサブピークの光強度がレンズの収差量によって主パタンを中心として対向する領域で異なる事を利用して、レンズ収差を定量的に求める。
【0005】
また、マスク全面に測定パタンを配置することにより、1ショットの露光によって露光領域のレンズ収差を評価できる。
【0006】
さらに、遮光パタンを配置することにより、微小ピッチで露光することができ、ウエハ内のレジスト塗布バラツキや基板等の影響を小さくして評価する事ができる。
【0007】
【発明の実施の形態】
本発明の原理を図1で説明する。図1(a)は半透明位相シフトマスクの平面図であり、図1(b)は半透明位相シフトマスクの断面図である。1はガラス基板、2は半透明位相シフト膜、3は透明領域で形成される主パタンである。半透明位相シフト膜2は、CrON膜を用いた。また、半透明位相シフト膜2の露光光に対する透過率は6%とした。なおここでは半透明膜にCrON膜使用したがこれに限らない。CrO,CrN,MoSiO,MoSiONなど、あるいは、SiO2等の透明膜との多層膜など、半透明部と透明部と通過する光の位相がほぼ反転していればよく、通常の半透明位相シフトマスク構造で良い。図1(c)に示すように、このマスクを通過した光の振幅分布は、光透過部である主パタン3を通過した光が正の符号であるのに対し、半透明位相シフト膜2を通過した光の位相は反転し、負の符号となる。この光をレンズを通しウエハ上に投影すると、図1(d)に示すように光透過部である主パタン3と半透明位相シフト膜2の境界で位相が反転しているため、その直下で光強度はほぼ0となる。そのため光強度の広がりが抑えられ、コントラストの高い微細なパタンが形成できる。しかし、主パタン3を通過した光強度4の他に、第2の光強度ピーク5いわゆるサブピークが発生する。通常このマスクを用いる場合、この第2の光強度ピークが転写しないようにレジストの露光量を設定する。本発明では、前記通常はウエハに転写させないサブピークをウエハ上のレジストに転写させ、レンズの収差を評価する。
【0008】
パタンをレジスト上に投影する縮小投影露光装置の主要構成例を図10に示す。光源101から発する光はフライアイレンズ102,コンデンサレンズ103,105及びミラー104を介してマスク106を照射する。マスク106には場合によっては異物付着によるパタン転写不良を防止するためのペリクル107が設けられている。マスク106上に描かれたマスクパタンは,投影レンズ108を介して試料基板であるウエハ109上に投影される。なお,マスク106はマスク位置制御手段117で制御されたマスクステージ118上に載置され,その中心と投影レンズ108の光軸とは正確に位置合わせがなされている。ウエハ109は,試料台110上に真空吸着されている。試料台110は,投影レンズ108の光軸方向すなわちZ方向に移動可能なZステージ111上に載置され,さらにXYステージ112上に搭載されている。Zステージ111及びXYステージ112は,主制御系119からの制御命令に応じてそれぞれの駆動手段113,114によって駆動されるので,所望の露光位置に移動可能である。その位置はZステージ111に固定されたミラー116の位置として,レーザ測長機115で正確にモニタされている。投影レンズ108には、種々の収差が存在する。しかし現在、この縮小投影露光装置に搭載された投影レンズの収差を精度良く測定する方法が無く問題である。マスク106として半透明位相シフトマスクを用い、ウエハ109上のレジストにパタンを転写すると、このレンズ108の収差によって、前述した第2の光強度ピーク5が変化する。図1(d)及び(e)はその一例である。図1(d)はレンズの収差がない場合の光強度分布である。第2の光強度ピーク5は、主パタン周辺に同じ光強度で発生している。図1(e)はレンズにコマ収差がある場合の光強度分布である。主パタンを中心として対向するサブピーク7と8の光強度に差が生じている。本発明では、この現象を利用して、レンズ収差の定量化を行ない、高精度な収差の評価を行なう。
【0009】
本発明の第1の実施例を図2〜図5及び図11〜図12で説明する。図2はレンズ収差の1つであるコマ収差と図1(e)に示す光強度分布の第2の光強度ピーク7及び8の光強度の関係を示している。ここでパタン転写には、露光波長λ=0.248μm、レンズの開口数NA=0.55のステッパを用いた。また半透明膜の透過率は透明部の透過率を100%とした時6%,透明部と半透明部の位相差が180°、転写する主パタン3に該る光透過部の設計寸法Wを0.40μm角(投影露光光学系の倍率が1/5なので、マスク上では2μm角)のマスクを用いた。第2の光強度ピーク7の光強度は、コマ収差量の増加にほぼ比例して大きくなる。これに対し、主パタンを中心として対向の位置に有る第2の光強度ピーク8の光強度は、コマ収差量の増加にしたがって小さくなる。
【0010】
この第2の光強度ピーク8と第2の光強度ピーク7の光強度の比を、図3に示す。コマ収差に比例して光強度比が大きくなっていることが判る。従って、第2の光強度ピーク7及び8がそれぞれ転写される露光量比を求めることにより、図3を用いてコマ収差を求めることができる。
【0011】
実際に実験したレジストパタンの断面形状及び平面形状を図4及び図12に示す。図4(a)に示すような基板9の上にレジスト10を塗布し、通常の工程で露光現像して、マスクのパタンをレジストに形成する。ここで従来と異なることは、パタンを形成する際に第2の光強度ピーク7及び8がレジストに転写するように露光量を調整することである。図4(b)に示すように、主パタンを通過した光によって形成したパタン11の他に、第2の光強度ピーク7によってレジストが膜減りをはじめる露光量E1を求める。この条件では、パタン11を中心として対向した位置である12には第2の光強度ピーク8は転写していない。次に図4(c)に示すように、レジスト膜減り部14とパタン11を中心として対向する位置12に第2の光強度ピーク8によってレジストが膜減りをはじめる露光量E2を求める。この露光量E2と露光量E1の露光量比を、サブピークの光強度比に換算し、図3に当てはめることによりコマ収差量を求めることができる。実際の測定結果は、E1=76.8mJ/平方cmであり、E2=48.0mJ/平方cmであった。この場合の光強度比は、E2/E1=76.8/48.0=1.6となり、コマ収差量は約0.11×λであった。この他に、第2の光強度ピーク7および8を同時にレジストに転写し、各々のレジスト膜の減少量を、レジストの感度特性曲線を用い光強度に換算する方法を用いても良い。
【0012】
なお、主パタンは四角形に限らず、六角形や八角形など多角形でも良い。多角形パタンを用いることにより、コマ収差量と同時にコマ収差の向きを測定することができる。図11は八角形のパタンを用いた場合のマスクの平面図であり、122は半透明位相シフト領域、123は透明領域で形成される主パタンを示している。ここで主パタン123の一辺の設計寸法Wは特に制限は無いが、W=a・λ/NA(ただし、投影露光光学系の開口数をNA、露光波長をλ、a≧0.4)の条件にすることが望ましい。ここでパタン転写には、露光波長λ=0.248μm、レンズの開口数NA=0.55のステッパを用いた。また半透明膜の透過率は透明部の透過率を100%とした時6%,透明部と半透明部の位相差が180°、転写する主パタン123に該る光透過部の一辺設計寸法Wを0.50μm(投影露光光学系の倍率が1/5なので、マスク上では2.5μm角)のマスクを用いた。実際に実験したレジストパタンの平面形状を図12に示す。図に示すように通常の工程で露光現像し、マスクのパタンをレジストに形成する。ここで従来と異なることは、パタンを形成する際に第2の光強度ピークがレジストに転写するように露光量を調整することである。図12(a)に示すように、主パタンを通過した光によって形成したパタン131の他に、第2の光強度ピークによってレジストが膜減りをはじめる露光量E1を求める。この条件では、パタン131を中心として対向した位置である132には第2の光強度ピークは転写していない。次に図12(b)に示すように、パタン131を中心としてレジスト膜減り部134と対向する位置132に第2の光強度ピークによってレジストが膜減りをはじめる露光量E2を求める。この露光量E2と露光量E1の露光量比を、サブピークの光強度比に換算し、計算値と比較することによりコマ収差量を求めることができる。実際の測定結果は、E1=76.8mJ/平方cmであり、E2=48.0mJ/平方cmであった。この場合の光強度比は、E2/E1=76.8/48.0=1.6となり、コマ収差量は約0.11×λであった。また、正八角形としたことによりコマ収差の向きを精度良く判別することができた。
【0013】
コマ収差は、縮小投影露光装置の1ショットの面内で分布している。したがって、ショット内の全面を一度に計測できることが望ましい。図5は、レンズのコマ収差量を測定するためにマスクの有効露光領域に測定用パタンを配置したものである。図5(a)はマスクの平面図であり、図5(b)は評価用パタンの1つを拡大したものである。52は半透明位相シフト領域であり、マスクの有効露光領域に配置してある。53は透明領域で形成される主パタン、56はマスクの有効露光領域外を示している。ここで主パタン3の設計寸法Wは特に制限は無いが、W=a・λ/NA(ただし、投影露光光学系の開口数をNA、露光波長をλ、a≧0.4)の条件にすることが望ましい。ここでは0.40μm角のパタンとした。また露光波長λ=0.248μm、レンズの開口数NA=0.55のステッパを用いた。マスクの半透明部の透過率は6%,透明部と半透明部の位相差が180°のホトマスクを用いた。主パタンの配置ピッチPが0.78μm未満では、隣のパタンの影響を受けて測定精度が低下してしまうため、主パタンの配置ピッチは0.78μm以上とした。主パタンの配置ピッチPはP=b・λ/NAで表わされる。ただし、投影露光光学系の開口数をNA、露光波長をλ、b≧1.72である。このマスクを用い、レンズ全面のコマ収差量を測定することができた。また、ウエハ内に、露光時間を変えてステップアンドリピートでパタンを転写し、サブピークパタンの転写の有無を通常のパタン欠陥検査装置を用いパタンの欠陥と認識させることにより、サブピーク転写の露光量を求めた結果、効率良くサブピーク光強度比を求めることができた。なお、上記パタン欠陥検査装置は、基準パタンと検査パタンの転写形状を比較し、基準パタンと異なる部分を欠陥と認識するもので有る。
【0014】
第2の実施例を図6を用い説明する。第1の実施例では1ショットの露光領域とほぼ同じステップで基板を移動し、露光量を変化させながら露光を繰り返し、第2の光強度の対称性を評価した。この場合、被加工材料である基板やレジストの膜厚誤差、装置起因の焦点位置誤差などが測定精度の低下の原因となる。しかし、基板移動ステップを露光ショットサイズより小さくした場合、半透明部が2重に露光される為、正確に光強度ピークの強度比を求めることができない。
【0015】
第2の実施例は2重露光を回避するマスク構造および露光方法に関する。マスクのパタン配置を図6に示す。露光ショットサイズより究めて小さいピッチで基板を移動し、露光できるように、遮光膜ここではCr膜を配置した。図6(a)はパタンの平面図であり、図6(b)はパタンの拡大図である。62は半透明位相シフト部、63は透明部、64は遮光部である。露光条件、半透明部の透過率、位相差等は第1の実施例と同じである。このマスク構造は半透明部の周りを遮光部にしたことであり、究めて小さいステップでステップアンドリピートでパタンを転写しても、2重露光にならない構造である。但し、望ましくは透明部63と遮光部64の間の半透明部の幅は≧0.4μm必要である。半透明部の幅が<0.4μmの場合、遮光パタンの影響を受けてサブピークが転写されなくなる場合が発生し、測定の精度が低下する。転写光学系が異なる場合は、遮光パタンの配置位置W1はW1=c・λ/NAで表わされる。ただし、投影露光光学系の開口数をNA、露光波長をλ、c≧0.89である。また、ステップアンドリピートのピッチは半透明部が多重露光されないように、半透明部の大きさよりも大きいステップにする必要がある。また、マスクパタン配置は図6以外の配置でも多重露光を防止できる構造であれば、適用可能で有る。たとえば、図7に示すように、ステップアンドリピート方向に遮光部を配置する構造にしても良い。72は半透明位相シフト部、73は透明部、74は遮光部である。半透明部の幅W1を0.4μm以上にすることにより、遮光部74の影響を受けることなく第2の光強度ピーク値が得られ、本発明の適用が可能である。半透明部の幅W1はW1=c・λ/NAで表わされる。ただし、投影露光光学系の開口数をNA、露光波長をλ、c≧0.89である。また遮光パタン74は、少なくとも露光するステップの方向と主パタン73を中心として対向する位置に配置する。遮光パタン74の一辺の寸法W2はステップアンドリピートの回数やピッチに合わせて設定する必要がある。遮光パタン74の一辺の寸法W2はW2=d・λ/NAで表わされる。ただし、投影露光光学系の開口数をNA、露光波長をλ、d≧2.66である。
【0016】
このマスクを用い投影レンズの収差測定を行なった。露光ステップは半透明部が2回重ならないように決定した。レジスト上に形成したパタンの断面図及び平面図を図8に示す。ここで85は基板、86はレジスト、81、82、83、84は透明パタン3が転写したパタンであり、81、82、83、84は第2の光強度7によってレジストが膜減りをする部分、81、82、83、84は第2の光強度8によってレジストが膜減りをする部分を示している。露光は露光ステップ1、2、3、4の順で露光量を増加させながらステップ露光を行なった。露光ステップ2で主パタン82の左にサブピーク82が転写され始め、露光ステップ4で主パタン84の右に84にサブピークが転写された。露光ステップ2と露光量ステップ4の露光量は、実際に実験を行なった結果、露光ステップ2の露光量E1=48.0mJ/平方cmであり、露光量ステップ4の露光量E2=76.8mJ/平方cmであった。したがって光強度比は、E1/E2=76.8/48.0=1.6となる。図3を用いてこの値からコマ収差量を求めると、コマ収差量は約0.11×λであることが簡単に判る。また、露光ステップが遮光パタンを配置することによって小さくなっていることにより、レジスト膜厚バラツキや基板影響等が小さくなることから、精度良く定量的なコマ収差が評価できた。また、主パタンを多角形及び円形に変更した場合にも、第1の実施例同様の効果が得られた。
【0017】
なお、主パタンや遮光パタンの寸法及び係数を上記のように限定したが、主パタン及び遮光パタンの大きさや形状は半透明領域の透過率によって最適値は異なる。例えば透過率が変わることによって、半透明領域を通過する光強度が変化する。例えば透過率を4%に変更する場合、半透明領域を通過する光強度は小さくなる。これによって、主パタン寸法及び遮光パタン配置位置等変更するが、各々最適化すればほぼ問題なくレンズ収差測定ができる。したがって、半透明領域の透過率及び主パタンに合わせて遮光パタン位置等の最適化が必要である。主パタン及び遮光パタンの形状は長方形及びホールパタンに限らない。線パタン、十字形状パタン、六角形、八角形などの多角形パタン、円形パタン等サブピークが主パタンの周辺に発生する場合は適用可能で有る。但し、本実施例に示したホールパタンが、レンズの収差の方向によらず評価でき、実用的である。また半透明領域の透過率も本実施例に限らず、透過率に適した係数を使用する事によって適用できる。遮光領域は遮光膜を配置したが、これに限らない。ウエハ上で光強度が0になるように、解像限界以下の透明パタンを所定のピッチで配置する方法など手段は選ばない。但し、マスクの作成が簡便である事から、本実施例に示す様に遮光膜を配置する事が実用的である。また、マスクの構造及び材料は本実施例で用いた材料に限らない。すなわち、本発明では使用するマスクの構造が透明領域と半透明領域と遮光領域を含み、かつ透明領域と半透明領域を通過する光の位相差が180°であって、投影する主パタンの周辺に第2の光強度が転写するようパタンが配置されていれば目的を達成できる。また、本測定法を用いて縮小投影露光装置のレンズ選別及び修正を行なった所、レンズの個体差を従来の1/2に小さくすることができた。さらに本測定法を用いてレンズ選別を行なった縮小投影露光装置を用いて超LSIのパタン形成を行なった結果、レンズのコマ収差によるパタンの位置ずれを従来の1/3に低減でき、その結果より高密度なパタンの配置が実現できた。また、超LSI製品の不良率を2/3に低減が実現できた。
【0018】
【発明の効果】
本発明の適用により、縮小投影露光装置に搭載されたレンズの種々の収差を高精度に測定できる。これによりレンズの修正、選定が可能であり、レンズの個体差を従来より小さくすることができる。特にレンズのコマ収差によるパタンの位置ずれを従来よりも低減でき、その結果、より高密度なパタンの配置が実現でき、超LSIの製造を光リソグラフィを用いて実現する事が可能となる。また、超LSI製品の不良率の低減が可能となり、工業上有利である。
【図面の簡単な説明】
【図1】本発明の原理の説明図。
【図2】本発明の原理の説明図。
【図3】本発明の原理の説明図。
【図4】本発明の主たる実施例の説明図。
【図5】本発明の主たる実施例の平面図。
【図6】本発明の第2の実施例の平面図。
【図7】本発明の第2の実施例の説明図。
【図8】本発明の第2の実施例の説明図。
【図9】従来技術の説明図。
【図10】本発明の原理の説明図。
【図11】本発明の主たる実施例の説明図。
【図12】本発明の主たる実施例の説明図。
【符号の説明】
1…ガラス基板、2,52,62,72,122…半透明位相シフト膜、3,53,63,73,123…透明主パタン、4…透明主パタンの光強度ピーク、5…透明主パタンのサブピーク、6…レンズのコマ収差がある場合の透明主パタンの光強度ピーク、7…レンズのコマ収差がある場合の第1のサブピーク、8…レンズのコマ収差がある場合の第2のサブピーク、9,85,90…基板、10,86,13……レジスト、11,81,82,83,84,131…透明主パタンの転写したパタン、12,81,82,83,84,132…第2の光強度ピーク所謂サブピーク8によるレジスト膜減り部、14,81,82,83,84,134…第2の光強度ピーク所謂サブピーク7によるレジスト膜減り部、56,76…有効露光領域外、64,74…遮光パタン、106…マスク、108…投影レンズ、109…ウエハ。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring a lens aberration of a projection exposure apparatus used for manufacturing a semiconductor device or the like.
[0002]
[Prior art]
In a lithography process for manufacturing a semiconductor device or the like, a reduction projection exposure apparatus is mainly used. Miniaturization of a semiconductor device has been achieved by improving the performance of the reduction projection exposure apparatus. However, in order to further reduce the size of the pattern, it is necessary to reduce the aberration of the reduction projection lens. Conventionally, the aberration of a lens mounted on a reduction projection exposure apparatus has been evaluated using information obtained from the shape of a formed resist pattern. FIG. 9 shows an example of a change in resist cross-sectional shape depending on the presence or absence of coma of the lens. When there is no aberration, as shown in FIG. 9A, the inclination angles of the side surfaces on both sides of the resist pattern 91 are substantially equal, while when there is aberration, as shown in FIG. The inclination angles of the side surfaces on both sides of the resist pattern 92 are different, and in this case, the inclination angles of the right side surfaces are gentle. Normally, the difference between the inclination angles on both sides or the difference between the inclination widths 93 and 94 is used for empirical evaluation. However, in this evaluation method, the obtained value differs depending on the reflectance of the substrate, the resist film thickness, and the characteristics of the resist, and the amount of aberration cannot be measured accurately.
[0003]
[Problems to be solved by the invention]
To reduce lens aberrations, it is necessary to measure, correct, and select various aberrations of the lens with high accuracy. An object of the present invention is to solve the above problems and to provide a means for accurately measuring the amount of aberration of a lens mounted on a reduction projection exposure apparatus.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, according to the present invention, the light intensity of a second light intensity peak, that is, a so-called sub-peak, which is generated when a pattern is formed by using a translucent phase shift mask, is centered on the main pattern by the amount of aberration of the lens. The lens aberration is quantitatively determined by utilizing the difference between the opposing regions.
[0005]
Further, by arranging the measurement pattern over the entire surface of the mask, the lens aberration in the exposure area can be evaluated by one-shot exposure.
[0006]
Further, by arranging the light-shielding pattern, it is possible to perform exposure at a fine pitch, and it is possible to reduce the influence of the resist coating variation in the wafer, the influence of the substrate, and the like, and to perform evaluation.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The principle of the present invention will be described with reference to FIG. FIG. 1A is a plan view of a translucent phase shift mask, and FIG. 1B is a cross-sectional view of the translucent phase shift mask. 1 is a glass substrate, 2 is a translucent phase shift film, and 3 is a main pattern formed in a transparent region. As the translucent phase shift film 2, a CrON film was used. The transmissivity of the translucent phase shift film 2 for exposure light was 6%. Here, a CrON film is used as the translucent film, but the present invention is not limited to this. An ordinary translucent phase shift mask may be used as long as the phase of light passing through the translucent portion and the transparent portion is substantially inverted, such as a multilayer film of a transparent film such as CrO, CrN, MoSiO, MoSiON, or SiO2. Structure is good. As shown in FIG. 1 (c), the amplitude distribution of the light passing through the mask is such that the light passing through the main pattern 3, which is a light transmitting portion, has a positive sign, while the light transmitted through the translucent phase shift film 2 has a positive sign. The phase of the transmitted light is inverted and has a negative sign. When this light is projected on the wafer through a lens, the phase is inverted at the boundary between the main pattern 3 which is a light transmitting portion and the translucent phase shift film 2 as shown in FIG. The light intensity becomes almost zero. Therefore, the spread of light intensity is suppressed, and a fine pattern with high contrast can be formed. However, in addition to the light intensity 4 passing through the main pattern 3, a second light intensity peak 5 or a so-called sub-peak occurs. Normally, when this mask is used, the exposure amount of the resist is set so that the second light intensity peak is not transferred. In the present invention, the subpeak which is not normally transferred to the wafer is transferred to the resist on the wafer, and the aberration of the lens is evaluated.
[0008]
FIG. 10 shows a main configuration example of a reduction projection exposure apparatus that projects a pattern on a resist. Light emitted from a light source 101 irradiates a mask 106 via a fly-eye lens 102, condenser lenses 103 and 105, and a mirror 104. In some cases, the mask 106 is provided with a pellicle 107 for preventing pattern transfer failure due to foreign matter adhesion. The mask pattern drawn on the mask 106 is projected via a projection lens 108 onto a wafer 109 as a sample substrate. The mask 106 is placed on a mask stage 118 controlled by the mask position control means 117, and the center of the mask 106 and the optical axis of the projection lens 108 are accurately aligned. The wafer 109 is vacuum-adsorbed on the sample stage 110. The sample stage 110 is mounted on a Z stage 111 movable in the optical axis direction of the projection lens 108, that is, in the Z direction, and further mounted on an XY stage 112. The Z stage 111 and the XY stage 112 are driven by the respective driving units 113 and 114 in accordance with control commands from the main control system 119, and can be moved to desired exposure positions. The position is accurately monitored by the laser length measuring device 115 as the position of the mirror 116 fixed to the Z stage 111. The projection lens 108 has various aberrations. However, at present, there is no method for accurately measuring the aberration of the projection lens mounted on the reduction projection exposure apparatus, which is a problem. When a translucent phase shift mask is used as the mask 106 and a pattern is transferred to a resist on the wafer 109, the aberration of the lens 108 changes the second light intensity peak 5 described above. FIGS. 1D and 1E are examples. FIG. 1D shows the light intensity distribution when there is no aberration of the lens. The second light intensity peak 5 occurs at the same light intensity around the main pattern. FIG. 1E shows a light intensity distribution when the lens has a coma aberration. There is a difference between the light intensities of the sub-peaks 7 and 8 facing each other with the main pattern as the center. In the present invention, using this phenomenon, the lens aberration is quantified, and the aberration is evaluated with high accuracy.
[0009]
A first embodiment of the present invention will be described with reference to FIGS. 2 to 5 and FIGS. FIG. 2 shows the relationship between the coma aberration, one of the lens aberrations, and the light intensity of the second light intensity peaks 7 and 8 of the light intensity distribution shown in FIG. Here, a stepper having an exposure wavelength λ = 0.248 μm and a numerical aperture NA = 0.55 of the lens was used for pattern transfer. The transmittance of the translucent film is 6% when the transmittance of the transparent portion is 100%, the phase difference between the transparent portion and the translucent portion is 180 °, the design dimension W of the light transmitting portion corresponding to the main pattern 3 to be transferred. Using a mask of 0.40 μm square (2 μm square on the mask because the magnification of the projection exposure optical system is 1 /). The light intensity at the second light intensity peak 7 increases substantially in proportion to the increase in the amount of coma. On the other hand, the light intensity of the second light intensity peak 8 located at a position facing the center of the main pattern decreases as the coma aberration amount increases.
[0010]
FIG. 3 shows the ratio of the light intensity between the second light intensity peak 8 and the second light intensity peak 7. It can be seen that the light intensity ratio increases in proportion to the coma. Therefore, by obtaining the exposure ratio at which the second light intensity peaks 7 and 8 are respectively transferred, the coma aberration can be obtained using FIG.
[0011]
FIGS. 4 and 12 show a cross-sectional shape and a planar shape of the resist pattern actually tested. A resist 10 is applied on a substrate 9 as shown in FIG. 4A and exposed and developed in a usual process to form a mask pattern on the resist. Here, the difference from the related art is that the amount of exposure is adjusted so that the second light intensity peaks 7 and 8 are transferred to the resist when a pattern is formed. As shown in FIG. 4B, in addition to the pattern 11 formed by the light that has passed through the main pattern, the second light intensity peak 7 is used to determine an exposure amount E1 at which the resist starts to decrease in film thickness. Under this condition, the second light intensity peak 8 is not transferred to the position 12 opposite to the pattern 11 as the center. Next, as shown in FIG. 4C, an exposure amount E2 at which the resist starts to be reduced in film thickness is determined by the second light intensity peak 8 at a position 12 opposed to the resist film reduced portion 14 with the pattern 11 as a center. The coma aberration amount can be obtained by converting the exposure amount ratio between the exposure amount E2 and the exposure amount E1 into the light intensity ratio of the sub-peak and applying the result to FIG. Actual measurement results were E1 = 76.8 mJ / square cm and E2 = 48.0 mJ / square cm. The light intensity ratio in this case was E2 / E1 = 76.8 / 48.0 = 1.6, and the coma aberration amount was about 0.11 × λ. Alternatively, a method may be used in which the second light intensity peaks 7 and 8 are simultaneously transferred to the resist, and the reduced amount of each resist film is converted into light intensity using a sensitivity characteristic curve of the resist.
[0012]
The main pattern is not limited to a square, but may be a polygon such as a hexagon or an octagon. By using a polygon pattern, the direction of coma aberration can be measured simultaneously with the amount of coma aberration. FIG. 11 is a plan view of a mask when an octagonal pattern is used. Reference numeral 122 denotes a translucent phase shift region, and reference numeral 123 denotes a main pattern formed by a transparent region. Here, the design dimension W of one side of the main pattern 123 is not particularly limited, but W = a · λ / NA (where the numerical aperture of the projection exposure optical system is NA, the exposure wavelength is λ, and a ≧ 0.4). It is desirable to set conditions. Here, a stepper having an exposure wavelength λ = 0.248 μm and a numerical aperture NA = 0.55 of the lens was used for pattern transfer. The transmissivity of the translucent film is 6% when the transmissivity of the transparent portion is 100%, the phase difference between the transparent portion and the translucent portion is 180 °, one side design dimension of the light transmissive portion corresponding to the main pattern 123 to be transferred. A mask having a W of 0.50 μm (2.5 μm square on the mask because the magnification of the projection exposure optical system is 5) was used. FIG. 12 shows the plan shape of the resist pattern actually tested. As shown in the figure, exposure and development are performed in a normal process to form a mask pattern on a resist. What is different from the related art is that the amount of exposure is adjusted so that the second light intensity peak is transferred to the resist when a pattern is formed. As shown in FIG. 12A, in addition to the pattern 131 formed by the light that has passed through the main pattern, an exposure amount E1 at which the resist starts to be reduced in thickness by the second light intensity peak is obtained. Under this condition, the second light intensity peak is not transferred to 132, which is a position facing the pattern 131 as a center. Next, as shown in FIG. 12B, an exposure amount E2 at which the resist starts to be thinned by the second light intensity peak at a position 132 facing the resist thinned portion 134 around the pattern 131 is obtained. The coma aberration amount can be obtained by converting the exposure amount ratio between the exposure amount E2 and the exposure amount E1 into the light intensity ratio of the sub-peak and comparing the calculated value with the calculated value. Actual measurement results were E1 = 76.8 mJ / square cm and E2 = 48.0 mJ / square cm. The light intensity ratio in this case was E2 / E1 = 76.8 / 48.0 = 1.6, and the coma aberration amount was about 0.11 × λ. In addition, the regular octagon made it possible to determine the direction of coma aberration with high accuracy.
[0013]
Coma is distributed in the plane of one shot of the reduction projection exposure apparatus. Therefore, it is desirable that the entire surface within a shot can be measured at once. FIG. 5 shows a measurement pattern arranged in an effective exposure area of a mask for measuring the amount of coma of a lens. FIG. 5A is a plan view of the mask, and FIG. 5B is an enlarged view of one of the evaluation patterns. Reference numeral 52 denotes a translucent phase shift area, which is arranged in an effective exposure area of the mask. Reference numeral 53 denotes a main pattern formed of a transparent area, and reference numeral 56 denotes an area outside the effective exposure area of the mask. Here, the design dimension W of the main pattern 3 is not particularly limited, but under the condition of W = a · λ / NA (where the numerical aperture of the projection exposure optical system is NA, the exposure wavelength is λ, and a ≧ 0.4). It is desirable to do. Here, the pattern is 0.40 μm square. A stepper having an exposure wavelength λ = 0.248 μm and a numerical aperture NA of the lens = 0.55 was used. A photomask was used in which the transmittance of the translucent portion of the mask was 6% and the phase difference between the transparent portion and the translucent portion was 180 °. If the arrangement pitch P of the main pattern is less than 0.78 μm, the accuracy of measurement is reduced due to the influence of an adjacent pattern, so the arrangement pitch of the main pattern is set to 0.78 μm or more. The arrangement pitch P of the main pattern is represented by P = b · λ / NA. Here, the numerical aperture of the projection exposure optical system is NA, the exposure wavelength is λ, and b ≧ 1.72. Using this mask, the amount of coma aberration on the entire surface of the lens could be measured. Also, by changing the exposure time in the wafer and transferring the pattern in a step-and-repeat manner, the presence or absence of sub-peak pattern transfer is recognized as a pattern defect using a normal pattern defect inspection device, so that the exposure amount of sub-peak transfer can be reduced. As a result, the sub-peak light intensity ratio could be efficiently obtained. The pattern defect inspection apparatus compares a reference pattern with a transfer pattern of an inspection pattern and recognizes a portion different from the reference pattern as a defect.
[0014]
A second embodiment will be described with reference to FIG. In the first embodiment, the substrate was moved in substantially the same step as the exposure region of one shot, and the exposure was repeated while changing the exposure amount, and the symmetry of the second light intensity was evaluated. In this case, an error in the film thickness of the substrate or the resist as the material to be processed, an error in the focal position caused by the apparatus, and the like cause a decrease in measurement accuracy. However, when the substrate moving step is smaller than the exposure shot size, the translucent portion is double-exposed, so that the intensity ratio of the light intensity peak cannot be obtained accurately.
[0015]
The second embodiment relates to a mask structure and an exposure method for avoiding double exposure. FIG. 6 shows the pattern arrangement of the mask. A light-shielding film, here a Cr film, was arranged so that the substrate could be moved at a pitch that was ultimately smaller than the exposure shot size and exposed. FIG. 6A is a plan view of the pattern, and FIG. 6B is an enlarged view of the pattern. 62 is a translucent phase shift section, 63 is a transparent section, and 64 is a light shielding section. Exposure conditions, transmittance of the translucent portion, phase difference, and the like are the same as in the first embodiment. In this mask structure, a light-shielding portion is provided around the translucent portion. Even if the pattern is transferred in a very small step and step and repeat, double exposure does not occur. However, desirably, the width of the translucent portion between the transparent portion 63 and the light shielding portion 64 needs to be ≧ 0.4 μm. If the width of the translucent portion is <0.4 μm, the sub-peak may not be transferred due to the effect of the light-shielding pattern, and the measurement accuracy is reduced. When the transfer optical systems are different, the arrangement position W1 of the light-shielding pattern is represented by W1 = c · λ / NA. Here, the numerical aperture of the projection exposure optical system is NA, the exposure wavelength is λ, and c ≧ 0.89. Further, the pitch of the step and repeat needs to be a step larger than the size of the translucent portion so that the translucent portion is not subjected to multiple exposure. The mask pattern arrangement can be applied to any arrangement other than that shown in FIG. 6 as long as it can prevent multiple exposure. For example, as shown in FIG. 7, a structure in which the light shielding portion is arranged in the step and repeat direction may be adopted. 72 is a translucent phase shift section, 73 is a transparent section, and 74 is a light shielding section. By setting the width W1 of the translucent portion to 0.4 μm or more, the second light intensity peak value can be obtained without being affected by the light shielding portion 74, and the present invention can be applied. The width W1 of the translucent portion is represented by W1 = c · λ / NA. Here, the numerical aperture of the projection exposure optical system is NA, the exposure wavelength is λ, and c ≧ 0.89. The light-shielding pattern 74 is disposed at a position facing at least the direction of the exposure step with the main pattern 73 as a center. The dimension W2 of one side of the light shielding pattern 74 needs to be set according to the number of steps and repeats and the pitch. The dimension W2 of one side of the light-shielding pattern 74 is represented by W2 = d · λ / NA. However, the numerical aperture of the projection exposure optical system is NA, the exposure wavelength is λ, and d ≧ 2.66.
[0016]
Using this mask, the aberration of the projection lens was measured. The exposure step was determined so that the translucent portions did not overlap twice. FIG. 8 shows a sectional view and a plan view of the pattern formed on the resist. Here, 85 is a substrate, 86 is a resist, 81, 82, 83 and 84 are patterns to which the transparent pattern 3 is transferred, and 81, 82, 83 and 84 are portions where the resist is reduced in film thickness by the second light intensity 7. , 81, 82, 83, and 84 indicate portions where the resist is reduced in film thickness by the second light intensity 8. In the exposure, step exposure was performed while increasing the exposure amount in the order of exposure steps 1, 2, 3, and 4. In the exposure step 2, the sub-peak 82 began to be transferred to the left of the main pattern 82, and in the exposure step 4, the sub-peak was transferred to the right of the main pattern 84 at 84. As a result of an actual experiment, the exposure amount of the exposure step 2 and the exposure amount step 4 was 48.0 mJ / square cm, and the exposure amount E2 of the exposure step 4 was 76.8 mJ. / Square cm. Therefore, the light intensity ratio is E1 / E2 = 76.8 / 48.0 = 1.6. When the coma aberration amount is obtained from this value using FIG. 3, it is easily understood that the coma aberration amount is about 0.11 × λ. Further, since the exposure step was reduced by arranging the light-shielding pattern, variations in the resist film thickness and the influence of the substrate were reduced, so that quantitative coma aberration could be evaluated with high accuracy. Further, even when the main pattern was changed to a polygon and a circle, the same effect as in the first embodiment was obtained.
[0017]
Although the dimensions and coefficients of the main pattern and the light-shielding pattern are limited as described above, the optimal values of the size and shape of the main pattern and the light-shielding pattern differ depending on the transmittance of the translucent region. For example, when the transmittance changes, the light intensity passing through the translucent region changes. For example, when the transmittance is changed to 4%, the light intensity passing through the translucent region becomes small. As a result, the main pattern size, the light shielding pattern arrangement position, and the like are changed. However, if each is optimized, the lens aberration measurement can be performed with almost no problem. Therefore, it is necessary to optimize the light shielding pattern position and the like in accordance with the transmissivity of the translucent region and the main pattern. The shapes of the main pattern and the light-shielding pattern are not limited to rectangles and hole patterns. It is applicable when sub-peaks such as a line pattern, a cross-shaped pattern, a polygonal pattern such as a hexagon and an octagon, and a circular pattern are generated around the main pattern. However, the hole pattern shown in this embodiment can be evaluated regardless of the direction of the aberration of the lens, and is practical. The transmissivity of the translucent region is not limited to this embodiment, but can be applied by using a coefficient suitable for the transmissivity. Although the light-shielding region is provided with the light-shielding film, it is not limited to this. Means such as a method of arranging transparent patterns equal to or less than the resolution limit at a predetermined pitch so that the light intensity becomes 0 on the wafer is not limited. However, since the preparation of the mask is simple, it is practical to arrange a light-shielding film as shown in this embodiment. Further, the structure and material of the mask are not limited to the materials used in this embodiment. That is, in the present invention, the structure of the mask used includes a transparent region, a translucent region, and a light-shielding region, and the phase difference of light passing through the transparent region and the translucent region is 180 °, and the periphery of the main pattern to be projected is If the pattern is arranged such that the second light intensity is transferred, the object can be achieved. Further, when the lenses were selected and corrected for the reduction projection exposure apparatus using this measurement method, the individual difference of the lenses could be reduced to half of the conventional one. Furthermore, as a result of forming a pattern of an ultra LSI using a reduced projection exposure apparatus that has performed a lens selection using the present measurement method, it is possible to reduce the pattern displacement caused by the coma of the lens to one third of the conventional pattern. A higher density pattern arrangement was realized. Further, the failure rate of the VLSI product was reduced to 2/3.
[0018]
【The invention's effect】
By applying the present invention, various aberrations of a lens mounted on a reduction projection exposure apparatus can be measured with high accuracy. As a result, the lens can be corrected and selected, and the individual difference of the lens can be made smaller than before. In particular, the pattern displacement caused by the coma of the lens can be reduced as compared with the related art, and as a result, a higher-density pattern arrangement can be realized, and the manufacture of the VLSI can be realized using optical lithography. Further, the defect rate of the VLSI product can be reduced, which is industrially advantageous.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of the principle of the present invention.
FIG. 2 is an explanatory diagram of the principle of the present invention.
FIG. 3 is an explanatory diagram of the principle of the present invention.
FIG. 4 is an explanatory diagram of a main embodiment of the present invention.
FIG. 5 is a plan view of a main embodiment of the present invention.
FIG. 6 is a plan view of a second embodiment of the present invention.
FIG. 7 is an explanatory view of a second embodiment of the present invention.
FIG. 8 is an explanatory view of a second embodiment of the present invention.
FIG. 9 is an explanatory diagram of a conventional technique.
FIG. 10 is an explanatory diagram of the principle of the present invention.
FIG. 11 is an explanatory view of a main embodiment of the present invention.
FIG. 12 is an explanatory view of a main embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2, 52, 62, 72, 122 ... Translucent phase shift film, 3, 53, 63, 73, 123 ... Transparent main pattern, 4 ... Light intensity peak of transparent main pattern, 5 ... Transparent main pattern , A light intensity peak of the transparent main pattern when there is a coma of the lens, a first subpeak when there is a coma of the lens, a second subpeak when there is a coma of the lens ..., 9, 85, 90 ... substrate, 10, 86, 13 ... resist, 11, 81, 82, 83, 84, 131 ... pattern transferred with transparent main pattern, 12, 81, 82, 83, 84, 132 ... Resist light-reduced portions due to second light intensity peak, so-called sub-peak 8, 14, 81, 82, 83, 84, 134... Resist film-reduced portions due to second light intensity peak, so-called sub-peak 7, 56, 76 ... effective exposure area Outer, 64,74 ... light shielding pattern, 106 ... mask, 108 ... projection lens, 109 ... wafer.

Claims (5)

露光光に対して半透明な領域及び前記半透明な領域内に設けられ、所定のピッチで2次元的に配置された円形の開口部を有し、前記半透明な領域を透過する光と前記開口部を透過する光とは位相が互いに反転するホトマスクを準備する工程と、
レジスト膜が形成された基板を準備する工程と、
投影露光装置を用いて、前記開口部の近傍に生じる第2の光強度ピークが前記レジスト膜に転写するように前記ホトマスクのパタンを前記レジスト膜に転写する工程と、
前記第2の光強度ピークに基づく前記レジスト膜への転写情報を用いて前記投影露光装置のレンズ収差を測定することを特徴とするレンズ収差測定方法。
A translucent area is provided in the translucent area and the translucent area for the exposure light, has a circular opening arranged two-dimensionally at a predetermined pitch, and the light transmitted through the translucent area and the light A step of preparing a photomask in which the phase of the light transmitted through the opening is inverted with respect to the phase of the light,
A step of preparing a substrate having a resist film formed thereon,
Using a projection exposure apparatus, transferring a pattern of the photomask to the resist film such that a second light intensity peak generated near the opening is transferred to the resist film;
A lens aberration measurement method, comprising: measuring lens aberration of the projection exposure apparatus using information transferred to the resist film based on the second light intensity peak.
露光光に対して半透明な領域及び前記半透明な領域内に設けられ、所定のピッチで2次元的に配置された多角形の開口部を有し、前記半透明な領域を透過する光と前記開口部を透過する光とは位相が互いに反転するホトマスクを準備する工程と、
レジスト膜が形成された基板を準備する工程と、
投影露光装置を用いて、前記開口部の近傍に生じる第2の光強度ピークが前記レジスト膜に転写するように前記ホトマスクのパタンを前記レジスト膜に転写する工程と、
前記第2の光強度ピークに基づく前記レジスト膜への転写情報を用いて前記投影露光装置のレンズ収差を測定することを特徴とするレンズ収差測定方法。
A light is provided in the translucent area and the translucent area with respect to the exposure light, has a polygonal opening two-dimensionally arranged at a predetermined pitch, and transmits light through the translucent area. A step of preparing a photomask whose phase is inverted with respect to the light transmitted through the opening,
A step of preparing a substrate having a resist film formed thereon,
Using a projection exposure apparatus, transferring a pattern of the photomask to the resist film such that a second light intensity peak generated near the opening is transferred to the resist film;
A lens aberration measurement method, comprising: measuring lens aberration of the projection exposure apparatus using information transferred to the resist film based on the second light intensity peak.
露光光に対して半透明な領域、前記半透明な領域内に設けられた複数の開口部及び前記複数の開口部の間に前記開口部から所定の距離をおいて設けられた遮光領域を有し、前記半透明な領域を透過する光と前記開口部を透過する光とは位相が互いに反転するホトマスクを準備する工程と、
レジスト膜が形成された基板を準備する工程と、
投影露光装置を用いて、前記開口部の近傍に生じる第2の光強度ピークが前記レジスト膜に転写されるように前記ホトマスクのパタンを前記レジスト膜に転写する工程と、
前記第2の光強度ピークに基づく前記レジスト膜への転写情報を用いて前記投影露光装置のレンズ収差を測定することを特徴とするレンズ収差測定方法。
A translucent area for the exposure light, a plurality of openings provided in the translucent area, and a light-blocking area provided at a predetermined distance from the opening between the plurality of openings. A step of preparing a photomask in which the light passing through the translucent region and the light passing through the opening have phases inverted from each other,
A step of preparing a substrate having a resist film formed thereon,
Using a projection exposure apparatus, transferring a pattern of the photomask to the resist film so that a second light intensity peak generated near the opening is transferred to the resist film;
A lens aberration measurement method, comprising: measuring lens aberration of the projection exposure apparatus using information transferred to the resist film based on the second light intensity peak.
前記所定の距離Wは、W=c・λ/NA(ただし、前記投影露光装置の投影光学系の開口数をNA、露光波長をλ、c≧0.89)以上であることを特徴とする請求項記載のレンズ収差測定方法。The predetermined distance W is not less than W = c · λ / NA (however, the numerical aperture of the projection optical system of the projection exposure apparatus is NA, the exposure wavelength is λ, and c ≧ 0.89). The method for measuring lens aberration according to claim 3 . 前記所定の距離Wは、W=d・λ/NA(ただし、前記投影露光装置の投影光学系の開口数をNA、露光波長をλ、d≧2.66)以上であることを特徴とする請求項記載のレンズ収差測定方法。The predetermined distance W is not less than W = d · λ / NA (however, the numerical aperture of the projection optical system of the projection exposure apparatus is NA, the exposure wavelength is λ, and d ≧ 2.66). The method for measuring lens aberration according to claim 3 .
JP20417697A 1997-02-14 1997-07-30 Lens aberration measurement method Expired - Fee Related JP3574729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20417697A JP3574729B2 (en) 1997-02-14 1997-07-30 Lens aberration measurement method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-30028 1997-02-14
JP3002897 1997-02-14
JP20417697A JP3574729B2 (en) 1997-02-14 1997-07-30 Lens aberration measurement method

Publications (2)

Publication Number Publication Date
JPH10288567A JPH10288567A (en) 1998-10-27
JP3574729B2 true JP3574729B2 (en) 2004-10-06

Family

ID=26368291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20417697A Expired - Fee Related JP3574729B2 (en) 1997-02-14 1997-07-30 Lens aberration measurement method

Country Status (1)

Country Link
JP (1) JP3574729B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068398A (en) 1999-08-27 2001-03-16 Hitachi Ltd Method for manufacturing semiconductor integrated circuit device, and mask fabrication
JP2002244271A (en) * 2001-02-15 2002-08-30 Oki Electric Ind Co Ltd Mask for manufacturing semiconductor and semiconductor manufacturing method
JP2003156832A (en) 2001-11-22 2003-05-30 Mitsubishi Electric Corp Photomask for aberration measurement, aberration measuring method, instrument for aberration measurement, and manufacturing method for the instrument
JP4516353B2 (en) * 2004-05-07 2010-08-04 ルネサスエレクトロニクス株式会社 Aberration measurement method
JP2017054006A (en) * 2015-09-09 2017-03-16 ウシオ電機株式会社 Light irradiation method, manufacturing method of on-substrate structure, and on-substrate structure

Also Published As

Publication number Publication date
JPH10288567A (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US7008738B2 (en) Microlithographic structures and method of fabrication
JP3843308B2 (en) Mask pattern image forming apparatus
US6930754B1 (en) Multiple exposure method
KR100714480B1 (en) systems and methods for detecting focus variation in photolithograph process using test features printed from photomask test pattern images
US7327436B2 (en) Method for evaluating a local flare, correction method for a mask pattern, manufacturing method for a semiconductor device and a computer program product
KR19990045024A (en) Double exposure method and device manufacturing method using the same
KR100495297B1 (en) Method for measuring illumination ununinformity, method for correcting illumination ununinformity, method of manufacturing semiconductor apparatus, and exposure apparatus
US5262257A (en) Mask for lithography
US7563547B2 (en) Photomask and method of manufacturing the same
JPH05326370A (en) Projection aligner
US5700602A (en) Method and apparatus for precision determination of phase-shift in a phase-shifted reticle
JP2003057800A (en) Method and device for focus monitor, and manufacturing method of semiconductor
JP3080024B2 (en) Exposure method and method of measuring spherical aberration
US5888677A (en) Exposure mask, method of fabricating same, and method of manufacturing semiconductor device
US6632574B1 (en) Mask having pattern areas whose transmission factors are different from each other
US20010028983A1 (en) Photomask used in manufacture of semiconductor device, photomask blank, and method of applying light exposure to semiconductor wafer by using said photomask
JP3574729B2 (en) Lens aberration measurement method
US20100304281A1 (en) Exposure mask and method for manufacturing same and method for manufacturing semiconductor device
JP2004054092A (en) Mask and its manufacturing method
US7011909B2 (en) Photolithography mask and method of fabricating a photolithography mask
JP3984710B2 (en) Exposure method and exposure apparatus
JPH11184070A (en) Aberration measurement method and photomask for aberration measurement
JP3082747B2 (en) Exposure equipment evaluation method
JP3178516B2 (en) Phase shift mask
JPH10148926A (en) Halftone phase shift mask and method for measuring aberration by using halftone phase shift mask

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040227

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080709

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090709

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees