JP2704810B2 - High-strength steel for large heat input welding excellent in on-site weldability and jig crack resistance and its manufacturing method - Google Patents

High-strength steel for large heat input welding excellent in on-site weldability and jig crack resistance and its manufacturing method

Info

Publication number
JP2704810B2
JP2704810B2 JP20282792A JP20282792A JP2704810B2 JP 2704810 B2 JP2704810 B2 JP 2704810B2 JP 20282792 A JP20282792 A JP 20282792A JP 20282792 A JP20282792 A JP 20282792A JP 2704810 B2 JP2704810 B2 JP 2704810B2
Authority
JP
Japan
Prior art keywords
less
heat input
steel
weldability
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20282792A
Other languages
Japanese (ja)
Other versions
JPH0649586A (en
Inventor
秀里 間渕
宏 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20282792A priority Critical patent/JP2704810B2/en
Publication of JPH0649586A publication Critical patent/JPH0649586A/en
Application granted granted Critical
Publication of JP2704810B2 publication Critical patent/JP2704810B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は貯槽タンク、圧力容器、
橋梁、海洋構造物等の低温用又は常温用の鋼材として大
入熱溶接性と共に吊り具等の隅肉溶接やブロックの現地
溶接での溶接性(小入熱溶接特性、予熱省略溶接特性、
高水素雰囲気溶接特性)が要求される高張力鋼の製造方
法に関するものである。
The present invention relates to a storage tank, a pressure vessel,
As a low-temperature or room-temperature steel material for bridges, offshore structures, etc., it has a large heat input and weldability in fillet welding of hanging tools and on-site welding of blocks (small heat input welding characteristics, welding characteristics without preheating,
High hydrogen atmosphere welding characteristics).

【0002】[0002]

【従来の技術】近年、構造物の大型化とともに溶接能率
の向上が求められ大入熱溶接の適用が一般的になってい
る。一方で、タンク、橋梁等の吊り具の隅肉溶接部にお
ける治具跡割れやタンクサポート部の内側における溶接
熱影響部(HAZ)の硬度上昇に伴うクラックが解放検
査等で発見される場合がしばしばある。又橋梁分野にお
いては、工場での加工には大入熱溶接が適用され現地組
立にはボルト締めが一般的であったが、最近では工期短
縮や景観保全のため溶接の適用が検討され予熱省略溶接
及びプライマーや溶接棒からの高水素雰囲気下での溶接
等の現地溶接性も要求されるようになってきた。
2. Description of the Related Art In recent years, the application of large heat input welding has become common, as the size of a structure is increased and the welding efficiency is required to be improved. On the other hand, cracks accompanying the increase in hardness of the welding heat affected zone (HAZ) inside the tank support portion and cracks due to jig trace cracks in the fillet welded portions of hanging tools such as tanks and bridges may be found by release inspection and the like. Often there. In the bridge field, large heat input welding was used for processing at the factory and bolting was generally used for on-site assembly. However, recently, application of welding has been studied to shorten the construction period and preserve the landscape, and preheating has been omitted. On-site weldability such as welding and welding from a primer or a welding rod in a high hydrogen atmosphere has also been required.

【0003】大入熱溶接性については鉄鋼各社で実用化
され、特開昭61−270354号,特開昭62−18
42号,特開昭62−56518号の各公報のように基
本的にはTiNをベースに種々の改善が加えられている
がいずれも大入熱溶接専用の鋼材であり、隅肉溶接等の
小入熱溶接性(クラックフリー)や現地溶接性をも同時
に具備したものはない。一方、小入熱特性に優れた従来
技術としては本発明者らによる特公昭58−2570号
公報、特開平1−96329号公報があるが、その安定
性及び大入熱溶接特性に限界があった。
[0003] The large heat input weldability has been put to practical use by various steel companies, and is disclosed in JP-A-61-270354 and JP-A-62-18.
No. 42 and Japanese Unexamined Patent Publication No. Sho 62-56518, various improvements are basically made on the basis of TiN, but all of them are steel materials exclusively for large heat input welding, such as fillet welding. None of them have low heat input weldability (crack-free) and local weldability at the same time. On the other hand, as prior arts having excellent small heat input characteristics, there are Japanese Patent Publication No. 58-2570 and Japanese Patent Application Laid-Open No. 1-96329 by the present inventors, but their stability and large heat input welding characteristics are limited. Was.

【0004】[0004]

【発明が解決しようとする課題】大型構造物の工場加工
における溶接能率向上の大入熱溶接性と共に吊り具等の
隅肉溶接部における治具跡割れやタンクサポート部内側
のクラックを皆無とし、現地組立時の溶接性をも大幅に
改善してこれら複合特性を併せて具備する事が本発明の
改善しようとする課題である。本発明者等による従来技
術として前記せる特公昭58−2570号公報はBフリ
ー化且つ低C−低Si系の非調質強靱高張力鋼の製造方
法であって、縞状組織の分散及び高炭素マルテンサイト
(M* ) の生成抑制を前提としてBフリー化によるHA
Z硬さの低減を同時に具備して、高強度で且つ高吸収エ
ネルギー(vEs)、高靱性(vTrs)及び低炭素等
量(Ceq)化による高溶接性と同時に、新しい品質ニ
ーズ(耐HAZ割れ性、耐SR割れ性、耐焼き戻し脆
性)にも応える優れたものであった。
SUMMARY OF THE INVENTION In addition to the large heat input weldability for improving the welding efficiency in the processing of large structures in a factory, cracks in the jig traces and cracks inside the tank support portion in the fillet welds of the hanging tools are eliminated. It is an object of the present invention to significantly improve the weldability at the time of on-site assembly and to provide these combined characteristics. Japanese Patent Publication No. 58-2570 described above as a prior art by the present inventors is a method for producing a B-free, low C-low Si based non-heat treated toughened high tensile strength steel, in which dispersion of a striped structure and high HA by B-free, on the assumption that carbon martensite (M * ) formation is suppressed
At the same time with the reduction of Z hardness, it has high strength and high welding energy by high absorption energy (vEs), high toughness (vTrs) and low carbon equivalent (Ceq), and new quality needs (anti-HAZ cracking) Resistance, SR cracking resistance, tempering brittleness).

【0005】特開平1−96329号公報はBフリー化
且つ低C系の耐硫化物応力腐食割れ性に優れた調質HT
60キロ鋼の製造方法であって、特公昭58−2570
号公報を更に低C化且つ調質熱処理化して低Siの制約
をなくすとともに、10〜30KJ/cm程度の小入熱
溶接におけるHAZ硬さの低減により硫化水素又はアン
モニア雰囲気における耐応力腐食割れ性に優れたもので
あった。ところが、前記発明(特公昭58−2570号
公報、特開平1−96329号公報)は大入熱溶接性に
限界があると共に、新しい品質ニーズに応えるにはその
特性に対し今一つの安定性が欠けるという欠点を有して
いた。本課題に対して本発明者等が仔細に調査したとこ
ろ、前記発明はBフリー鋼としてBを添加していないに
も拘らず不純物としてのB含有量がばらつく結果、品質
特性の安定性が左右されていた事を知見するに至った。
更に、大入熱溶接性の向上には、低C−低Si系の特公
昭58−2570号公報の発明をベースにNbとTi
(Tieq)を微量且つ狭範囲に制御すると共にMnS
として存在するSを不純物としてではなく、大入熱溶接
性向上のため積極的な活用をする必要のある事がわかっ
た。
Japanese Patent Application Laid-Open No. 1-96329 discloses a tempered HT which is B-free and low in C type and has excellent resistance to sulfide stress corrosion cracking.
A method for producing 60 kg steel, which is disclosed in JP-B-58-2570.
In order to eliminate the restriction of low Si by lowering the temperature and heat-treating heat treatment to reduce the HAZ hardness in small heat input welding of about 10 to 30 KJ / cm, stress corrosion cracking resistance in a hydrogen sulfide or ammonia atmosphere is reduced. It was excellent. However, the above-mentioned inventions (Japanese Patent Publication No. 58-2570 and Japanese Patent Application Laid-Open No. 1-96329) have a limitation in large heat input weldability, and lack new stability in their properties to meet new quality needs. Had the disadvantage that The present inventors conducted a detailed investigation on this problem, and found that the content of B as an impurity varied in spite of the fact that B was not added as a B-free steel, and that the stability of quality characteristics was influenced by the present invention. I came to know what had been done.
Further, in order to improve the large heat input weldability, Nb and Ti are based on the invention of Japanese Patent Publication No. 58-2570 of low C-low Si system.
(Tieq) is controlled to a very small and narrow range and MnS
It has been found that it is necessary to actively utilize S existing as an impurity, not as an impurity, but to improve large heat input weldability.

【0006】一方、大入熱溶接性を向上する特開昭61
−270354号公報はC:0.03〜0.20%,S
i:0.01〜0.50%,Mn:0.30〜2.0
%,P:0.02%以下,S:0.015%以下,B:
0.0003〜0.0030%,N:0.0080%以
下を基本成分とし、必要に応じてNi,Cu,Cr,M
o,Nb,Vの一種又は二種以上を含有して、更にまた
0.03%以下のTi,REM,Caの一種又は二種以
上を合計で0.003〜0.03%含有し且つ全Al
0.003%以下とする高靱性溶接鋼である。ところが
該発明は大入熱特性は改善されたものの、Ceqの規制
がない上にBを積極的に添加しているために小入熱特
性、就中耐治具跡割れ性や現地溶接性には劣り、又Al
を添加していない故に脱酸が不安定なため酸素との親和
力の強いTi,REM,Caの歩留が悪くその添加量が
ばらつく結果大入熱特性が不安定であるという欠点を有
していた。
On the other hand, Japanese Patent Application Laid-Open No.
-270354 discloses C: 0.03 to 0.20%, S
i: 0.01 to 0.50%, Mn: 0.30 to 2.0
%, P: 0.02% or less, S: 0.015% or less, B:
0.0003-0.0030%, N: 0.0080% or less as a basic component, Ni, Cu, Cr, M
o, Nb, contain one or two or more and V, furthermore 0.03% or less of Ti, REM, and contains from 0.003 to 0.03% in total one or two or more of Ca all It is a high toughness welded steel with an Al content of 0.003% or less. However, although this invention has improved large heat input characteristics, it does not have Ceq regulation and B is positively added, so it has low heat input characteristics, especially jig trace cracking resistance and on-site weldability. Is inferior, and Al
Since the deoxidation is unstable because of no addition of Ti, the yield of Ti, REM, and Ca, which have a strong affinity for oxygen, is poor, and the added amount varies, resulting in unstable large heat input characteristics. Was.

【0007】又、特開昭62−1842号公報はC:
0.02〜0.18%,Si:0.5%以下,Mn:
0.4〜2.0%,S:0.0007〜0.0050
%,Ti;0.030%以下を含有し、P:0.015
%以下,N:0.004%以下に制約し必要に応じてN
i,Cu,Nb,V,Ta,Cr,Mo,Bの一種又は
二種以上を含有し、一時脱酸生成物を実質的に含まず、
粒子径が0.1〜3.0μmの二次脱酸生成物とTi窒
化物とMnSの複合体をそれぞれ5×10〜1×10
個/mm含有する事を特徴とする溶接部靱性の優れ
た強靱性高張力鋼である。ところが該発明は大入熱特性
には優れているが、Alを無添加とし弱脱酸元素のT
i,Si,Nb,V,Taのみで二次脱酸するために脱
酸が不安定となって安定したTiN+MnSが生成出来
難くなると共に強脱酸元素のTiの歩留が不安定となっ
てNとTiがバランスせずTieqがばらついて安定し
た大入熱特性が得られず、一方でBを添加したり、Ce
qの規制がないために小入熱特性、就中耐治具跡割れ性
や現地溶接性には劣っていると云う欠点を有していた。
JP-A-62-1842 discloses C:
0.02 to 0.18%, Si: 0.5% or less, Mn:
0.4-2.0%, S: 0.0007-0.0050
%, Ti; containing 0.030% or less, P: 0.015
% Or less , N: limited to 0.004% or less and N as necessary
containing one or more of i, Cu, Nb, V, Ta, Cr, Mo, and B, and substantially free of a temporary deoxidation product;
The secondary deoxidation product having a particle diameter of 0.1 to 3.0 μm and a composite of Ti nitride and MnS are each mixed with 5 × 10 4 to 1 × 10 4
It is a tough high strength steel with excellent weld toughness characterized by containing 5 / mm 3 . However, although the invention is excellent in large heat input characteristics, it does not contain Al and has a weak deoxidizing element T
Since secondary deoxidation is performed only with i, Si, Nb, V, and Ta, deoxidation becomes unstable, making it difficult to produce stable TiN + MnS, and the yield of Ti, a strongly deoxidizing element, becomes unstable. N and Ti are not balanced and Tieq varies, and stable large heat input characteristics cannot be obtained. On the other hand, B is added or Ce is added.
Since there was no regulation of q, it had the drawback that it was inferior in small heat input characteristics, especially in jig trace resistance and in-situ weldability.

【0008】更に特開昭62−56518号はC:0.
03〜0.12%,Si:0.05〜0.40%,M
n:0.7〜1.6%,P:0.015%以下,S:
0.010%以下,Sol.Al:0.001〜0.0
10%,Ti:0.005〜0.020%,B:0.0
003〜0.0020%,N:0.0040〜0.00
60%,必要に応じてCu,Ni,V,Caの一種又は
二種以上含有し、Ti/N:1.5〜3.4,Ceq:
0.34%以下である鋼を所定の熱間圧延を行い、直ち
に室温まで急冷後200〜450℃の低温焼き戻しを行
うことを特徴とする50キロ鋼の大入熱溶接用高張力鋼
の製造方法である。
Further, Japanese Patent Application Laid-Open No. Sho 62-56518 discloses that C: 0.
03-0.12%, Si: 0.05-0.40%, M
n: 0.7 to 1.6%, P: 0.015% or less, S:
0.010% or less, Sol. Al: 0.001 to 0.0
10%, Ti: 0.005 to 0.020%, B: 0.0
003 to 0.0020%, N: 0.0040 to 0.00
60%, if necessary, contains one or more of Cu, Ni, V, and Ca, and Ti / N: 1.5 to 3.4, Ceq:
A high-strength steel for high heat input welding of 50 kg steel, characterized in that a predetermined hot rolling of steel of 0.34% or less is carried out, and immediately quenched to room temperature and then subjected to low-temperature tempering at 200 to 450 ° C. It is a manufacturing method.

【0009】ところが該発明はSol.Alを0.01
0%以下,Nを0.0040〜0.0060%にして溶
鋼でTiNの安定析出をはかると共にHAZにもBNを
析出させて大入熱特性を向上させたが低Al且つ高N故
に脱酸が不安定となって安定したTiNが得られず、一
方でBを積極的に添加した結果小入熱特性、就中耐治具
跡割れ性や現地溶接性には劣っていると云う欠点を有し
ていた。現地溶接性(予熱省略溶接、高水素雰囲気下溶
接)や耐治具跡割れ性(小入熱溶接、水素誘起割れ)か
ら大入熱溶接性に至る迄の要求を満足するには、これら
従来技術では対応が不可能であることが判明した。
However, the invention is disclosed in Sol. Al is 0.01
0% or less, N was set to 0.0040 to 0.0060% to stably precipitate TiN in molten steel and to precipitate BN in HAZ to improve large heat input characteristics, but deoxidation due to low Al and high N Is unstable, and stable TiN cannot be obtained. On the other hand, as a result of the active addition of B, there is a drawback that the heat input characteristics, especially the jig trace cracking resistance and the field weldability are inferior. Had. To meet the requirements from on-site weldability (welding without preheating, welding under high hydrogen atmosphere) and jig trace resistance (small heat input welding, hydrogen-induced cracking) to large heat input welding, It turned out that the technology could not cope.

【0010】[0010]

【発明が解決するための課題】本発明はかかる多様な問
題を解決すべく、低C−低Si系高張力鋼の不純物とし
てのB,S量を特定すると共にCeqの最適化及びTi
eqの最適化と相俟って現地溶接性及び耐治具跡割れ性
に優れた大入熱溶接用高張力鋼の製造方法を提供するこ
とにより大型構造物の経済的施工を可能ならしめて工期
面且つ経済面での競争力を飛躍的に強化するものであ
る。本発明の要旨とするところは (1)重量%でC:0.10%以下、Si:0.10%
以下、Mn:0.50〜2.20%、P:0.015%
以下、S:0.0008〜0.0025%、Sol.A
l:0.010〜0.10%、(Si+Sol.A
l):0.13%以下、Cu:0.05〜0.50%、
Ni:0.05〜0.80%、Nb:0.005〜0.
024%、Ti:0.005〜0.018%、N:0.
0020〜0.0050%を含み残部鉄及び不可避的不
純物からなり、更に不純物としてのBをB:0.000
2%以下とし、且つ次式で定められるCeq,Tieq
をCeq:0.38%以下、Tieq:−0.007〜
0.005%とし、又MnSがTiON又はTiNとの
複合析出物を形成する事を特徴とする現地溶接性及び耐
治具跡割れ性に優れた大入熱溶接用高張力鋼。 Ceq:C+1/6Mn+1/24Si+1/40Ni
+1/5Cr+1/4Mo+1/14V Tieq:Ti−3.4×N
SUMMARY OF THE INVENTION In order to solve the various problems, the present invention specifies the amounts of B and S as impurities of a low C-low Si high strength steel, optimizes Ceq, and optimizes Ti.
By providing a method of manufacturing high-strength steel for large heat input welding that is excellent in on-site weldability and jig trace resistance in combination with optimization of eq, economical construction of large structures becomes possible and It will dramatically enhance the competitiveness of both the economy and the economy. The gist of the present invention is as follows: (1) C: 0.10% or less by weight%, Si: 0.10%
Hereinafter, Mn: 0.50 to 2.20%, P: 0.015%
Hereinafter, S: 0.0008 to 0.0025%, Sol. A
l: 0.010 to 0.10%, (Si + Sol.A
l): 0.13% or less, Cu: 0.05 to 0.50%,
Ni: 0.05 to 0.80%, Nb: 0.005 to 0.
024%, Ti: 0.005 to 0.018%, N: 0.
0020-0.0050%, the balance being iron and unavoidable impurities, and B as an impurity: B: 0.000
2% or less, and Ceq, Tieq defined by the following equation
Ceq: 0.38% or less, Teq: -0.007 or more
High-strength steel for large heat input welding excellent in on-site weldability and jig trace cracking resistance, characterized in that MnS forms a composite precipitate with TiON or TiN with 0.005%. Ceq: C + / Mn + / 24Si + 1 / 40Ni
+ / Cr + / Mo + / 14 V Tieq: Ti-3.4 × N

【0011】(2)重量%でCr:0.50%以下、M
o:0.30%以下、V:0.10%以下の一種又は二
種以上を鋼に含有せしめた事を特徴とする前記(1)
載の現地溶接性及び耐治具跡割れ性に優れた大入熱溶接
用高張力鋼。 (3)MnSの複合析出物形成に際して出鋼時のSiに
よる弱脱酸に引続き真空脱ガス時にTi添加後Alによ
り完全脱酸を行ってTiON又はTiNを形成せしめた
鋼を鋳造後直ちに、又はAc点以上1170℃以下に
再加熱後、一般の厚板圧延又は60%以下の未再結晶域
圧延に引き続いて1〜60℃/secの冷却速度で54
0℃以下の任意の温度まで加速冷却を行い、前記(1)
又は(2)記載の鋼を製造することを特徴とする現地溶
接性及び耐治具跡割れ性に優れた大入熱溶接用高張力鋼
の製造方法。(4)加速冷却後焼き戻しを行うことを特徴とする前記
(3)記載の現地溶接性及び耐治具跡割れ性に優れた大
入熱溶接用高張力鋼の製造方法である。
(2) Cr: 0.50% or less by weight%, M
o: 0.30% or less, V: 0.10% or less, one or two or more kinds are contained in steel, which is excellent in on-site weldability and jig trace crack resistance as described in (1) above. High strength steel for large heat input welding. (3) Immediately after casting, a steel in which TiON or TiN is formed by adding Ti and then completely deoxidizing with Al at the time of vacuum degassing, followed by weak deoxidation by Si at the time of tapping when forming a MnS composite precipitate, or Ac After reheating to 3 points or more and 1170 ° C. or less, subsequent to general plate rolling or unrecrystallized area rolling of 60% or less, cooling at a cooling rate of 1 to 60 ° C./sec.
Perform accelerated cooling to an arbitrary temperature of 0 ° C. or less, and
Or the manufacturing method of the high tensile strength steel for large heat input welding excellent in field weldability and jig trace crack resistance characterized by manufacturing the steel of (2) . (4) Tempering after accelerated cooling is performed.
(3) Large with excellent on-site weldability and jig trace crack resistance as described
This is a method for producing high-strength steel for heat input welding.

【0012】[0012]

【作用】以下に本発明を詳細に説明する。Cは強度を上
昇させるのに最も有効な元素であるが、現地溶接性等を
悪くするCeqを上昇させると同時に加速冷却時の母材
縞状組織及び溶接HAZにアッパーベイナイト(Bu)
又は高炭素マルテンサイト(M* )を生成する直接の主
要元素であるため0.10%以下に限定した。そして本
発明の技術思想から、Cは強度設計上許されれば低いほ
ど望ましく0.06%以下が好ましい。Siは脱酸上有
用な元素であるが、鋼中でCと斥力を有し加速冷却時の
母材又はHAZにおいて変態時にフェライト(α)から
残留オーステナイト(γ)にCを掃き出すのを促進する
結果、Bu又はM* の生成を助長するために0.10%
以下に限定した。
The present invention will be described below in detail. C is the most effective element for increasing the strength, but increases Ceq, which degrades the on-site weldability, etc., and at the same time, increases the bainite structure during accelerated cooling and the upper bainite (Bu) in the welded HAZ.
Alternatively, the content is limited to 0.10% or less because it is a direct main element that produces high carbon martensite (M * ). In view of the technical concept of the present invention, C is desirably as low as possible in terms of strength design, and is preferably 0.06% or less. Although Si is a useful element for deoxidation, it has a repulsive force with C in steel and promotes sweeping of C from ferrite (α) to retained austenite (γ) during transformation in the base material or HAZ during accelerated cooling. As a result, 0.10% to promote the formation of Bu or M *
Limited to the following.

【0013】Mnは本発明において安価に強度を上昇さ
せる有用な元素でありその必要下限から0.50%以上
とし、2.20%以上の添加は母材靱性、溶接性を阻害
するために0.50〜2.20%に限定した。Pは溶接
性、低温靱性から0.015%以下に限定した。Sは不
純物としては低いほど好ましく上限を0.0025%以
下としたが、本発明では大入熱溶接性の観点から0.0
008%以上のSを不純物としてではなく、TiON
(Ti−Oxynitride)又はTiNとMnSと
の複合析出物を形成せしめ、HAZのγ粒内におけるα
変態核として活用するために0.0008〜0.002
5%に限定した。
Mn is a useful element for increasing the strength inexpensively in the present invention, and is set to 0.50% or more from its necessary lower limit. If added at 2.20% or more, Mn is set to 0% because it impairs base material toughness and weldability. It was limited to .50 to 2.20%. P is limited to 0.015% or less from the viewpoint of weldability and low-temperature toughness. The upper limit of S is preferably set to 0.0025% or less as the impurity is lower, but in the present invention, from the viewpoint of large heat input weldability, 0.0 is preferably set.
008% or more of S is not used as an impurity.
(Ti-Oxynitride) or a composite precipitate of TiN and MnS is formed, and α in γ grains of HAZ is formed.
0.0008 to 0.002 to utilize as a transformation nucleus
Limited to 5%.

【0014】Sol.AlはSiと同様に脱酸上必要な
元素であり本発明の技術思想から低Si系成分が選択さ
れるために0.01%以上とするが、一方0.10%以
上の添加はSi同様変態時にαから残留γへのC濃化を
助長するため及び溶接性の観点から0.010〜0.1
0%に限定した。又安定したTiON又はTiNを形成
するには出鋼時のSiによる弱脱酸に引続き真空脱ガス
時に0.010%以上のAlにより完全脱酸するのが望
ましい。更に、Sol.Alは鋼中においてCに対する
相互作用(斥力)がSiと全く同様に働き、Sol.A
lとSiの単独制約では不十分なために(Si+So
l.Al)を0.13%以下に限定した。
Sol. Al is an element necessary for deoxidation like Si, and is selected to be 0.01% or more in order to select a low Si-based component from the technical idea of the present invention. On the other hand, addition of 0.10% or more is similar to Si. In order to promote C enrichment from α to residual γ during transformation and from the viewpoint of weldability, from 0.010 to 0.1
Limited to 0%. In order to form stable TiON or TiN, it is desirable to completely deoxidize with 0.010% or more of Al at the time of vacuum degassing after weak deoxidation with Si at the time of tapping. Further, Sol. Al has an interaction (repulsion) with C in steel in exactly the same way as Si, and Sol. A
Since the single constraint of l and Si is not enough, (Si + So
l. Al) was limited to 0.13% or less.

【0015】Cuは低温靱性向上のためCeq低減を目
的としてC,Si,Mnに置換して添加し強度確保を計
るために0.05%以上とし、0.50%以上の添加は
熱間脆性防止のため等量のNi添加が必要となりコスト
上の観点から好ましくなく0.05〜0.50%に限定
した。Niは低温靱性向上のためCeq低減を目的とし
てC,Si,Mnに置換して添加し強度確保を計るため
に0.05%以上とし、0.80%以上の添加はコスト
上の観点から好ましくなく0.05〜0.80%に限定
した。Nbは加工熱処理プロセス(TMCP)において
Tiとともに最も有用な元素であり、NbCとして加熱
時のγ粒成長の抑制、未再結晶温度域の拡大、圧延中に
おける変形帯へのNbC析出強化、大入熱溶接時のHA
Z軟化防止のために0.005%以上必須であり、一方
0.024%以上の過度の添加はTieqの過剰時同様
に大入熱溶接性を損なうために0.005〜0.024
%の微量に限定した。
Cu is added in place of C, Si, and Mn for the purpose of reducing Ceq to improve low-temperature toughness, and is added to 0.05% or more to secure the strength. For the prevention, it is necessary to add an equal amount of Ni, which is not preferable from the viewpoint of cost, and is limited to 0.05 to 0.50%. Ni is added in place of C, Si, and Mn to reduce Ceq for the purpose of improving low-temperature toughness, and is added at 0.05% or more to ensure strength. Addition of 0.80% or more is preferable from the viewpoint of cost. And limited to 0.05 to 0.80%. Nb is the most useful element together with Ti in the thermomechanical process (TMCP). As NbC, it suppresses the growth of γ grains during heating, expands the non-recrystallization temperature range, strengthens NbC precipitation in the deformation zone during rolling, HA during heat welding
In order to prevent Z softening, 0.005% or more is essential. On the other hand, excessive addition of 0.024% or more also impairs large heat input weldability as in the case of excessive Tieq.
%.

【0016】Tiは前述のNb同様にν粒制御のために
も必要ではあるが、本質的には大入熱溶接時のHAZに
おいてTiONによるγ粒成長抑制と同時にγ粒内にお
けるα変態核としてTiON又はTiNとMnSとの複
合析出物を形成せしめるために0.005%以上必須で
あり、0.018%以上の過度の添加は溶接性を損なう
ために0.005〜0.018%に限定した。尚、Ti
はこの範囲であってもNとのバランスが崩れると品質上
好ましくない。即ち、Nが過剰になると鋳片割れをも誘
発し逆にTiが過剰になると母材の低温靱性や大入熱溶
接性が損なわれるのでNに対して等量添加(N×3.
4)するのが望ましい。Nは前述する如くTiON又は
TiN生成のために0.0020%以上必要であり、
0.0050%以上では大入熱溶接性特にHAZ靱性を
損ない、鋳片の割れも誘発するために0.0020〜
0.0050%に限定される。Nはこの範囲内で出来る
だけTiと等量(Ti/3.4)にバランスさせること
が望ましい。
Although Ti is necessary for controlling ν grains as in the case of Nb described above, it is essentially required to suppress γ grain growth by TiON in HAZ during large heat input welding and at the same time as α transformation nuclei in γ grains. 0.005% or more is essential for forming a composite precipitate of TiON or TiN and MnS, and excessive addition of 0.018% or more is limited to 0.005 to 0.018% to impair weldability. did. In addition, Ti
Is not preferable in terms of quality if the balance with N is lost even in this range. That is, if N is excessive, slab cracks are induced, and if Ti is excessive, low-temperature toughness and large heat input weldability of the base material are impaired.
4) is desirable. N is required to be 0.0020% or more for TiON or TiN generation as described above,
When the content is 0.0050% or more, large heat input weldability, particularly HAZ toughness is impaired, and cracks in the slab are induced.
It is limited to 0.0050%. It is desirable to balance N as much as possible with Ti (Ti / 3.4) within this range.

【0017】Bは本発明の耐治具跡割れ性や隅肉溶接性
及び現地溶接性に影響するCとともに重要な元素であ
り、単にBフリー鋼とするだけでは不十分である。即
ち、Fe−Si系合金やSi−Mn系合金にはBが時と
して高濃度に含有されている場合があるので、製鋼副原
料の精選により不純物としてのBを0.0002%以下
に限定することが極めて重要である。Ceqは予熱省略
溶接やプライマー、溶接棒等からの侵入水素が高い時の
溶接割れが少ない所謂現地溶接性を改善するために0.
38%以下に限定した。TieqはTiが過剰になり
0.005%以上になるとTiとCの相互作用(Sol
ute Drag Effect)によりTiON+M
nS又はTiN+MnSの複合析出物がHAZのγ粒内
においてα変態核として活用できなくなり、更にNが過
剰になって−0.007%以下になるとTiON又はT
iNが粗大化してα変態核としての複合析出物の数が不
足するので−0.007〜0.005%に限定した。従
って、TiとNの成分狙いは図1に示す狭い範囲とする
必要がある。
B is an important element together with C, which affects the jig trace cracking resistance, fillet weldability and on-site weldability of the present invention, and it is not sufficient to simply use B-free steel. That is, since Fe-Si alloys and Si-Mn alloys sometimes contain B at a high concentration, B as an impurity is limited to 0.0002% or less by selective selection of steelmaking auxiliary materials. It is extremely important. Ceq is used in order to improve the so-called on-site weldability in which welding cracks are small when welding pre-heating is omitted or when invasion hydrogen from a primer, a welding rod, or the like is high.
Limited to 38% or less. Tieq indicates that when Ti becomes excessive and becomes 0.005% or more, the interaction between Ti and C (Sol
ute Drag Effect)
The complex precipitate of nS or TiN + MnS cannot be used as α transformation nucleus in the γ grains of HAZ, and when N becomes excessive and becomes −0.007% or less, TiON or T
Since iN coarsened and the number of composite precipitates as α-transformed nuclei was insufficient, the content was limited to −0.007 to 0.005%. Therefore, it is necessary to aim the components of Ti and N in a narrow range shown in FIG.

【0018】上記基本成分以外の他の元素(Cr,M
o,V)を一種又は二種以上を強度、靱性向上のために
添加しても本発明の効果は損なわれないが、これ以外の
元素(Ca,REM等)はMnSよりも硫化物形成力が
強く、本発明に必須なMnS生成を阻害するために添加
してはならない。Crは焼き入れ性向上による強度確保
のために添加され、過度の添加は加速冷却時の母材靱性
やHAZ靱性を劣化するために0.50%以下に限定し
た。Moは焼き入れ性向上による強度確保のために添加
され、過度の添加は加速冷却時の母材靱性やHAZ靱性
を劣化するために0.30%以下に限定した。Vは強度
向上のために添加され、溶接性、低温靱性が劣化するた
めに0.10%以下に限定した。
Elements other than the above basic components (Cr, M
o, V) does not impair the effect of the present invention even if one or more of them are added for improving the strength and toughness, but other elements (Ca, REM, etc.) are more likely to form sulfides than MnS. And must not be added to inhibit MnS formation essential for the present invention. Cr is added to secure the strength by improving the hardenability. Excessive addition is limited to 0.50% or less to deteriorate the base material toughness and the HAZ toughness during accelerated cooling. Mo is added for securing the strength by improving the hardenability. Excessive addition is limited to 0.30% or less to deteriorate the base material toughness and the HAZ toughness during accelerated cooling. V is added to improve the strength, and is limited to 0.10% or less because weldability and low-temperature toughness deteriorate.

【0019】次に厚板製造条件について述べる。鋼を鋳
造後直ちに厚板圧延するのが望ましいが、一般に鋳造時
の生産性1000T/Hに対して厚板圧延の生産性は3
00T/Hと生産能力がマッチングしておらず、現状の
設備構造では鋳片温度は厚板圧延の前に再加熱が必要な
温度まで低下することが多い。従って、γ化するために
Ac3 点以上に再加熱し、本発明のような微量Nb,T
i系ではγの粗大化防止のために1170℃以下とし
た。本発明は成分系の特定により母材縞状組織の分散と
母材又はHAZにおけるBu及びM* の生成抑制という
加速冷却時の金属組織の改善により高吸収エネルギー
(vEs)、高靱性(vTrs)を同時に達成したもの
であり、基本的には生産性を低下させるような圧延上の
制約は必要ない。尚、セパレーションの発生しない温度
範囲で60%以下の未再結晶域圧延を行うとvEsを損
なわずにvTrsを更に改善出来るが、この場合にも生
産性への影響は殆どない。
Next, conditions for manufacturing a thick plate will be described. It is desirable to roll the plate immediately after casting the steel, but in general, the productivity of the plate rolling is 3 to the productivity at the time of casting of 1000 T / H.
Since the production capacity does not match 00T / H, the slab temperature often drops to a temperature that requires reheating before thick plate rolling in the current facility structure. Therefore, in order to γ-form, re-heating is performed to the Ac 3 point or more, and a small amount of Nb, T as in the present invention is obtained.
In the i-system, the temperature was set to 1170 ° C. or lower in order to prevent coarsening of γ. According to the present invention, a high absorption energy (vEs) and a high toughness (vTrs) can be obtained by improving the metal structure at the time of accelerated cooling such as dispersion of the base material stripe structure and suppression of generation of Bu and M * in the base material or HAZ by specifying the component system. At the same time, and there is basically no need for rolling restrictions that reduce productivity. In addition, when rolling in a non-recrystallized region of 60% or less in a temperature range where separation does not occur, vTrs can be further improved without impairing vEs, but in this case, there is almost no effect on productivity.

【0020】加速冷却速度が1℃/sec未満では板厚
によっては空冷と同程度となり加速冷却の意味をなさ
ず、又60℃/sec超では変態時にαから残留γへの
固溶C拡散が行われず成分限定した意味が損なわれるた
めに1〜60℃/secと限定したが、5〜30℃/s
ecにおいてその効果が最も著しい。加速冷却温度範囲
を540℃以下としたのは低C−低Si系鋼の強度確保
のためであり、鋼板形状からは高温ほど好ましい。板厚
によっては強度上300℃以下に冷却する時には、残留
応力緩和のために必要によっては焼き戻しを行う場合が
ある。
If the accelerated cooling rate is less than 1 ° C./sec, the cooling becomes equivalent to air cooling depending on the sheet thickness, and does not have the meaning of accelerated cooling. Since the meaning of the limitation of the components was impaired without being performed, the temperature was limited to 1 to 60 ° C./sec.
The effect is most remarkable in ec. The reason for setting the accelerated cooling temperature range to 540 ° C. or lower is to secure the strength of the low C-low Si-based steel. Depending on the thickness of the sheet, tempering may be performed when necessary to reduce residual stress when cooling to 300 ° C. or less in terms of strength.

【0021】[0021]

【実施例】本発明の実施例を比較例とともに表1及び表
2に示す。表1は本発明例(鋼A,B,C,D,E)及
び比較例(鋼F,G)の化学成分である。比較例は不純
物としてのB及びC,Ceqがいずれも本発明の範囲よ
りも高く、更に鋼FはS,Cu,Ni,Nb,Ti,T
ieqが本発明の範囲を外れ、鋼GはS,Nb,Ti,
Tieqが本発明の範囲を外れている。但し、Cu,N
iは本発明における低C−低Si系成分の強度補償のた
めに限定されているものであり、比較例が範囲外であっ
ても冶金的には本発明のCeqを満足さえすれば一向に
構わない。尚、本発明鋼はPCMも0.16〜0.18%
であるのに対して、比較例は0.22〜0.24%とな
っている。
EXAMPLES Examples of the present invention are shown in Tables 1 and 2 together with Comparative Examples. Table 1 shows the chemical components of the present invention examples (steel A, B, C, D, E) and comparative examples (steel F, G). In Comparative Examples, B, C and Ceq as impurities were all higher than the range of the present invention, and steel F was made of S, Cu, Ni, Nb, Ti, T
ieq is out of the scope of the present invention, and steel G is made of S, Nb, Ti,
Tieq is outside the scope of the present invention. However, Cu, N
i is limited for the purpose of compensating the strength of the low C-low Si type component in the present invention, and even if the comparative example is out of the range, the metallurgical condition may be satisfied as long as the Ceq of the present invention is satisfied. Absent. Note that the present invention steel also P CM .16 to 0.18%
Whereas, in the comparative example, it is 0.22 to 0.24%.

【0022】[0022]

【表1】 [Table 1]

【0023】本発明例と実施例の製造実績を表2に圧延
実績と共に示す。本発明例の加熱温度はいずれも特許請
求の範囲内であるのに対して、比較例はいずれも高C−
高Nbまたは高C−高Tiの為に加熱温度が1190℃
と本発明の範囲を外れている。一方、本発明例B,Dは
未再結晶域温度におけるCR累積圧下率が40%とセパ
レーション発生の伴わない本発明の範囲内で実施されて
いるのに対し、比較例GはCR累積圧下率が80%と本
発明の範囲外で実施されている。本発明例D,Eは成品
厚が32mmと厚いために冷却停止温度が低く、鋼板の
残留応力を緩和し強度靱性バランス良くするために焼き
戻しが行われている。強度特性に関しては発明例も比較
例もいずれもHT490及びHT590クラスの規格を
満足している。
The production results of the present invention and the examples are shown in Table 2 together with the results of rolling. The heating temperatures of the examples of the present invention are all within the scope of the claims, whereas the comparative examples are all high C-
Heating temperature is 1190 ° C due to high Nb or high C-high Ti
Is outside the scope of the present invention. On the other hand, Examples B and D of the present invention had a CR cumulative reduction at the non-recrystallization region temperature of 40%, which is within the range of the present invention without occurrence of separation, whereas Comparative Example G had a CR cumulative reduction of 40%. 80%, which is outside the scope of the present invention. In the invention examples D and E, the cooling stop temperature is low because the product thickness is as thick as 32 mm, and tempering is performed to alleviate the residual stress of the steel sheet and to improve the strength toughness balance. Regarding the strength characteristics, both the invention example and the comparative example satisfy the HT490 and HT590 class standards.

【0024】一方、本発明例の母材靱性は全て高靱性
(vTrs)、高吸収エネルギー(vTsここではvT
-20 )であるのに対して、比較例FはvTrs,vT
-20 とも低く、比較例Gは吸収エネルギーを犠牲にして
セパレーションを発生させる80%のCR累積圧下率を
実施しているにも拘らずvTrsは本発明例と同レベル
である。耐治具跡割れ性(小入熱溶接性、間接的に耐水
素誘起割れ性も)を示すJIS最高硬さ(Hv10)試
験は本発明例がいずれも250以下であるのに対して、
不純物としてのBが高くBuやM* が出易い成分系の比
較例はいずれも300以上と極めて高い。最高硬さと共
に現地溶接性を示す高水素雰囲気下(28cc/100
g)での水平−層隅肉溶接による拘束割れ試験(0℃)
において本発明例ではいずれも割れが観察されなかった
のに対して、Ceqや不純物としてのBが高い比較例で
はいずれも割れ(低温割れ)が観察され、大部分の割れ
はルート部に発生してHAZ側に伝播していた。
On the other hand, the base materials of the present invention all have high toughness (vTrs) and high absorption energy (vTs, here vTs).
-20 ), while Comparative Example F has vTrs, vT
-20, which is low, and Comparative Example G has the same level of vTrs as that of the inventive example, despite the fact that a CR reduction of 80% was performed to cause separation at the expense of absorbed energy. The JIS maximum hardness (Hv10) test showing the jig trace cracking resistance (small heat input weldability and also indirectly hydrogen-induced cracking resistance) shows that the present invention examples are all 250 or less,
Comparative examples of component systems in which B as an impurity is high and Bu and M * are easily produced are all as extremely high as 300 or more. Under high hydrogen atmosphere (28cc / 100
g) Restraint cracking test by horizontal-layer fillet welding (0 ° C)
In Examples of the present invention, no cracks were observed, whereas in Comparative Examples where Ceq or B as an impurity was high, cracks (low-temperature cracks) were observed in all of the Comparative Examples, and most of the cracks occurred in the root portion. And propagated to the HAZ side.

【0025】大入熱FCB溶接によるHAZ靱性(F
L,H1,H3におけるvE-20 平均値のMIN値)に
おいて本発明例がいずれも高位であるのに対して、Bu
やM*が出易い成分系(C,Si,Nb,Ti)でHA
Zのγ粒内におけるα変態が不十分な成分(S,Tie
q)の比較例は靱性が極めて悪い。更に図2に耐治具跡
割れ性を(間接的に耐水素誘起割れ性及び現地溶接性
も)表すビードオンプレート試験の硬さ分布を示す。発
明鋼Aの硬さ分布は良好であるのに対して比較例FはH
AZで明らかに不純物としてのBが硬度を上げている。
HAZ toughness by high heat input FCB welding (F
MIN values of vE -20 average values in L, H1 and H3), all of the examples of the present invention were high, whereas Bu
Component system (C, Si, Nb, Ti) where M * easily appears and HA
Insufficient α transformation in γ grains of Z (S, Tie
The comparative example of q) has extremely poor toughness. Further, FIG. 2 shows a hardness distribution of a bead-on-plate test showing the jig trace crack resistance (also indirectly the hydrogen-induced crack resistance and the field weldability). Inventive steel A has a good hardness distribution, whereas Comparative Example F shows H
In AZ, B as an impurity clearly increases the hardness.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】以上の如く本発明鋼は成分系とTMCP
条件を特定することにより、高張力鋼の変態組織を安定
化して靱性の良い組織に改善可能ならしめた。その結
果、大入熱溶接性、耐治具跡割れ性(小入熱溶接性、耐
水素誘起割れ性)、現地溶接性(予熱省略、高水素雰囲
気溶接)をも同時に改善した。一方、本発明は金属組織
的改善により高張力鋼の高靱性化を達成した結果、従来
技術の如き未再結晶温度域におけるCRをも不要ならし
めて圧延時の生産性の低下を解消可能とするものであ
る。これにより、厚板の生産性を高めるだけでなく大型
構造物製造の工期短縮を可能とし且つ景観の保全等にも
資するものである。従って、本発明により産業界が受け
る経済的利益はもとより環境保全的な利益は多大なもの
がある。
As described above, the steel of the present invention has a composition system and TMCP.
By specifying the conditions, it was possible to stabilize the transformed structure of high strength steel and improve it to a structure with good toughness. As a result, large heat input weldability, jig trace crack resistance (small heat input weldability, hydrogen-induced crack resistance), and on-site weldability (preheating omitted, high hydrogen atmosphere welding) were also improved. On the other hand, the present invention achieves high toughness of high-tensile steel by improving the metallographic structure, so that CR in the non-recrystallization temperature range as in the prior art can be eliminated and the reduction in productivity during rolling can be eliminated. Things. As a result, not only can the productivity of the thick plate be increased, but also the construction period of the large-scale structure can be shortened and the landscape can be preserved. Therefore, the present invention has enormous economical benefits as well as economic benefits to the industry.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るTiとNの成分狙い範囲を示す
図、
FIG. 1 is a diagram showing target ranges of Ti and N components according to the present invention;

【図2】耐治具跡割れ性を表すビードオンプレート試験
の硬さ分布を示す図。
FIG. 2 is a diagram showing a hardness distribution in a bead-on-plate test showing the jig trace crack resistance.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で C :0.10%以下、 Si:0.10%以下、 Mn:0.50〜2.20%、 P :0.015%以下、 S :0.0008〜0.0025%、 Sol.Al:0.010〜0.10%、 (Si+Sol.Al):0.13%以下、 Cu:0.05〜0.50%、 Ni:0.05〜0.80%、 Nb:0.005〜0.024%、 Ti:0.005〜0.018%、 N :0.0020〜0.0050% を含み残部鉄及び不可避的不純物からなり、更に不純物
としてのBをB:0.0002%以下とし、且つ次式で
定められるCeq,TieqをCeq:0.38%以
下、Tieq:−0.007〜0.005%とし、又M
nSがTiON又はTiNとの複合析出物を形成する事
を特徴とする現地溶接性及び耐治具跡割れ性に優れた大
入熱溶接用高張力鋼。 Ceq:C+1/6Mn+1/24Si+1/40Ni+1/5Cr+ 1/4Mo+1/14V Tieq:Ti−3.4×N
1. In weight%, C: 0.10% or less, Si: 0.10% or less, Mn: 0.50 to 2.20%, P: 0.015% or less, S: 0.0008 to 0 .0025%, Sol. Al: 0.010 to 0.10%, (Si + Sol. Al): 0.13% or less, Cu: 0.05 to 0.50%, Ni: 0.05 to 0.80%, Nb: 0.005 0.00.024%, Ti: 0.005 to 0.018%, N: 0.0020 to 0.0050%, the balance being iron and unavoidable impurities. And Ceq and Tieq determined by the following formulas are Ceq: 0.38% or less, Tieq: −0.007 to 0.005%, and Meq.
High-strength steel for large heat input welding having excellent on-site weldability and jig trace resistance, characterized in that nS forms a composite precipitate with TiON or TiN. Ceq: C + / Mn + / 24Si + / 40Ni + / Cr + Mo + / 14V Tieq: Ti-3.4 × N
【請求項2】 重量%でCr:0.50%以下、Mo:
0.30%以下、V:0.10%以下の一種又は二種以
上を鋼に含有せしめた事を特徴とする請求項1記載の現
地溶接性及び耐治具跡割れ性に優れた大入熱溶接用高張
力鋼。
2. Cr: 0.50% or less by weight%, Mo:
3. Oiri having excellent on-site weldability and jig trace crack resistance according to claim 1, wherein one or more types of 0.30% or less and V: 0.10% or less are contained in steel. High strength steel for heat welding.
【請求項3】 MnSの複合析出物形成に際して出鋼時
のSiによる弱脱酸に引続き真空脱ガス時にTi添加後
Alにより完全脱酸を行ってTiON又はTiNを形成
せしめた鋼を鋳造後直ちに、又はAC点以上1170
℃以下に再加熱後、一般の厚板圧延又は必要に応じて6
0%以下の未再結晶域圧延に引き続いて1〜60℃/s
ecの冷却速度で540℃以下の任意の温度まで加速冷
を行い、請求項1又は請求項2記載の鋼を製造するこ
とを特徴とする現地溶接性及び耐治具跡割れ性に優れた
大入熱溶接用高張力鋼の製造方法。
3. Immediately after casting a steel in which TiON or TiN is formed by adding Ti and then completely deoxidizing with Al at the time of vacuum degassing, followed by weak deoxidation by Si at the time of tapping when forming a composite precipitate of MnS. , Or AC 3 points or more 1170
After re-heating to below ℃, general plate rolling or 6
0% or less unrecrystallized zone rolling, followed by 1 to 60 ° C / s
The steel according to claim 1 or 2, wherein accelerated cooling is performed to an arbitrary temperature of 540 ° C. or lower at a cooling rate of ec .
A method for producing high-strength steel for large heat input welding which is excellent in on- site weldability and jig trace crack resistance.
【請求項4】 加速冷却後焼き戻しを行うことを特徴と4. Tempering is performed after accelerated cooling.
する請求項3記載の現地溶接性及び耐治具跡割れ性に優Excellent in field weldability and jig trace crack resistance according to claim 3.
れた大入熱溶接用高張力鋼の製造方法。Of high strength steel for high heat input welding.
JP20282792A 1992-07-30 1992-07-30 High-strength steel for large heat input welding excellent in on-site weldability and jig crack resistance and its manufacturing method Expired - Lifetime JP2704810B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20282792A JP2704810B2 (en) 1992-07-30 1992-07-30 High-strength steel for large heat input welding excellent in on-site weldability and jig crack resistance and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20282792A JP2704810B2 (en) 1992-07-30 1992-07-30 High-strength steel for large heat input welding excellent in on-site weldability and jig crack resistance and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH0649586A JPH0649586A (en) 1994-02-22
JP2704810B2 true JP2704810B2 (en) 1998-01-26

Family

ID=16463851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20282792A Expired - Lifetime JP2704810B2 (en) 1992-07-30 1992-07-30 High-strength steel for large heat input welding excellent in on-site weldability and jig crack resistance and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2704810B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3895686B2 (en) * 2000-12-01 2007-03-22 ポスコ Steel sheet for depositing TiN + MnS for welded structure, method for producing the same, and welded structure using the same

Also Published As

Publication number Publication date
JPH0649586A (en) 1994-02-22

Similar Documents

Publication Publication Date Title
EP3733892A1 (en) Steel material, for pressure vessel, showing excellent hydrogen-induced cracking resistance and method for preparing same
US4591396A (en) Method of producing steel having high strength and toughness
US20190352749A1 (en) Steel material for high heat input welding
NO334883B1 (en) High-strength, high-toughness seamless steel pipe, for conveyor lines, and method of manufacture thereof
KR102255821B1 (en) Ultra-thick steel plate having high strength and excellent low-temperature impact toughness and method for manufacturing thereof
JP2007284712A (en) Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
CN111051555B (en) Steel sheet and method for producing same
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP5098317B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
JP4038166B2 (en) Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof
JP2001335884A (en) High strength thick steel plate excellent in ctod(crack tip opening displacement) characteristic, and its manufacturing method
JP2622800B2 (en) Tempered high-strength steel for large heat input welding with excellent on-site weldability and jig crack resistance and its manufacturing method
JPH0757886B2 (en) Process for producing Cu-added steel with excellent weld heat-affected zone toughness
JP2704810B2 (en) High-strength steel for large heat input welding excellent in on-site weldability and jig crack resistance and its manufacturing method
JPH09296253A (en) Extremely thick high strength steel pipe excellent in low temperature toughness
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JP4742597B2 (en) Production method of non-tempered high strength steel
JPH1180832A (en) Production of high tensile strength steel with low yield ratio, excellent in weldability and toughness at low temperature
JP4028815B2 (en) 780 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof
JPH07268457A (en) Production of thick steel plate for line pipe, having high strength and high toughness
JP3568710B2 (en) 590 N / mm2 grade steel sheet for welded structure having excellent HAZ toughness during large heat input welding and yield ratio of 80% or less and method for producing the same
JP2587564B2 (en) Manufacturing method of steel with excellent low-temperature toughness of weld heat affected zone
KR20220089148A (en) Steel for line pipe having excellent weldability and method of manufacturing the same
JP3802626B2 (en) Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970909