JP5098317B2 - Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness - Google Patents

Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness Download PDF

Info

Publication number
JP5098317B2
JP5098317B2 JP2006331785A JP2006331785A JP5098317B2 JP 5098317 B2 JP5098317 B2 JP 5098317B2 JP 2006331785 A JP2006331785 A JP 2006331785A JP 2006331785 A JP2006331785 A JP 2006331785A JP 5098317 B2 JP5098317 B2 JP 5098317B2
Authority
JP
Japan
Prior art keywords
steel
temperature
strength
toughness
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006331785A
Other languages
Japanese (ja)
Other versions
JP2008144216A (en
Inventor
義之 渡部
龍治 植森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006331785A priority Critical patent/JP5098317B2/en
Publication of JP2008144216A publication Critical patent/JP2008144216A/en
Application granted granted Critical
Publication of JP5098317B2 publication Critical patent/JP5098317B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、火災など高温時の耐力維持を目的とした建築構造用耐火鋼を主たるターゲットとするものであるが、建築用途に限らず、海洋構造物、船舶、橋梁、各種貯蔵タンク用など幅広い用途に適用できる溶接構造用高張力鋼の製造方法に関するものである。なお、本発明での溶接構造用鋼が、主に対象とする強度レベルは、降伏強さで235〜475MPa、引張強さで400〜640MPaのいわゆる一般に40〜50キロ鋼と呼ばれるクラスである。   The present invention is mainly intended for building structure refractory steel for the purpose of maintaining proof stress at high temperatures such as fires, but is not limited to architectural applications, and is widely used for marine structures, ships, bridges, various storage tanks, etc. The present invention relates to a method for manufacturing high-strength steel for welded structures that can be used for various purposes. In addition, the strength level which the welded structural steel according to the present invention is mainly targeted is a class generally called 40-50 kilo steel having a yield strength of 235 to 475 MPa and a tensile strength of 400 to 640 MPa.

高温耐力の確保を目的とした建築用途でのいわゆる耐火鋼は、多くの技術が開示されている。例えば、質量%で、C:0.04〜0.15%、Si:0.6%以下、Mn:0.5〜1.6%、Nb:0.005〜0.04%、Mo:0.4〜0.7%、Al:0.1%以下、N:0.001〜0.006%、残部がFe及び不可避不純物からなる鋼片を1100〜1300℃の温度域で加熱後、熱間圧延を800〜1000℃の温度範囲で終了する耐火性の優れた建築用低降伏比鋼材の製造方法の発明(例えば、特許文献1参照)や、質量%でC:0.05〜0.15%、Si:0.6%以下、Mn:0.8〜1.6%、P:0.03%以下、S:0.005%以下、Mo:0.35〜0.80%、Ti:0.005〜0.025%、Al:0.06%以下、N:0.006%以下を含有した鋼片を熱間圧延後、Ac変態点〜1000℃の温度範囲に再加熱、焼入し、450℃〜Ac 変態点の温度範囲で焼戻処理をすることにより、厚み50mm以上の高温強度並びに低温靭性に優れた鋼の製造方法の発明(例えば、特許文献2参照)が提案されている。しかし、そのほとんどはMoを含有するものである。確かに、Moは、鋼の高温耐力を確保する上で極めて有効な元素であるが、同時に高価な元素でもある。 Many techniques have been disclosed for so-called refractory steel in architectural applications aimed at ensuring high temperature proof stress. For example, in mass%, C: 0.04 to 0.15%, Si: 0.6% or less, Mn: 0.5 to 1.6%, Nb: 0.005 to 0.04%, Mo: 0 .4 to 0.7%, Al: 0.1% or less, N: 0.001 to 0.006%, the steel slab composed of Fe and inevitable impurities as the balance is heated in the temperature range of 1100 to 1300 ° C., and then heated. Invention of the manufacturing method of the low yield ratio steel material for construction excellent in fire resistance which complete | finishes hot rolling in the temperature range of 800-1000 degreeC (for example, refer patent document 1), C: 0.05-0. 15%, Si: 0.6% or less, Mn: 0.8 to 1.6%, P: 0.03% or less, S: 0.005% or less, Mo: 0.35 to 0.80%, Ti : Hot-rolled steel slab containing 0.005 to 0.025%, Al: 0.06% or less, N: 0.006% or less, and then Ac 3 transformation point to 100 Invention of a method for producing a steel excellent in high temperature strength and low temperature toughness with a thickness of 50 mm or more by reheating and quenching in a temperature range of 0 ° C. and tempering in a temperature range of 450 ° C. to Ac 1 transformation point (See, for example, Patent Document 2). However, most of them contain Mo. Certainly, Mo is an element that is extremely effective in securing the high-temperature proof stress of steel, but is also an expensive element.

ところでJIS等で規格化されている一般の構造用鋼は、約350℃から強度低下するため、その許容温度は約500℃となっている。即ち、ビルや事務所、住居、立体駐車場などの建築物に前記の鋼材を用いた場合は、火災時における安全性を確保するため、十分な耐火被覆を施すことが義務づけられており、建築関連諸法令では、火災時に鋼材温度が350℃以上にならないように規定されている。これは、前記鋼材では、350℃程度で耐力が常温の2/3程度になり、必要な強度を下回るためである。このため、一般鋼材を建造物に利用する場合、火災時において鋼材の温度が350℃に達しないように耐火被覆を施す必要がある。   By the way, since the strength of general structural steel standardized by JIS or the like decreases from about 350 ° C., the allowable temperature is about 500 ° C. In other words, when using the above steel materials for buildings such as buildings, offices, residences, and multistory parking lots, it is obliged to provide sufficient fireproof coating to ensure safety in the event of a fire. Related laws and regulations stipulate that the temperature of steel materials does not exceed 350 ° C in the event of a fire. This is because the steel material has a yield strength of about 2/3 of room temperature at about 350 ° C., which is lower than the required strength. For this reason, when using a general steel material for a building, it is necessary to apply a fireproof coating so that the temperature of the steel material does not reach 350 ° C. during a fire.

したがって、耐火鋼製造においては一般鋼+耐火被覆ならびにその施工コストに見合うものであることが前提となる。ところが、高温耐力維持を目的として一般に添加されるMoは市況変化が大きく、添加量にもよるが、耐火被覆コストと見合わない状況も出てくることもある。このため、Moを添加しない安価な高温強度保証鋼の開発・実用化が待たれていた。   Therefore, in the manufacture of refractory steel, it is premised that it is commensurate with general steel + refractory coating and its construction cost. However, Mo, which is generally added for the purpose of maintaining high-temperature proof stress, has a large change in market conditions, and depending on the amount of addition, there may be a situation that does not match the fireproof coating cost. For this reason, the development and commercialization of inexpensive high-temperature strength-guaranteed steel not containing Mo has been awaited.

特開平2−77523号公報Japanese Patent Laid-Open No. 2-77523 特開平5−339632号公報JP-A-5-339632

本発明は、市況変動の大きいMoを添加せずに優れた高温強度とともに鋼材の基本性能の一つである低温靭性にも優れる溶接構造用鋼を得るため、比較的低いCと比較的高いNbをベースに鋼成分を溶接割れ感受性組成PCMとともに特定範囲に限定することで、工業的に安定して、しかも低コストで供給可能な高温強度と低温靭性に優れる溶接構造用鋼の製造方法を提供することを課題とするものである。 In order to obtain a welded structural steel having excellent low temperature toughness, which is one of the basic performances of steel materials, without adding Mo, which has a large market fluctuation, the present invention has a relatively low C and a relatively high Nb. the base by limiting the specific range along with the weld crack susceptibility composition P CM steel components, industrially stable, yet producing method of welding structural steel excellent in possible high temperature strength and low temperature toughness provided at low cost The issue is to provide.

本発明のポイントは、高温耐力確保・維持に極めて有効なために通常用いられるMoを添加することなく、高温耐力を安定して確保するため、比較的高いCrとNbの複合添加による変態組織教化とCrやNbの析出物(炭窒化物)を利用するものである。Moを含有しない高温耐力保証鋼は、それ自体極めて画期的であると同時に、焼入性の高いMoを含有しないことで、溶接構造用鋼としての基本性能(強度、靭性)にはもちろん、溶接性やガス切断性をもかえって向上させることにもつながる。   The point of the present invention is that it is extremely effective in securing and maintaining high-temperature proof stress. In order to stably secure high-temperature proof strength without adding Mo, which is usually used, transformation structure teaching by relatively high combined addition of Cr and Nb And a precipitate (carbonitride) of Cr or Nb. The high-temperature proof strength steel that does not contain Mo is extremely innovative in itself, and at the same time, by not containing Mo with high hardenability, of course, the basic performance (strength, toughness) as a welded structural steel, It also leads to improved weldability and gas cutting performance.

本発明は、Cr、Nbのみならず、C、Si、Mnをはじめとする個々の合金元素量及びPCMを限定し、さらに製造条件を限定することで、溶接構造用鋼としての各種使用性能はもちろん、優れた高温強度と低温靭性を両立させたものであるが、その要旨は、以下のとおりである。 The present invention, Cr, not Nb only, C, Si, limiting the individual amounts of alloying elements and P CM, including Mn, by further limiting the production conditions, various use performance as welding structural steel Of course, the high temperature strength and the low temperature toughness are both achieved, and the gist thereof is as follows.

(1) 成分が質量%で、
C:0.005〜0.05%、
Si:0.60%以下、
Mn:0.8〜2.0%、
P:0.020%以下、
S:0.010%以下、
Cr:0.50超〜3.0%、
Nb:0.05〜0.50% かつ Nb≧2C、
Al:0.060%以下、
N:0.001〜0.006%
を含有し、残部が鉄及び不可避的不純物からなり、PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bと定義するPCM値が0.24%以下からなる鋳片または鋼片を、1000〜1300℃の温度に加熱し、オーステナイト未再結晶温度域での累積圧下量を30%以上として750℃以上の温度で熱間圧延を終了した後、放冷することを特徴とする高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
(1) The component is mass%,
C: 0.005-0.05%,
Si: 0.60% or less,
Mn: 0.8 to 2.0%,
P: 0.020% or less,
S: 0.010% or less,
Cr: more than 0.50 to 3.0%,
Nb: 0.05 to 0.50% and Nb ≧ 2 C,
Al: 0.060% or less,
N: 0.001 to 0.006%
Containing the balance being iron and unavoidable impurities, P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B and P CM value defining comprises 0.24% or less slab or steel The piece is heated to a temperature of 1000 to 1300 ° C, the cumulative reduction in the austenite non-recrystallization temperature region is set to 30% or more, and after hot rolling is finished at a temperature of 750 ° C or more, it is allowed to cool. A method for producing welded structural steel with excellent high temperature strength and low temperature toughness.

(2) 上記の成分に加えさらに、質量%で、
V:0.01〜0.20%、
Ti:0.005〜0.025%
の範囲で1種または2種を含有することを特徴とする上記(1)記載の高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
(2) In addition to the above components,
V: 0.01-0.20%,
Ti: 0.005-0.025%
The method for producing a steel for welded structure having excellent high-temperature strength and low-temperature toughness as described in (1) above, comprising 1 type or 2 types within the range of

(3) さらに、質量%で、
Ni:0.05〜0.50%、
Cu:0.05〜0.50%、
B:0.0002〜0.003%、
Mg:0.0002〜0.005%
の範囲で1種または2種以上を含有することを特徴とする上記(1)または(2)に記載の高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
(3) Furthermore, in mass%,
Ni: 0.05 to 0.50%,
Cu: 0.05 to 0.50%,
B: 0.0002 to 0.003%,
Mg: 0.0002 to 0.005%
The method for producing a steel for welded structure having excellent high temperature strength and low temperature toughness according to the above (1) or (2), comprising 1 type or 2 types or more in the range described above.

(4) さらに、質量%で、
Ca:0.0005〜0.004%、
REM:0.0005〜0.008%
の範囲で1種または2種を含有することを特徴とする上記(1)〜(3)の内のいずれかに記載の高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
(4) Furthermore, in mass%,
Ca: 0.0005 to 0.004%,
REM: 0.0005 to 0.008%
The method for producing a steel for welded structure having excellent high temperature strength and low temperature toughness according to any one of the above (1) to (3), comprising 1 type or 2 types within the range of.

本発明によれば、火災時など高温に晒される環境でも十分な耐力を有する溶接構造用鋼が大量かつ安価に供給できるため、種々の用途の広範な溶接鋼構造物の安全性向上に資することが可能となった。その結果、建築構造用として、耐火被覆軽減または省略が可能となった。また、建築以外の用途においても、強度、靭性などの基本性能を具備したため、高温に晒される可能性のある溶接構造物用鋼として、構造物の安全性を一段と高めることができるようになった。   According to the present invention, a large amount of welded structural steel having sufficient proof strength can be supplied even in an environment exposed to a high temperature such as a fire, and this contributes to improving the safety of a wide range of welded steel structures for various applications. Became possible. As a result, it has become possible to reduce or omit the fireproof coating for building structures. In addition to building construction, it has basic performances such as strength and toughness, and as a steel for welded structures that may be exposed to high temperatures, the safety of structures can be further enhanced. .

以下本発明を詳細に説明する。
まず、本発明が、請求項のとおりに鋼成分を限定した理由について説明する。
The present invention will be described in detail below.
First, the reason why the present invention limited the steel components as described in the claims will be described.

Cは、高張力鋼としてはきわめて低いレベルに限定しており、本発明の特徴の一つである。これは、後述する他の成分とともに製造方法とも密接に関係している。鋼成分の中でもCは鋼材の特性に最も大きな影響をおよぼすもので、下限0.005%は強度確保や溶接などの熱影響部が必要以上に軟化することの内容にするための最小量である。しかし、C量が多すぎると焼入性が必要以上に上がり、鋼材が本来有すべき強度、靭性のバランス、溶接性などに悪影響を及ぼすため、上限を0.05%とした。   C is limited to a very low level as a high-strength steel, and is one of the features of the present invention. This is closely related to the manufacturing method together with other components described later. Among steel components, C has the greatest influence on the properties of the steel material, and the lower limit of 0.005% is the minimum amount for ensuring that the heat-affected zone such as securing the strength and welding is softened more than necessary. . However, if the amount of C is too large, the hardenability is increased more than necessary, and the upper limit is set to 0.05% because it adversely affects the strength, toughness balance, weldability, etc. that the steel material should originally have.

Siは、脱酸上鋼に含まれる元素であるが、多く添加すると溶接性、HAZ靭性が劣化するため、上限を0.60%に限定した。鋼の脱酸はTi、Alのみでも十分可能であり、HAZ靭性、焼入性などの観点から低いほど好ましく、必ずしも添加する必要はない。   Si is an element contained in the deoxidized upper steel, but if added in a large amount, weldability and HAZ toughness deteriorate, so the upper limit was limited to 0.60%. Deoxidation of steel can be sufficiently performed only with Ti and Al, and is preferably as low as possible from the viewpoints of HAZ toughness, hardenability, and the like, and it is not always necessary to add them.

Mnは、常温の強度、靭性を確保する上で不可欠な元素であり、その下限は0.8%である。しかし、Mn量が多すぎると焼入性が上昇して溶接性、HAZ靭性を劣化させるだけでなく、連続鋳造スラブの中心偏析を助長するので上限を2.0%とした。   Mn is an element indispensable for securing the strength and toughness at room temperature, and its lower limit is 0.8%. However, if the amount of Mn is too large, not only the hardenability is increased and the weldability and HAZ toughness are deteriorated, but also the center segregation of the continuously cast slab is promoted, so the upper limit was made 2.0%.

Pは、本発明鋼において不純物であり、P量の低減はHAZにおける粒界破壊を減少させる傾向があるため、少ない程好ましい。含有量が多いと母材、溶接部の低温靭性を劣化させるため上限を0.020%とした。   P is an impurity in the steel of the present invention, and a reduction in the amount of P tends to reduce the grain boundary fracture in HAZ, so it is preferable that it is as small as possible. If the content is large, the low temperature toughness of the base metal and the welded portion is deteriorated, so the upper limit was made 0.020%.

Sは、Pと同様本発明鋼においては不純物であり、母材の低温靭性の観点からは少ない程好ましい。含有量が多いと母材、溶接部の低温靭性を劣化させるため上限を0.010%とした。   S, like P, is an impurity in the steel of the present invention, and is preferably as small as possible from the viewpoint of the low temperature toughness of the base material. If the content is large, the low temperature toughness of the base metal and the welded portion is deteriorated, so the upper limit was made 0.010%.

Crは、本発明における最も重要な元素の一つである。実質的にMoを含有しない本発明鋼においては、高温強度確保のため比較的多いCrの添加が必要である。これは、Crの焼入性向上効果により変態温度が低下して常温及び高温強度を嵩上げするとともに、高温時にCrの固溶効果やCr炭化物を利用するためである。これらの効果を享受するため、最低0.50%超が必要である。しかし、添加量が多すぎると母材、溶接部の靭性及び溶接性の劣化を招き、経済性も失するため上限を3.0%とした。   Cr is one of the most important elements in the present invention. In the steel of the present invention which does not substantially contain Mo, a relatively large amount of Cr needs to be added to ensure high temperature strength. This is because the transformation temperature is lowered due to the effect of improving the hardenability of Cr to increase the normal temperature and high temperature strength, and the solid solution effect of Cr and Cr carbide are used at high temperatures. In order to enjoy these effects, at least 0.50% is necessary. However, if the addition amount is too large, the base material, the toughness of the welded portion and the weldability are deteriorated, and the economic efficiency is also lost, so the upper limit was made 3.0%.

Nbは、Cr同様、本発明における重要な元素の一つである。なぜなら、実質的にMoを含有しない本発明鋼においては、高温耐力確保のため固溶NbならびにNbの析出物(炭窒化物)を利用しているからである。常温強度をNb析出物による析出効果で増加させるためには、比較的少ない量で良いが、高温時の耐力を確保するためには、0.05%以上で、かつ、少なくともC量の2倍以上のNb(Nb≧2C)が必要であり、さらに固溶Nbを安定して確保するためには、C量の5倍以上含有させることが好ましい。上限については、必ずしも限界を見極めたわけではないが、本発明者らの実験により、溶接部の大幅な靭性劣化を招かない範囲として、本発明では0.50%とした。なお、Nb添加は、オーステナイトの未再結晶温度を上昇させ、熱間圧延時の制御圧延の効果を最大点に発揮することにも寄与する。   Nb, like Cr, is one of the important elements in the present invention. This is because, in the steel of the present invention that does not substantially contain Mo, solid solution Nb and Nb precipitates (carbonitrides) are used to ensure high temperature proof stress. In order to increase the normal temperature strength by the precipitation effect of Nb precipitates, a relatively small amount may be used. However, in order to ensure high temperature proof stress, it is 0.05% or more and at least twice the amount of C. The above Nb (Nb ≧ 2C) is necessary, and in order to secure solid solution Nb stably, it is preferable to contain 5 times or more the amount of C. The upper limit is not necessarily determined, but it is 0.50% in the present invention as a range that does not cause a significant deterioration in toughness of the welded portion by experiments of the present inventors. In addition, Nb addition raises the non-recrystallization temperature of austenite and contributes also to exhibiting the effect of the controlled rolling at the time of hot rolling to the maximum point.

Alは、一般に脱酸上鋼に含まれる元素であるが、脱酸はSiまたはTiだけでも十分であり、本発明鋼においては、その下限は限定しない。しかし、Al量が多くなると鋼の清浄度が悪くなるだけでなく、洋設金属の靭性が劣化するので上限を0.006%である。   Al is an element generally contained in deoxidized upper steel, but Si or Ti is sufficient for deoxidation, and the lower limit is not limited in the steel of the present invention. However, when the amount of Al increases, not only the cleanliness of steel deteriorates but also the toughness of the western metal deteriorates, so the upper limit is 0.006%.

次に必要に応じて含有することができるV、Tiの添加理由について説明する。   Next, the reason for the addition of V and Ti that can be contained as required will be described.

Vは、Nbとほぼ同様の効果を有し、本発明におけるVの役割は、Nbを補完するものである。ただし、Vは、Nbに比べて効果は小さく、焼入性にも影響を及ぼすため、上下限を限定したものだが、下限はV添加の効果を享受できる最少量として0.01%に、上限はあくまでNbの補完的役割であることと後述するPCMへの影響も勘案し0.20%とした。 V has substantially the same effect as Nb, and the role of V in the present invention complements Nb. However, V is less effective than Nb and affects hardenability, so the upper and lower limits are limited. However, the lower limit is 0.01% as the minimum amount that can enjoy the effect of V addition. only was 0.20% taking into account the impact of the P CM, which will be described later and it is the complementary role of Nb is.

Tiは母材および溶接熱影響部靭性向上のために必須である。なぜならばTiは、Al量が少ないとき(例えば0.003%以下)、Oと結合してTiを主成分とする析出物を形成、粒内変態フェライトの生成の核となり溶接熱影響部靭性を向上させる。また、TiはNと結合してTiNとしてスラブ中に微細析出し、加熱時のγ粒の粗大化を抑え圧延組織の細粒化に有効であり、また鋼板中に存在する微細TiNは、溶接時に溶接熱影響部組織を細粒化するためである。これらの効果を得るためにはTiは最低0.005%必要である。しかし多すぎるとTiCを形成し、低温靭性や溶接性を劣化させるので、その上限は0.025%である。 Ti is essential for improving the toughness of the base metal and the weld heat affected zone. This is because when Ti has a small amount of Al (for example, 0.003% or less), it combines with O to form a precipitate mainly composed of Ti 2 O 3 , which becomes the nucleus of the formation of intragranular transformed ferrite and influence of welding heat. Improve toughness. Ti is combined with N and finely precipitated in the slab as TiN, which suppresses the coarsening of γ grains during heating and is effective for refining the rolled structure. The fine TiN present in the steel sheet is welded. This is to sometimes refine the weld heat affected zone structure. In order to obtain these effects, Ti needs to be at least 0.005%. However, if it is too much, TiC is formed and the low temperature toughness and weldability are deteriorated, so the upper limit is 0.025%.

次に、Ni、Cu、B、Mgの添加理由について説明する。   Next, the reason for adding Ni, Cu, B, and Mg will be described.

基本となる成分に、さらにこれらの元素を添加する主たる目的は、本発明鋼の優れた特徴を損なうことなく、強度、靭性などの特性を向上させるためである。したがってその添加量は自ずと制限されるべき性質のものである。   The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should naturally be limited.

Niは過剰に添加しなければ、溶接性、溶接熱影響部靭性に悪影響を及ぼすことなく母材の強度、靭性を向上させる。これら効果を発揮させるためには、少なくとも0.05%以上の添加が必要である。一方、過剰な添加は高価なだけでなく、溶接性に好ましくない。また、Niを多く添加すると液体アンモニア中で応力腐食割れ(SCC)を誘起する可能性が指摘されている。発明者らの実験によれば、1.0%までの添加は溶接性や液体アンモニア中でのSCCを大きく劣化させず、強度、靭性向上効果の方が大きいが、経済性を優先し、上限を0.50%とした。   If Ni is not added excessively, the strength and toughness of the base material are improved without adversely affecting the weldability and weld heat affected zone toughness. In order to exert these effects, it is necessary to add at least 0.05% or more. On the other hand, excessive addition is not only expensive, but is not preferable for weldability. Further, it has been pointed out that the addition of a large amount of Ni may induce stress corrosion cracking (SCC) in liquid ammonia. According to the experiments by the inventors, addition up to 1.0% does not significantly deteriorate the weldability and SCC in liquid ammonia, and the effect of improving strength and toughness is greater. Was 0.50%.

Cuは、Niとほぼ同様の効果、現象を示し、上限の0.50%は溶接性劣化に加え、過剰な添加は熱間圧延時にCu−クラックが発生し製造困難となるため規制される。下限は実質的な効果が得られるための最小量とすべきで0.05%である。   Cu exhibits substantially the same effects and phenomena as Ni, with the upper limit of 0.50% being restricted in terms of weldability deterioration and excessive addition because Cu-cracks are generated during hot rolling, making it difficult to manufacture. The lower limit should be the minimum amount for obtaining a substantial effect, and is 0.05%.

Bは、オーステナイト粒界に偏析し、フェライトの生成を抑制することを介して、焼入性を向上させ、強度向上に寄与する。この効果を享受するため、最低0.0002%以上必要である。しかし、多すぎる添加は焼入性向上効果が飽和するだけでなく、靭性上有害となるB析出物を形成する可能性もあるため、上限を0.003%とした。なお、タンク用鋼などとして、応力腐食割れが懸念されるケースでは、母材及び溶接熱影響部の硬さの低減がポイントとなることが多く(例えば、硫化物応力腐食割れ(SCC)防止のためにはHRC≦22(HV≦248)が必須とされる)、そのようなケースでは焼入性を増大させるB添加は好ましくない。   B segregates at austenite grain boundaries and suppresses the formation of ferrite, thereby improving hardenability and contributing to strength improvement. In order to enjoy this effect, at least 0.0002% is necessary. However, too much addition not only saturates the effect of improving hardenability but also may form B precipitates that are harmful to toughness, so the upper limit was made 0.003%. In cases where stress corrosion cracking is a concern, such as for tank steel, a reduction in the hardness of the base metal and the weld heat-affected zone is often the point (for example, prevention of sulfide stress corrosion cracking (SCC)). Therefore, HRC ≦ 22 (HV ≦ 248) is essential), and in such a case, B addition for increasing the hardenability is not preferable.

Mgは、溶接熱影響部においてオーステナイト粒の成長を抑制し、細粒化する作用があり溶接部の強靭化が図れる。このような効果を享受するためには、Mgは0.0002%以上必要である。一方、添加量が増えると添加量に対する効果代が小さくなるため、コスト上得策ではないので上限は0.005%とした。   Mg suppresses the growth of austenite grains in the weld heat-affected zone and has the effect of reducing the size of the particles, so that the weld zone can be strengthened. In order to enjoy such an effect, Mg needs to be 0.0002% or more. On the other hand, since the effect cost for the added amount decreases as the added amount increases, the upper limit is set to 0.005% because this is not a cost effective measure.

次に、請求項4にかかるCaまたはREMの添加理由について説明する。   Next, the reason for adding Ca or REM according to claim 4 will be described.

CaおよびREMは、MnSの形態を制御し、母材の低温靭性を向上させるほか、湿潤硫化水素環境下での水素誘起割れ(HIC、SSC、SOHIC)感受性を低減させる。これらの効果を発揮するためには、最低0.0005%必要である。しかし、多すぎる添加は、鋼の清浄度を逆に悪化させ、母材靭性や湿潤硫化水素環境下での水素誘起割れ(HIC、SSC、SOHIC)感受性を高めるため、添加量の上限はCa、REMそれぞれ0.004%、0.008%に限定した。CaとREMは、ほぼ同等の効果を有するため、いずれか1種を上記範囲で添加すればよく、両者を添加しても良い。   Ca and REM control the morphology of MnS, improve the low temperature toughness of the base material, and reduce the susceptibility to hydrogen induced cracking (HIC, SSC, SOHIC) in a wet hydrogen sulfide environment. In order to exert these effects, 0.0005% is necessary at least. However, too much addition adversely deteriorates the cleanliness of the steel, and increases the base metal toughness and susceptibility to hydrogen-induced cracking (HIC, SSC, SOHIC) in a wet hydrogen sulfide environment. REM was limited to 0.004% and 0.008%, respectively. Since Ca and REM have substantially the same effect, either one may be added in the above range, or both may be added.

鋼の個々の成分を限定しても、成分系全体が適切でないと優れた特性は得られない。本発明鋼ではPCMの値を0.24%以下に限定する。PCMは溶接性を表す指標で、低いほど溶接性は良好である。一般に、PCMが0.25%以下であれば優れた溶接性の確保が可能であり、本発明における前記限定は、本発明の特徴をより明確にすることを企図したものである。下限は特に限定しないが、各成分の限定範囲から自ずと制約されるものである。 Even if the individual components of the steel are limited, excellent properties cannot be obtained unless the entire component system is appropriate. In the present invention steel to limit the value of P CM below 0.24%. PCM is an index representing weldability. The lower the CM, the better the weldability. In general, P CM is possible to secure excellent weldability if 0.25% or less, the limit of the present invention is obtained by intended to more clearly the features of the present invention. The lower limit is not particularly limited, but is naturally limited by the limited range of each component.

限定された鋼成分において、優れた高温強度と低温靭性を両立する溶接構造用高張力鋼を得るためには、製造条件も本発明のとおりに限定することが必要である。以下、その理由について説明する。   In order to obtain a high-strength steel for welded structures that achieves both excellent high-temperature strength and low-temperature toughness in the limited steel components, it is necessary to limit the production conditions as in the present invention. The reason will be described below.

圧延に先立つ加熱温度を1000〜1300℃に限定した理由は、加熱時のオーステナイト粒を小さく保ち、圧延組織の微細化を図るためである。1300℃は加熱時のオーステナイトが極端に粗大化しない上限温度であり、加熱温度がこれを超えるとオーステナイト粒が粗大混粒化し、変態後の組織も粗大化するため鋼の靭性が著しく劣化する。一方、加熱温度が低すぎると、板厚によっては後述する圧延終了温度の確保が困難となるばかりでなく、オーステナイトの未再結晶温度を上昇させ、熱間圧延時の制御圧延の効果を最大限に発揮させたり、析出効果を発現させるためのNbの溶体化の観点から下限を1000℃に限定した。   The reason why the heating temperature prior to rolling is limited to 1000 to 1300 ° C. is to keep the austenite grains during heating small and to refine the rolled structure. 1300 ° C. is an upper limit temperature at which the austenite during heating is not extremely coarsened. When the heating temperature is exceeded, the austenite grains are coarsely mixed and the structure after transformation is also coarsened, so that the toughness of the steel is remarkably deteriorated. On the other hand, if the heating temperature is too low, depending on the plate thickness, it becomes difficult to secure the rolling end temperature, which will be described later, and the non-recrystallization temperature of austenite is raised to maximize the effect of controlled rolling during hot rolling. The lower limit was limited to 1000 ° C. from the viewpoint of solutionization of Nb for exhibiting the above-described effects and for causing precipitation effects.

上述のような条件で加熱した鋳片または鋼片を、オーステナイト未再結晶温度域での累積圧下量を30%以上とし、750℃以上で熱間圧延を終了した後、放冷する。オーステナイト未再結晶温度域での圧延を行うことによって、オーステナイト粒を顕著に細粒化するため、少なくとも30%以上の累積圧下量が必要である。圧延終了温度が750℃を下回るとフェライトが変態析出し、フェライトを加工(圧延)する恐れがあり、低温靭性確保の点で好ましくない。このため、圧延終了温度は、750℃以上に限定する。   The slab or steel slab heated under the above conditions is allowed to cool after the hot rolling at 750 ° C. or higher is completed at a cumulative reduction in the austenite non-recrystallization temperature range of 30% or higher. By rolling in the austenite non-recrystallization temperature range, the austenite grains are remarkably refined, so that a cumulative reduction amount of at least 30% or more is required. If the rolling end temperature is lower than 750 ° C., ferrite may be transformed and precipitated, and the ferrite may be processed (rolled), which is not preferable in terms of securing low temperature toughness. For this reason, rolling end temperature is limited to 750 degreeC or more.

熱間圧延終了後は放冷としたが、これは本発明の成分であれば、放冷で概ね降伏強さで235〜475MPa、引張強さで400〜640MPaのいわゆる一般に40〜50キロ級鋼の強度が得られるためである。したがって、必ずしも圧延後の加速冷却を否定するものではないが、冷却の均一性等製造容易性の観点では放冷のほうが明らかに優位であり、本発明では放冷に限定した。   Although it was allowed to cool after completion of the hot rolling, if it is a component of the present invention, it is allowed to cool, generally 235 to 475 MPa in yield strength and 400 to 640 MPa in tensile strength, so-called generally 40-50 kg class steel. This is because the following strength can be obtained. Therefore, although accelerated cooling after rolling is not necessarily denied, the cooling is clearly superior from the viewpoint of ease of manufacturing such as cooling uniformity, and the present invention is limited to the cooling.

以下実施例に基づいて本発明を具体的に説明する。
転炉−連続鋳造−厚板工程で種々の鋼成分の鋼板(厚さ19〜80mm)を製造し、その材質を調査した。
The present invention will be specifically described below based on examples.
Steel sheets (thickness 19 to 80 mm) of various steel components were manufactured in the converter-continuous casting-thick plate process, and the materials were investigated.

表1に比較鋼とともに本発明鋼の鋼成分を、表2に鋼板の製造条件と諸特性を示す。   Table 1 shows the steel components of the steel of the present invention together with the comparative steel, and Table 2 shows the manufacturing conditions and various properties of the steel sheet.

本発明法に従って製造した鋼板(本発明鋼)は、すべて良好な特性を有する。これに対し、本発明によらない比較鋼は、いずれかの特性が劣る。   All the steel sheets (invention steels) produced according to the method of the present invention have good characteristics. On the other hand, the comparative steel not according to the present invention is inferior in any of the characteristics.

即ち、比較鋼11は、C量が高いため母材靭性に劣る。比較鋼12は、Nb量の絶対値が低いため、高温強度に劣る。比較鋼13は、個々の成分は本発明の限定範囲であるが、C量に対してNb量が低いため、高温強度に劣る。比較鋼14は、C量が低いため、常温、高温強度とも低い。比較鋼15は、成分上は本発明鋼5と同一である。しかし、比較鋼15−1は、γ未再結晶温度域の累積圧下量が小さいため靭性に劣り、比較鋼15−2は、圧延終了温度が低いため、靭性に劣る。   That is, the comparative steel 11 is inferior in the base metal toughness because of the high C content. Since the absolute value of Nb amount is low, the comparative steel 12 is inferior in high temperature strength. Although each component of the comparative steel 13 is within the limited range of the present invention, the high temperature strength is inferior because the Nb amount is lower than the C amount. Since the comparative steel 14 has a low C content, both the room temperature and the high temperature strength are low. The comparative steel 15 is the same as the steel 5 of the present invention in terms of composition. However, the comparative steel 15-1 is inferior in toughness because the cumulative reduction amount in the γ non-recrystallization temperature region is small, and the comparative steel 15-2 is inferior in toughness because the rolling end temperature is low.

なお、本発明鋼はもちろん比較鋼においてもPCMは低いため、溶接性(斜めy形溶接割れ試験:JIS Z 3158)はいずれも良好で、明確な差は見られなかった。 Since P CM is lower in the present invention steels as well comparative steels, weldability (oblique y-groove weld cracking test: JIS Z 3158) are both good, clear difference was observed.

Figure 0005098317
Figure 0005098317

Figure 0005098317
Figure 0005098317

Claims (4)

成分が質量%で、
C:0.005〜0.05%、
Si:0.60%以下、
Mn:0.8〜2.0%、
P:0.020%以下、
S:0.010%以下、
Cr:0.50超〜3.0%、
Nb:0.05〜0.50% かつ Nb≧2C、
Al:0.060%以下、
N:0.001〜0.006%
を含有し、残部が鉄及び不可避的不純物からなり、PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bと定義するPCM値が0.24%以下からなる鋳片または鋼片を、1000〜1300℃の温度に加熱し、オーステナイト未再結晶温度域での累積圧下量を30%以上として750℃以上の温度で熱間圧延を終了した後、放冷することを特徴とする高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
Ingredient is% by mass
C: 0.005-0.05%,
Si: 0.60% or less,
Mn: 0.8 to 2.0%,
P: 0.020% or less,
S: 0.010% or less,
Cr: more than 0.50 to 3.0%,
Nb: 0.05 to 0.50% and Nb ≧ 2 C,
Al: 0.060% or less,
N: 0.001 to 0.006%
Containing the balance being iron and unavoidable impurities, P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B and P CM value defining comprises 0.24% or less slab or steel The piece is heated to a temperature of 1000 to 1300 ° C, the cumulative reduction in the austenite non-recrystallization temperature region is set to 30% or more, and after hot rolling is finished at a temperature of 750 ° C or more, it is allowed to cool. A method for producing welded structural steel with excellent high temperature strength and low temperature toughness.
上記の成分に加えさらに、質量%で、
V:0.01〜0.20%、
Ti:0.005〜0.025%
の範囲で1種または2種を含有することを特徴とする請求項1記載の高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
In addition to the above ingredients,
V: 0.01-0.20%,
Ti: 0.005-0.025%
The method for producing a steel for welded structure having excellent high temperature strength and low temperature toughness according to claim 1, comprising 1 type or 2 types within the range of 1 above.
さらに、質量%で、
Ni:0.05〜0.50%、
Cu:0.05〜0.50%、
B:0.0002〜0.003%、
Mg:0.0002〜0.005%
の範囲で1種または2種以上を含有することを特徴とする請求項1または2に記載の高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
Furthermore, in mass%,
Ni: 0.05 to 0.50%,
Cu: 0.05 to 0.50%,
B: 0.0002 to 0.003%,
Mg: 0.0002 to 0.005%
The method for producing a steel for welded structure having excellent high-temperature strength and low-temperature toughness according to claim 1, wherein the steel contains 1 type or 2 types or more.
さらに、質量%で、
Ca:0.0005〜0.004%、
REM:0.0005〜0.008%
の範囲で1種または2種を含有することを特徴とする請求項1〜3の内のいずれかに記載の高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
Furthermore, in mass%,
Ca: 0.0005 to 0.004%,
REM: 0.0005 to 0.008%
The method for producing a welded structural steel excellent in high-temperature strength and low-temperature toughness according to any one of claims 1 to 3, wherein the material contains 1 type or 2 types.
JP2006331785A 2006-12-08 2006-12-08 Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness Expired - Fee Related JP5098317B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006331785A JP5098317B2 (en) 2006-12-08 2006-12-08 Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006331785A JP5098317B2 (en) 2006-12-08 2006-12-08 Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness

Publications (2)

Publication Number Publication Date
JP2008144216A JP2008144216A (en) 2008-06-26
JP5098317B2 true JP5098317B2 (en) 2012-12-12

Family

ID=39604703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006331785A Expired - Fee Related JP5098317B2 (en) 2006-12-08 2006-12-08 Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness

Country Status (1)

Country Link
JP (1) JP5098317B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5073396B2 (en) * 2007-07-20 2012-11-14 新日本製鐵株式会社 Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
JP5157748B2 (en) * 2008-08-25 2013-03-06 新日鐵住金株式会社 Steel plate with small welding deformation
US20110002808A1 (en) * 2008-10-27 2011-01-06 Masaki Mizoguchi Fire-resistant steel material superior in weld heat affected zone reheat embrittlement resistance and low temperature toughness and method of production of same
CN101849026B (en) 2009-01-15 2012-07-04 新日本制铁株式会社 Steel for weld construction having excellent high-temperature strength and low-temperature toughness and process for producing the steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996218A (en) * 1982-11-24 1984-06-02 Sumitomo Metal Ind Ltd Manufacture of low-carbon high-tension tough steel plate having two-phase structure
JPH06293914A (en) * 1993-04-07 1994-10-21 Nippon Steel Corp Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and haz toughness
JP3465494B2 (en) * 1996-03-18 2003-11-10 Jfeスチール株式会社 Method for manufacturing high-strength, high-toughness thick steel with low material variability and excellent weldability

Also Published As

Publication number Publication date
JP2008144216A (en) 2008-06-26

Similar Documents

Publication Publication Date Title
JP4834149B2 (en) Welded structural steel excellent in high temperature strength and low temperature toughness and its manufacturing method
JP4718866B2 (en) High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JP5073396B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
EP1790749A1 (en) 490 MPa GRADE HIGH TENSILE STEEL FOR WELDED STRUCTURE EXHIBITING EXCELLENT HIGH TEMPERATURE STRENGTH AND METHOD FOR PRODUCTION THEREOF
JP2006336065A (en) Low yield-ratio high tensile-strength steel, and method for producing low yield-ratio high tensile-strength steel
JP4709632B2 (en) Manufacturing method of high strength steel for welded structure with excellent high temperature strength and low temperature toughness
JP4833611B2 (en) 490 MPa class thick high-strength refractory steel for welded structures excellent in weldability and gas-cutting property, and method for producing the same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP5098317B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
JP2004084068A (en) Non-haettreated low yield ratio high tensile strength steel having excellent high temperature strength and production method therefor
JP4362219B2 (en) Steel excellent in high temperature strength and method for producing the same
JP5098207B2 (en) Manufacturing method of high strength steel for welded structure with excellent high temperature strength and low temperature toughness
JP4309561B2 (en) High-tensile steel plate with excellent high-temperature strength and method for producing the same
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP5194994B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength
JP4038166B2 (en) Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof
JP2007277680A (en) Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
JP4031730B2 (en) Structural 490 MPa class high-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JP4348102B2 (en) 490 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof
WO2007015311A1 (en) 490 MPa GRADE HIGH-TENSILE STEEL FOR WELDED STRUCTURE EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND METHOD FOR PRODUCING SAME
JP4028815B2 (en) 780 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof
JP4348103B2 (en) 590 MPa class high strength steel excellent in high temperature strength and method for producing the same
JP5272878B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
JPS6293312A (en) Manufacture of high tensile steel stock for stress relief annealing
JP2002088413A (en) Method for producing high tension steel excellent in weldability and ductility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5098317

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees