JP2007277680A - Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness - Google Patents

Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness Download PDF

Info

Publication number
JP2007277680A
JP2007277680A JP2006108495A JP2006108495A JP2007277680A JP 2007277680 A JP2007277680 A JP 2007277680A JP 2006108495 A JP2006108495 A JP 2006108495A JP 2006108495 A JP2006108495 A JP 2006108495A JP 2007277680 A JP2007277680 A JP 2007277680A
Authority
JP
Japan
Prior art keywords
steel
temperature
strength
toughness
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006108495A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Watabe
義之 渡部
Ryuji Uemori
龍治 植森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006108495A priority Critical patent/JP2007277680A/en
Publication of JP2007277680A publication Critical patent/JP2007277680A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a steel for welded structure excellent in high temperature strength and low temperature toughness by which the steel for welded structure excellent in the high temperature strength and also in the low temperature toughness being one of the basic performance of steel can be supplied inexpensively without adding Mo having large fluctuation in a market condition. <P>SOLUTION: A cast slab or a steel slab comprising, by mass%, 0.003-0.05% C, ≤0.40% Si, 0.5-2.0% Mn, ≤0.020% P, ≤0.010% S, 0.05-0.50% Nb, the Nb being ≥3C, ≤0.060% Al, 0.001-0.006% N and the balance Fe with inevitable impurities, wherein a P<SB>CM</SB>value is 0.22 or below , is heated to 1,000-1,300°C, and after finishing hot-rolling at ≥850°C as ≥30% accumulated rolling-reduction ratio in austenite non-recrystallization temperature zone, an air-cooling is performed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、火災など高温時の耐力維持を目的とした建築構造用耐火鋼の製造方法を主たるターゲットとするものであるが、建築用途に限らず、海洋構造物、船舶、橋梁、各種貯槽タンク用など幅広い用途の高温強度と低温靭性に優れる溶接構造用鋼の製造方法に適用できる。   The present invention is mainly intended for a manufacturing method of fireproof steel for building structures intended to maintain the yield strength at high temperatures such as fires, but is not limited to building applications, but also marine structures, ships, bridges, various storage tanks It can be applied to the manufacturing method of steel for welded structure that has excellent high temperature strength and low temperature toughness for a wide range of uses.

高温耐力の確保を目的とした建築用途でのいわゆる耐火鋼は、多くの技術が開示されている(例えば、特許文献1参照)。しかし、そのほとんどはMoを含有するものである。確かに、Moは、鋼の高温耐力を確保する上で極めて有効な元素であるが、同時に高価な元素でもある。   Many techniques have been disclosed for so-called refractory steel in architectural applications aimed at ensuring high-temperature proof stress (see, for example, Patent Document 1). However, most of them contain Mo. Certainly, Mo is an element that is extremely effective in securing the high-temperature proof stress of steel, but is also an expensive element.

ところで、JIS等で規格化されている―般の構造用鋼は、約350℃から強度低下するため、その許容温度は約500℃となっている。すなわち、ビルや事務所、住居、立体駐車場などの建築物に前記の鋼材を用いた場合は、火災時における安全性を確保するため、十分な耐火被覆を施すことが義務付けられており、建築関連諸法令では、火災時に鋼材温度が350℃以上にならないように規定されている。これは、前記鋼材では、350℃程度で耐力が常温の2/3程度になり、必要な強度を下回るためである。このため、―般鋼材を建造物に利用する場合、火災時において鋼材の温度が350℃に達しないように耐火被覆を施す必要がある。   By the way, since the strength of general structural steel, which is standardized by JIS and the like, decreases from about 350 ° C., its allowable temperature is about 500 ° C. In other words, when the steel materials described above are used for buildings such as buildings, offices, residences, and multistory parking lots, it is obliged to provide sufficient fireproof coating to ensure safety in the event of a fire. Related laws and regulations stipulate that the temperature of steel materials does not exceed 350 ° C in the event of a fire. This is because the steel material has a yield strength of about 2/3 of room temperature at about 350 ° C., which is lower than the required strength. For this reason, when using general steel materials for buildings, it is necessary to apply fireproof coating so that the temperature of the steel materials does not reach 350 ° C in the event of a fire.

したがって、耐火鋼製造においては、―般鋼+耐火被覆ならびにその施工コストに見合うものであることが前提となる。ところが、高温耐力維持を目的として―般に添加されるMoは市況変化が大きく、添加量にもよるが、耐火被覆コストと見合わない状況も出てくることもある。このため、Moを添加しない安価な高温強度保証鋼の開発・実用化が待たれていた。   Therefore, in the production of refractory steel, it is assumed that it is appropriate for the general steel + refractory coating and its construction cost. However, for the purpose of maintaining high-temperature proof stress, Mo added generally changes greatly in market conditions, and depending on the amount of addition, there may be situations where it does not match the cost of refractory coating. For this reason, the development and commercialization of inexpensive high-temperature strength-guaranteed steel not containing Mo has been awaited.

特開平2―77523号公報Japanese Patent Laid-Open No. 2-77523

本発明は、市況変動の大きいMoを添加せずに優れた高温強度とともに鋼材の基本性能の一つである低温靭性にも優れる溶接構造用鋼を得るため、比較的低いCと比較的高いNbをべースに鋼成分を溶接割れ感受性組成PCMとともに特定範囲に限定し、さらに製造方法を限定することで、工業的に安定して、しかも低コストで供給可能な高温強度と低温靭性に優れる溶接構造用鋼の製造方法を提供するものである。 In order to obtain a welded structural steel having excellent low temperature toughness, which is one of the basic performances of steel materials, without adding Mo, which has a large market fluctuation, the present invention has a relatively low C and a relatively high Nb. the steel compositions were limited to a specific range with weld crack susceptibility composition P CM to the base over scan, further by limiting the manufacturing method, industrially stable, yet the available supply high-temperature strength and low temperature toughness at a low cost The present invention provides an excellent method for producing welded steel.

本発明のポイントは、高温耐力確保・維持にきわめて有効なために通常用いられるMoを添加することなく、高温耐力を安定して確保するため、比較的高いNb添加によるNb析出物(炭窒化物)を利用するものである。Moを含有しない高温耐力保証鋼は、それ自体きわめて画期的であると同時に、焼入性の高いMoを含有しないことで、溶接構造用鋼としての基本性能(強度、靭性)はもちろん、溶接性やガス切断性をもかえって向上させることにもつながる。本発明は、Nb、Moのみならず、C、Si、Mnをはじめとする個々の合金元素量およびPCMを限定し、さらに製造条件を限定することで、溶接構造用鋼としての各種使用性能はもちろん、優れた高温強度と低温靭性を両立させたものであるが、その発明の要旨は、以下の通りである。 The point of the present invention is that Nb precipitates (carbonitrides) by relatively high Nb addition in order to stably secure high-temperature proof stress without adding Mo that is usually used because it is extremely effective for securing and maintaining high-temperature proof stress. ). High-temperature proof strength steel that does not contain Mo is extremely innovative in itself. At the same time, it does not contain Mo, which has high hardenability, so that the basic performance (strength and toughness) of welded steel is not to mention. This also leads to an improvement in gas and gas cutting properties. The present invention, Nb, not only Mo, C, Si, limiting the individual amounts of alloying elements and P CM, including Mn, by further limiting the production conditions, various use performance as welding structural steel Needless to say, the high temperature strength and the low temperature toughness are both achieved. The gist of the invention is as follows.

(1)成分が質量%で、
C:0.003〜0.05%、
Si:0.40%以下、
Mn:0.5〜2.0%、
P:0.020%以下、
S:0.010%以下、
Nb:0.05〜0.50%、かつNb≧3C、
Al:0.060%以下、
N:0.001〜0.006%、
さらに、Moがコンタミネーションとして含有する程度の0.03%以下で、実質的にMoを含有せず、残部が鉄および不可避的不純物からなり
CM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bと定義するPCM値が0.22%以下からなる鋳片または鋼片を、1000〜1300℃の温度に加熱し、オーステナイト未再結晶温度域での累積圧下量を30%以上として850℃以上の温度で熱間圧延を終了した後、放冷することを特徴とする高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
(1) The component is mass%,
C: 0.003 to 0.05%,
Si: 0.40% or less,
Mn: 0.5 to 2.0%
P: 0.020% or less,
S: 0.010% or less,
Nb: 0.05 to 0.50% and Nb ≧ 3C,
Al: 0.060% or less,
N: 0.001 to 0.006%,
Furthermore, it is 0.03% or less of the extent that Mo is contained as contamination, substantially does not contain Mo, and the balance is composed of iron and inevitable impurities. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + a V / 10 + 5B and P CM value defined consisting of 0.22% slab or steel strip is heated to a temperature of 1000 to 1300 ° C., the cumulative reduction ratio of austenite non-recrystallization temperature region 30% or more As a method for producing a steel for welded structure excellent in high-temperature strength and low-temperature toughness, characterized in that after hot rolling is completed at a temperature of 850 ° C. or higher, it is allowed to cool.

(2)上記の鋼成分に加えさらに、質量%で、
V:0.01〜0.20%、
Ti:0.005〜0.025%、
の範囲で1種または2種を含有することを特徴とする上記(1)に記載の高温強度と低温靭性に優れる溶接構造用高張力鋼の製造方法。
(2) In addition to the above steel components,
V: 0.01-0.20%,
Ti: 0.005 to 0.025%,
The method for producing high-strength steel for welded structures having excellent high-temperature strength and low-temperature toughness as described in (1) above, which contains 1 type or 2 types within the range described above.

(3)さらに、質量%で
Ni:0.05〜0.50%、
Cu:0.05〜0.50%、
Cr:0.05〜0.50%、
B:0.0002〜0.003%、
Mg:0.0002〜0.005%、
の範囲で1種または2種以上を含有することを特徴とする上記(1)または(2)に記載の高温強度と低温靭性に優れる溶接構造用高張力鋼の製造方法。
(3) Further, Ni by mass: 0.05 to 0.50%,
Cu: 0.05 to 0.50%,
Cr: 0.05 to 0.50%,
B: 0.0002 to 0.003%,
Mg: 0.0002 to 0.005%,
The method for producing high-strength steel for welded structures having excellent high-temperature strength and low-temperature toughness as described in (1) or (2) above, comprising 1 type or 2 types or more in a range of

(4)さらに、質量%で
Ca:0.0005〜0.004%、
REM:0.0005〜0.008%、
の少なくともいずれか1種を含有することを特徴とする上記(1)〜(3)のいずれかに記載の高温強度と低温靭性に優れる溶接構造用高張力鋼の製造方法。
(4) Furthermore, Ca: 0.0005 to 0.004% by mass%,
REM: 0.0005 to 0.008%,
The method for producing a high-strength steel for welded structures having excellent high-temperature strength and low-temperature toughness according to any one of the above (1) to (3), characterized by containing at least one of the following.

本発明により、高温強度と低温靭性に優れた溶接構造用鋼が大量かつ安価に提供できるようになった。その結果、建築構造用として、耐火被覆の軽減または省略が可能となった。また、建築以外の用途においても、強度、靭性などの基本性能を具備した上で、さらに高温強度をも具備したため、高温に晒される可能性のある溶接構造物用鋼として、構造物の安全性を一段と高めることができるようになった。   According to the present invention, a steel for welded structure excellent in high temperature strength and low temperature toughness can be provided in a large amount and at low cost. As a result, it has become possible to reduce or omit the fireproof coating for building structures. In addition to the basic properties such as strength and toughness in applications other than construction, it also has high-temperature strength, so it can be used as a steel for welded structures that may be exposed to high temperatures. Can be further improved.

以下本発明を詳細に説明する。   The present invention will be described in detail below.

まず、請求項の通りに鋼成分を限定した理由について説明する。なお、成分の含有量は質量%を意味する。   First, the reason why the steel components are limited as described in the claims will be described. In addition, content of a component means the mass%.

Cは、―般的な溶接構造用鋼としてはきわめて低いレべルに限定しており、本発明の特徴の1つである。これは、後述する他の成分とも密接に関係している。鋼成分の中でもCは鋼材の特性に最も大きな影響を及ぼすもので、下限0.003%は強度確保や溶接などの熱影響部が必要以上に軟化することのないようにするための最小量である。しかし、C量が多すぎると焼入性が必要以上に上がり、鋼材が本来有すべき強度、靭性のバランス、溶接性などに悪影響を及ばしたり、さらに、後述する高温強度確保のためのNbの析出物および固溶Nb利用において、CとNbの量的バランスの関係上、上限を0.05%とした。   C is limited to a very low level as a general welded structural steel and is one of the features of the present invention. This is closely related to other components described later. Among steel components, C has the greatest influence on the properties of steel materials, and the lower limit of 0.003% is the minimum amount to ensure that the heat-affected zone such as securing strength and welding is not softened more than necessary. is there. However, if the amount of C is too large, the hardenability is unnecessarily increased, which adversely affects the strength, balance of toughness, weldability, etc. that the steel material should have, and further, Nb for securing high-temperature strength described later. In the use of the precipitate and the solid solution Nb, the upper limit was set to 0.05% in view of the quantitative balance of C and Nb.

Siは、脱酸上鋼に含まれる元素であるが、多く添加すると溶接性、HAZ靭性が劣化するため、上限を0.40%に限定した。鋼の脱酸はTi、A1のみでも十分可能であり、HAZ靭性、焼入性などの観点から低いほど好ましく、必ずしも添加する必要はない。   Si is an element contained in the deoxidized upper steel, but if added in a large amount, weldability and HAZ toughness deteriorate, so the upper limit was limited to 0.40%. Deoxidation of steel is sufficiently possible only with Ti and A1, and is preferably as low as possible from the viewpoints of HAZ toughness, hardenability, etc., and it is not always necessary to add them.

Mnは、常温の強度、靭性を確保する上で不可欠な元素であり、その下限は0.5%である。しかし、Mn量が多すぎると焼入性が上昇して溶接性、溶接部の靭性を劣化させるだけでなく、連続鋳造スラブの中心偏析を助長するので上限を2.0%とした。   Mn is an indispensable element for securing the strength and toughness at room temperature, and its lower limit is 0.5%. However, if the amount of Mn is too large, not only the hardenability is increased and the weldability and toughness of the welded portion are deteriorated, but also the center segregation of the continuously cast slab is promoted, so the upper limit was made 2.0%.

Pは、本発明鋼においては不純物であり、P量の低減は溶接部における粒界破壊を減少させる傾向があるため、少ないほど好ましい。含有量が多いと母材、溶接部の低温靭性を劣化させるため上限を0.020%とした。   P is an impurity in the steel of the present invention, and a reduction in the amount of P tends to reduce the grain boundary fracture in the welded portion, so the smaller the better. If the content is large, the low temperature toughness of the base metal and the welded portion is deteriorated, so the upper limit was made 0.020%.

Sは、Pと同様本発明鋼においては不純物であり、母材の低温靭性の観点からは少ないほど好ましい。含有量が多いと母材、溶接部の低温靭性を劣化させるため上限を0.010%とした。   S, like P, is an impurity in the steel of the present invention, and is preferably as small as possible from the viewpoint of the low temperature toughness of the base material. If the content is large, the low temperature toughness of the base metal and the welded portion is deteriorated, so the upper limit was made 0.010%.

Nbは、本発明における最も重要な元素の―つである。なぜなら、Moフリーの本発明鋼においては、高温耐力確保のためNbの析出物(炭窒化物)と同時に固溶Nbをも利用しているからである。常温強度をNb析出物による析出硬化で増加させるためには、比較的少ない量で良いが、高温時の耐力を確保するためには、0.05%以上で、かつ、少なくともC量の3倍以上のNb含有が必要である。特に、Nb量がC量の5倍を超えると、常温強度に対する高温強度比が向上し、高温強度に対するNb添加の効果が一段と向上する。上限については、必ずしも限界を見極めたわけではないが、本発明者らの実験により、比較的C量の少ない本発明鋼においては、溶接部の大幅な靭性劣化を招かない範囲として、本発明ではNbの上限を0.50%とした。なお、Nb添加は、オーステナイトの未再結晶温度を上昇させ、熱間圧延時の制御圧延の効果を最大限に発揮することにも寄与する。   Nb is one of the most important elements in the present invention. This is because the Mo-free steel according to the present invention uses solute Nb at the same time as Nb precipitates (carbonitrides) in order to secure high-temperature proof stress. In order to increase the normal temperature strength by precipitation hardening with Nb precipitates, a relatively small amount is sufficient, but in order to ensure the yield strength at high temperature, it is 0.05% or more and at least three times the amount of C. It is necessary to contain the above Nb. In particular, when the amount of Nb exceeds 5 times the amount of C, the ratio of high temperature strength to normal temperature strength is improved, and the effect of Nb addition to high temperature strength is further improved. The upper limit is not necessarily determined. However, according to the present inventors' experiment, in the steel of the present invention with a relatively small amount of C, Nb is used in the present invention as a range that does not cause significant toughness deterioration of the weld. The upper limit of 0.50%. In addition, Nb addition raises the non-recrystallization temperature of austenite and contributes also to exhibiting the effect of the controlled rolling at the time of hot rolling to the maximum.

A1は、―般に脱酸上鋼に含まれる元素であるが、脱酸はSiまたはTiだけでも十分であり、本発明鋼においては、その下限は限定しない。しかし、A1量が多くなると鋼の清浄度が悪くなるだけでなく、溶接金属の靭性が劣化するので上限を0.060%とした。   A1 is generally an element contained in deoxidized upper steel, but Si or Ti is sufficient for deoxidation, and the lower limit is not limited in the steel of the present invention. However, when the amount of A1 increases, not only the cleanliness of steel deteriorates but also the toughness of the weld metal deteriorates, so the upper limit was made 0.060%.

Nは、不可避的不純物として鋼中に含まれるものであるが、Nbと結合して炭窒化物を形成し強度を増加させ、また、TiNを形成して前述のように鋼の性質を高める。このため、N量として最低0.001%必要である。しかしながら、N量の増加は溶接熱影響部靭性、溶接性に有害であり、本発明鋼においてはその上限は0.006%である。   N is contained in the steel as an unavoidable impurity, but combines with Nb to form carbonitride to increase the strength, and TiN is formed to enhance the properties of the steel as described above. For this reason, the N amount is required to be at least 0.001%. However, an increase in the amount of N is detrimental to the weld heat affected zone toughness and weldability, and the upper limit of the steel of the present invention is 0.006%.

次に必要に応じて含有することができるV、Tiの添加理由について説明する。   Next, the reason for the addition of V and Ti that can be contained as required will be described.

Vは、Nbとほぼ同様の効果を有し、本発明におけるVの役割は、Nbを補完するものである。ただし、Vは、Nbに比べて効果は小さく、焼入れ性にも影響を及ぼすため、上下限を限定したものだが、下限はV添加の効果を確実に享受できる最少量として0.01%に、上限はあくまでNbの補完的役割であることと後述するPCMへの影響も勘案し0.20%とした。 V has substantially the same effect as Nb, and the role of V in the present invention complements Nb. However, V is less effective than Nb and affects hardenability, so the upper and lower limits are limited. However, the lower limit is 0.01% as the minimum amount that can surely enjoy the effect of V addition, the upper limit is only was it and taking into account the 0.20% impact on the P CM, which will be described later is the complementary role of Nb.

Tiは母材および溶接熱影響部靭性向上のために必須である。なぜならばTiは、A1量が少ないとき(例えば0.003%以下)、Oと結合してTiを主成分とする析出物を形成、粒内変態フェライト生成の核となり溶接熱影響部靭性を向上させる。また、TiはNと結合してTiNとしてスラブ中に微細析出し、加熱時のγ粒の粗大化を抑え圧延組織の細粒化に有効であり、また鋼板中に存在する微細TiNは、溶接時に溶接熱影響部組織を細粒化するためである。これらの効果を得るためには、Tiは最低0.005%必要である。しかし多過ぎるとTiCを形成し、低温靭性や溶接性を劣化させるので、その上限は0.025%である。本発明で実質的にMoを添加しないとは、Moを意図的に添加していないが、製造工程上から不可避的に含有される場合には0.03%以下の範囲で許容できることを意味する。 Ti is essential for improving the toughness of the base metal and the weld heat affected zone. This is because when Ti has a small amount of A1 (for example, 0.003% or less), it combines with O to form a precipitate mainly composed of Ti 2 O 3 , which becomes the nucleus of intragranular transformation ferrite formation, and is a weld heat affected zone. Improve toughness. Ti is combined with N and finely precipitated in the slab as TiN, which suppresses the coarsening of γ grains during heating and is effective for refining the rolled structure. The fine TiN present in the steel sheet is welded. This is to sometimes refine the weld heat affected zone structure. In order to obtain these effects, Ti needs to be at least 0.005%. However, if it is too much, TiC is formed and the low temperature toughness and weldability are deteriorated, so the upper limit is 0.025%. The fact that Mo is not substantially added in the present invention means that Mo is not intentionally added, but when it is inevitably contained from the manufacturing process, it is acceptable within a range of 0.03% or less. .

次に、Ni、Cu、Cr、B、Mgの添加理由について説明する。
基本となる成分に、さらにこれらの元素を添加する主たる目的は、本発明鋼の優れた特徴を損なうことなく、強度、靭性などの特性を向上させるためである。したがってその添加量は自ずと制限されるべき性質のものである。
Next, the reason for adding Ni, Cu, Cr, B, and Mg will be described.
The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should naturally be limited.

Niは、過剰に添加しなければ、溶接性、溶接熱影響部靭性に悪影響を及ぼすことなく母材の強度、靭性を向上させる。これら効果を発揮させるためには、少なくとも0.05%以上の添加が必須である。―方、過剰な添加は高価なだけでなく、溶接性に好ましくない。また、Niを多く添加すると液体アンモニア中で応力腐食割れ(SCC)を誘起する可能性が指摘されている。
本発明者らの実験によれば、1.0%までの添加は溶接性や液体アンモニア中でのSCCを大きく劣化させず、強度、靭性向上効果の方が大きいが、経済性を優先し、上限を0.5%とした。
If Ni is not added excessively, it improves the strength and toughness of the base material without adversely affecting the weldability and weld heat affected zone toughness. In order to exert these effects, addition of at least 0.05% is essential. -On the other hand, excessive addition is not only expensive, but unfavorable for weldability. Further, it has been pointed out that the addition of a large amount of Ni may induce stress corrosion cracking (SCC) in liquid ammonia.
According to the experiments by the present inventors, addition up to 1.0% does not significantly deteriorate the weldability and SCC in liquid ammonia, and the effect of improving the strength and toughness is greater. The upper limit was 0.5%.

Cuは、Niとほぼ同様の効果、現象を示し、上限の0.50%は溶接性劣化に加え、過剰な添加は熱闘圧延時にCu−クラックが発生し製造困難となるため規制される。下限は実質的な効果が得られるための最小量とすべきで0.05%である。   Cu exhibits substantially the same effects and phenomena as Ni, and the upper limit of 0.50% is restricted because weldability deteriorates, and excessive addition causes Cu-cracks during hot-rolling rolling, which makes it difficult to manufacture. The lower limit should be the minimum amount for obtaining a substantial effect and is 0.05%.

Crは、母材の強度、靭性をともに向上させる。これらの効果を享受するため、添加する場合、最低0.05%が必要である。しかし、添加量が多すぎると母材、溶接部の靭性および溶接性の劣化を招き、経済性も失するため上限を0.50%とした。   Cr improves both the strength and toughness of the base material. In order to enjoy these effects, at least 0.05% is necessary when added. However, if the addition amount is too large, the base material, the toughness of the welded portion and the weldability are deteriorated, and the economical efficiency is also lost, so the upper limit was made 0.50%.

Bは、オーステナイト粒界に偏析し、フェライトの生成を抑制することを介して、焼入性を向上させ、強度向上に寄与する。この効果を享受するため、最低0.0002%以上必要である。しかし、多すぎる添加は焼入性向上効果が飽和するだけでなく、靭性上有害となるB析出物を形成する可能性もあるため、上限を0.003%とした。なお、タンク用鋼などとして、応力腐食割れが懸念されるケースでは、母材および溶接熱影響部の硬さの低減がポイントとなることが多く(例えば、硫化物応力腐食割れ(SCC)防止のためにはHRC≦22(HV≦248)が必須とされる)、そのようなケースでは焼入性を増大させるB添加は好ましくない。   B segregates at austenite grain boundaries and suppresses the formation of ferrite, thereby improving hardenability and contributing to strength improvement. In order to enjoy this effect, at least 0.0002% is necessary. However, too much addition not only saturates the effect of improving hardenability but also may form B precipitates that are harmful to toughness, so the upper limit was made 0.003%. In cases where stress corrosion cracking is a concern, such as for tank steel, reduction of the hardness of the base metal and the weld heat affected zone is often the point (for example, prevention of sulfide stress corrosion cracking (SCC)). Therefore, HRC ≦ 22 (HV ≦ 248) is essential), and in such a case, B addition for increasing the hardenability is not preferable.

Mgは、溶接熱影響部においてオーステナイト粒の成長を抑制し、細粒化する作用があり、溶接部の強靭化が図れる。このような効果を享受するためには、Mgは0.0002%以上必要である。―方、添加量が増えると添加量に対する効果代が小さくなるため、コスト上得策ではないので上限は0.005%とした。   Mg suppresses the growth of austenite grains in the weld heat-affected zone and has the effect of making the grains finer, so that the weld zone can be strengthened. In order to enjoy such an effect, Mg needs to be 0.0002% or more. -On the other hand, as the amount added increases, the effect on the amount added decreases, so this is not a cost-effective measure, so the upper limit was made 0.005%.

次に、請求項4にかかるCaまたはREMの添加理由について説明する。   Next, the reason for adding Ca or REM according to claim 4 will be described.

CaおよびREMは、MnSの形態を制御し、母材の低温靭性を向上させるほか、湿潤硫化水素環境下での水素誘起割れ(HIC、SSC、SOHIC)感受性を低減させる。これらの効果を発揮するためには、最低0.0005%必要である。しかし、多すぎる添加は、鋼の清浄度を逆に悪化させ、母材靭性や湿潤硫化水素環境下での水素誘起割れ(HIC、SSC、SOHIC)感受性を高めるため、添加量の上限はCa、REMそれぞれ0.004%、0.008%に限定した。CaとREMは、ほぼ同等の効果を有するため、少なくともいずれか1種を上記範囲で添加すればよく、両者を添加してもよい。   Ca and REM control the morphology of MnS, improve the low temperature toughness of the base material, and reduce the susceptibility to hydrogen induced cracking (HIC, SSC, SOHIC) in a wet hydrogen sulfide environment. In order to exert these effects, 0.0005% is necessary at least. However, too much addition adversely deteriorates the cleanliness of the steel, and increases the base metal toughness and susceptibility to hydrogen-induced cracking (HIC, SSC, SOHIC) in a wet hydrogen sulfide environment. REM was limited to 0.004% and 0.008%, respectively. Since Ca and REM have substantially the same effect, at least one of them may be added in the above range, or both may be added.

鋼の個々の成分を限定しても、成分系全体が適切でないと優れた特性は得られない。本発明では、PCMの値を0.20%以下に限定する。PCMは溶接性を表す指標で、低いほど溶接性は良好である。―般に、PCMが0.5%以下であれば優れた溶接性の確保が可能であり、本発明における前記限定は、本発明の特徴をより明確にすることを企図したものであり、溶接構造用鋼としては画期的に低いものである。下限は特に限定しないが、各成分の限定範囲から自ずと制約されるものである。 Even if the individual components of the steel are limited, excellent properties cannot be obtained unless the entire component system is appropriate. In the present invention, to limit the value of P CM below 0.20%. PCM is an index representing weldability. The lower the CM, the better the weldability. - in general, P CM is possible to secure excellent weldability if 0.5% or less, the limit in the present invention has contemplated to more clearly the features of the present invention, It is an epoch-making low for welded structural steel. The lower limit is not particularly limited, but is naturally limited by the limited range of each component.

限定された鋼成分において、優れた高温強度と低温靭性を両立する溶接構造用鋼を得るためには、製造条件も本発明の通りに限定することが必要である。以下、その理由について説明する。   In order to obtain a welded structural steel having both excellent high-temperature strength and low-temperature toughness in the limited steel components, it is necessary to limit the production conditions as in the present invention. The reason will be described below.

圧延に先立つ加熱温度を1000〜1300℃に限定した理由は、加熱時のオーステナイト粒を小さく保ち、圧延組織の微細化を図るためである。1300℃は加熱時のオーステナイトが極端に粗大化しない上限温度であり、加熱温度がこれを超えるとオーステナイト粒が粗大混粒化し、変態後の組織も粗大化するため鋼の靭性が著しく劣化する。―方、加熱温度が低すぎると、板厚によっては後述する圧延終了温度の確保が困難となるばかりでなく、オーステナイトの末再結晶温度を上昇させ、熱間圧延時の制御圧延の効果を最大限に発揮させたり、析出硬化を発現させるためのNbの溶体化の観点から下限を1000℃に限定した。   The reason why the heating temperature prior to rolling is limited to 1000 to 1300 ° C. is to keep the austenite grains during heating small and to refine the rolling structure. 1300 ° C. is an upper limit temperature at which the austenite during heating is not extremely coarsened. When the heating temperature is exceeded, the austenite grains are coarsely mixed and the structure after transformation is also coarsened, so that the toughness of the steel is remarkably deteriorated. -On the other hand, if the heating temperature is too low, depending on the plate thickness, it will be difficult to secure the end temperature of rolling, which will be described later, and the final recrystallization temperature of austenite will be raised to maximize the effect of controlled rolling during hot rolling. The lower limit was limited to 1000 ° C. from the viewpoint of solution of Nb for exhibiting to the limit or for causing precipitation hardening.

上述のような条件で加熱した鋳片または鋼片を、オーステナイト未再結晶温度域での累積圧下量を30%以上とし、850℃以上で熱間圧延を終了した後、放冷する。オーステナイト未再結晶温度域での圧延を行うことによって、オーステナイト粒を顕著に細粒化するため、少なくとも30%以上の累積圧下量が必要である。圧延終了温度が850℃を下回ると、フェライトが変態析出し、フェライトを加工(圧延)する恐れがあり、低温靭性確保の点で好ましくない。このため、圧延終了温度は、850℃以上に限定する。   The slab or steel slab heated under the above conditions is allowed to cool after the hot rolling at 850 ° C. or higher is completed at a cumulative reduction amount in the austenite non-recrystallization temperature range of 30% or higher. By rolling in the austenite non-recrystallization temperature range, the austenite grains are remarkably refined, so that a cumulative reduction amount of at least 30% or more is required. If the rolling end temperature is lower than 850 ° C., ferrite may be transformed and precipitated, and the ferrite may be processed (rolled), which is not preferable in terms of securing low temperature toughness. For this reason, rolling end temperature is limited to 850 degreeC or more.

850℃以上で熱間圧延後、放冷に限定する。これは、比較的C量の少ない本発明鋼においては、変態域の冷速を早める加速冷却は、その変態強化として効果が小さい一方で、生産性が低下したり、加速冷却による鋼板形状不良や残留応力など負の側面があるため、放冷に限定したものである。したがって、圧延後加速冷却を施すことは本発明と一線を画するものではないが、本発明の特徴を明確にするため、圧延後放冷に限定した。   After hot rolling at 850 ° C. or higher, it is limited to cooling. This is because, in the steel of the present invention with a relatively small amount of C, accelerated cooling that accelerates the cooling speed in the transformation region is less effective as transformation enhancement, while productivity decreases, steel plate shape defects due to accelerated cooling, Since there are negative aspects such as residual stress, it is limited to cooling. Therefore, although accelerated cooling after rolling does not distinguish from the present invention, it is limited to cooling after rolling in order to clarify the characteristics of the present invention.

以下実施例に基づいて本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail based on examples.

転炉−連続鋳造−厚板工程で種々の鋼成分の鋼板(厚さ12〜100mm)を製造し、その材質を調査した。   Steel sheets (thickness 12 to 100 mm) of various steel components were manufactured in the converter-continuous casting-thick plate process, and the materials were investigated.

表1に比較鋼とともに本発明鋼の鋼成分を、表2に鋼板の製造条件と諸特性を示す。   Table 1 shows the steel components of the steel of the present invention together with the comparative steel, and Table 2 shows the manufacturing conditions and various properties of the steel sheet.

本発明法にしたがって製造した鋼板(本発明鋼)は、すべて良好な特性を有する。これに対し、本発明によらない比較鋼は、いずれかの特性が劣る。   All the steel plates manufactured according to the method of the present invention (present invention steel) have good characteristics. On the other hand, the comparative steel not according to the present invention is inferior in any of the characteristics.

比較鋼11は、C量が高いため本発明鋼に比較し、低温靭性に劣る。比較鋼12は、Nb量の絶対値が低いため、高温強度に劣る。比較鋼13は、個々の成分は本発明の限定範囲にあるが、C量に対してNb量が低いため、高温強度に劣る。比較鋼14は、C量が低いために常温、高温強度とも低い。比較鋼15は、成分上は本発明鋼5と同一である。しかし、比較鋼15−1は、圧延後加速冷却が施されておらず、常温、高温強度ともに低い。比較鋼15−2は、圧延終了温度が低く、結果として加速冷却開始温度が確保できずに低くなってしまったため、常温、高温強度ともに低い。比較鋼15−3は、加速冷却開始温度が低いため、常温、高温強度ともに低い。比較鋼15−4は、加速冷却停止温度が高いため、常温、高温強度ともに低い。   Since the comparative steel 11 has a high C content, it is inferior in low-temperature toughness compared to the steel of the present invention. Since the absolute value of Nb amount is low, the comparative steel 12 is inferior in high temperature strength. The comparative steel 13 is inferior in high-temperature strength because the Nb content is lower than the C content, although the individual components are within the limited range of the present invention. Since the comparative steel 14 has a low C content, both the normal temperature and the high temperature strength are low. The comparative steel 15 is the same as the steel 5 of the present invention in terms of composition. However, comparative steel 15-1 is not subjected to accelerated cooling after rolling, and is low in both normal temperature and high temperature strength. The comparative steel 15-2 has a low rolling end temperature, and as a result, the accelerated cooling start temperature cannot be ensured and has been lowered. Therefore, both the normal temperature and the high temperature strength are low. Since comparative steel 15-3 has a low accelerated cooling start temperature, both the normal temperature and the high temperature strength are low. Since comparative steel 15-4 has a high accelerated cooling stop temperature, both normal temperature and high temperature strength are low.

なお、本発明鋼はもちろん比較鋼においてもPCMは低いため、溶接性(斜めy形溶接割れ試験)はいずれも良好で、明確な差は見られなかった。 Since the present invention steels P CM is lower in course comparative steels, both weldability (oblique y-groove weld cracking test) is good, clear difference was observed.

Figure 2007277680
Figure 2007277680

Figure 2007277680
Figure 2007277680

Claims (4)

成分が質量%で、
C:0.003〜0.05%、
Si:0.40%以下、
Mn:0.5〜2.0%、
P:0.020%以下、
S:0.010%以下、
Nb:0.05〜0.50%、かつ、Nb≧3C、
Al:0.060%以下、
N:0.001〜0.006%、
さらに、Moがコンタミネーションとして含有する程度の0.03%以下で、実質的にMoを含有せず、残部が鉄および不可避的不純物からなり
CM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bと定義するPCM値が0.22%以下からなる鋳片または鋼片を、1000〜1300℃の温度に加熱し、オーステナイト未再結晶温度域での累積圧下量を30%以上として850℃以上の温度で熱間圧延を終了した後、放冷することを特徴とする高温強度と低温靭性に優れる溶接構造用鋼の製造方法。
Ingredient is% by mass
C: 0.003 to 0.05%,
Si: 0.40% or less,
Mn: 0.5 to 2.0%
P: 0.020% or less,
S: 0.010% or less,
Nb: 0.05 to 0.50% and Nb ≧ 3C,
Al: 0.060% or less,
N: 0.001 to 0.006%,
Furthermore, it is 0.03% or less of the extent that Mo is contained as contamination, substantially does not contain Mo, and the balance is composed of iron and inevitable impurities. P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + a V / 10 + 5B and P CM value defined consisting of 0.22% slab or steel strip is heated to a temperature of 1000 to 1300 ° C., the cumulative reduction ratio of austenite non-recrystallization temperature region 30% or more As a method for producing a steel for welded structure excellent in high-temperature strength and low-temperature toughness, characterized in that after hot rolling is completed at a temperature of 850 ° C. or higher, it is allowed to cool.
上記の鋼成分に加えさらに、質量%で、
V:0.01〜0.20%、
Ti:0.005〜0.025%
の範囲で1種または2種を含有することを特徴とする請求項1に記載の高温強度と低温靭性に優れる溶接構造用高張力鋼の製造方法。
In addition to the above steel components,
V: 0.01-0.20%,
Ti: 0.005-0.025%
The method for producing a high-strength steel for welded structures having excellent high-temperature strength and low-temperature toughness according to claim 1, comprising 1 type or 2 types in a range of
さらに、質量%で
Ni:0.05〜0.50%、
Cu:0.05〜0.50%、
Cr:0.05〜0.50%、
B:0.0002〜0.003%、
Mg:0.0002〜0.005%、
の範囲で1種または2種以上を含有することを特徴とする請求項1または2に記載の高温強度と低温靭性に優れる溶接構造用高張力鋼の製造方法。
Further, Ni by mass: 0.05 to 0.50%,
Cu: 0.05 to 0.50%,
Cr: 0.05 to 0.50%,
B: 0.0002 to 0.003%,
Mg: 0.0002 to 0.005%,
The method for producing a high-strength steel for welded structures having excellent high-temperature strength and low-temperature toughness according to claim 1 or 2, wherein one or more of them are contained in the range.
さらに、質量%で
Ca:0.0005〜0.004%、
REM:0.0005〜0.008%
の少なくともいずれか1種を含有することを特徴とする請求項1〜3のいずれかに記載の高温強度と低温靭性に優れる溶接構造用高張力鋼の製造方法。
Furthermore, Ca: 0.0005 to 0.004% in mass%,
REM: 0.0005 to 0.008%
The method for producing a high-strength steel for welded structures having excellent high-temperature strength and low-temperature toughness according to any one of claims 1 to 3, wherein at least one of the above is contained.
JP2006108495A 2006-04-11 2006-04-11 Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness Pending JP2007277680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006108495A JP2007277680A (en) 2006-04-11 2006-04-11 Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006108495A JP2007277680A (en) 2006-04-11 2006-04-11 Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness

Publications (1)

Publication Number Publication Date
JP2007277680A true JP2007277680A (en) 2007-10-25

Family

ID=38679416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006108495A Pending JP2007277680A (en) 2006-04-11 2006-04-11 Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness

Country Status (1)

Country Link
JP (1) JP2007277680A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123076A1 (en) * 2008-03-31 2009-10-08 新日本製鐵株式会社 Refractory steel material with welded joint excellent in unsusceptibility to reheat embrittlement and toughness and process for producing the same
JP2011038146A (en) * 2009-08-10 2011-02-24 Nippon Steel Corp Refractory steel having excellent high-temperature strength of base material and high-temperature ductility of weld heat-affected zone and production method therefor
WO2023155372A1 (en) * 2022-02-16 2023-08-24 南京钢铁股份有限公司 Steel for thin-gauge bridges and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996218A (en) * 1982-11-24 1984-06-02 Sumitomo Metal Ind Ltd Manufacture of low-carbon high-tension tough steel plate having two-phase structure
JPH06293917A (en) * 1993-04-07 1994-10-21 Nippon Steel Corp Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and toughness at low temperature under cl-containing environment
JPH09310117A (en) * 1996-03-18 1997-12-02 Kawasaki Steel Corp Production of high strength and high toughness steel plate with small variation in material constitution and excellent in weldability
JPH11246937A (en) * 1998-03-05 1999-09-14 Nippon Steel Corp Steel with low yield point, excellent in toughness, and its production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5996218A (en) * 1982-11-24 1984-06-02 Sumitomo Metal Ind Ltd Manufacture of low-carbon high-tension tough steel plate having two-phase structure
JPH06293917A (en) * 1993-04-07 1994-10-21 Nippon Steel Corp Production of low alloy steel plate for line pipe excellent in co2 corrosion resistance and toughness at low temperature under cl-containing environment
JPH09310117A (en) * 1996-03-18 1997-12-02 Kawasaki Steel Corp Production of high strength and high toughness steel plate with small variation in material constitution and excellent in weldability
JPH11246937A (en) * 1998-03-05 1999-09-14 Nippon Steel Corp Steel with low yield point, excellent in toughness, and its production

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009123076A1 (en) * 2008-03-31 2009-10-08 新日本製鐵株式会社 Refractory steel material with welded joint excellent in unsusceptibility to reheat embrittlement and toughness and process for producing the same
JP4638956B2 (en) * 2008-03-31 2011-02-23 新日本製鐵株式会社 Refractory steel material excellent in reheat embrittlement resistance and toughness of welded joint and method for producing the same
KR101100538B1 (en) 2008-03-31 2011-12-29 신닛뽄세이테쯔 카부시키카이샤 Fire resistant steel excellent in re-heat embrittlement resistance and toughness of weld joint
US8715432B2 (en) 2008-03-31 2014-05-06 Nippon Steel & Sumitomo Metal Corporation Fire-resistant steel superior in weld joint reheat embrittlement resistance and toughness and method of production of same
JP2011038146A (en) * 2009-08-10 2011-02-24 Nippon Steel Corp Refractory steel having excellent high-temperature strength of base material and high-temperature ductility of weld heat-affected zone and production method therefor
WO2023155372A1 (en) * 2022-02-16 2023-08-24 南京钢铁股份有限公司 Steel for thin-gauge bridges and production method therefor

Similar Documents

Publication Publication Date Title
KR100957970B1 (en) High-strength and high-toughness thick steel plate and method for producing the same
JP4718866B2 (en) High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JP4834149B2 (en) Welded structural steel excellent in high temperature strength and low temperature toughness and its manufacturing method
JP4767590B2 (en) Production method of low yield ratio high strength steel and low yield ratio high strength steel
JP5073396B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
JP2009127069A (en) High toughness steel plate for line pipe, and its manufacturing method
JP4833611B2 (en) 490 MPa class thick high-strength refractory steel for welded structures excellent in weldability and gas-cutting property, and method for producing the same
JP4709632B2 (en) Manufacturing method of high strength steel for welded structure with excellent high temperature strength and low temperature toughness
KR102209581B1 (en) The steel plate having excellent heat affected zone toughness and method for manufacturing thereof
JP5098207B2 (en) Manufacturing method of high strength steel for welded structure with excellent high temperature strength and low temperature toughness
JP5098317B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
JP2007284712A (en) Method for producing thick high-strength steel plate excellent in toughness and thick high-strength steel plate excellent in toughness
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2007277680A (en) Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
JP5194994B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength
JP4038166B2 (en) Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof
JP2005272854A (en) Method for producing high-tensile steel excellent in refractoriness and toughness in welded heat affected part
JP5272878B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
JP2004339549A (en) 490 MPa CLASS HIGH-TENSILE STRENGTH FIRE RESISTANT STEEL FOR STRUCTURAL USE HAVING EXCELLENT WELDABILITY AND GAS CUTTABILITY, AND ITS PRODUCTION METHOD
JP4028815B2 (en) 780 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof
JP4348103B2 (en) 590 MPa class high strength steel excellent in high temperature strength and method for producing the same
JP4959401B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP2008179881A (en) Refractory wide flange beam having excellent reheat embrittlement resistance, and method for producing the same
JP2009179840A (en) Method for producing high tensile steel excellent in low-temperature toughness and crack arrest property
TWI399444B (en) High strength and low temperature toughness, and a method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120619