JPH11246937A - Steel with low yield point, excellent in toughness, and its production - Google Patents

Steel with low yield point, excellent in toughness, and its production

Info

Publication number
JPH11246937A
JPH11246937A JP6927898A JP6927898A JPH11246937A JP H11246937 A JPH11246937 A JP H11246937A JP 6927898 A JP6927898 A JP 6927898A JP 6927898 A JP6927898 A JP 6927898A JP H11246937 A JPH11246937 A JP H11246937A
Authority
JP
Japan
Prior art keywords
less
steel
temperature
toughness
yield point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6927898A
Other languages
Japanese (ja)
Other versions
JP3619362B2 (en
Inventor
Yoshiyuki Watabe
義之 渡部
Atsuhiko Yoshie
淳彦 吉江
Akihiko Kojima
明彦 児島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP06927898A priority Critical patent/JP3619362B2/en
Publication of JPH11246937A publication Critical patent/JPH11246937A/en
Application granted granted Critical
Publication of JP3619362B2 publication Critical patent/JP3619362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a steel with low yield point, excellent in toughness, for use in an energy absorbing device for buildings at the time of earthquake by limiting the relation among C, N, and Ti equivalent, reducing effective C quantity, and limiting microstructure to a proper range. SOLUTION: The steel has a composition containing, by weight, <=0.1% C, <=0.4% Si, <=1.5% Mn, <=0.025% P, <=0.015% S, <=0.06% Al, and <=0.006% N, also containing one or >=2 elements among Ti, Nb, and V so that the relation among the Ti equivalent, defined by Ti(eq.)=Ti+Nb/2+V, and respective amounts of C and N satisfies -0.02%<=C-[Ti(eq.)-3.4N]/4<=0.01%, and having the balance iron with inevitable impurities and also has a structure where the fraction of ferritic structure of microstructure is regulated to >=95%. This steel is produced by casting a slab, subjecting the resultant cast slab, directly or after reheating up to <=1,250 deg.C, to hot rolling at >=750 deg.C, and then performing tempering or normalizing treatment, if necessary.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として地震によ
る建物への入力エネルギーを特定の部位に吸収させ耐震
性能を確保するためのエネルギー吸収デバイス用鋼に適
する、靭性の優れた低降伏点鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a low yield point steel having excellent toughness, which is suitable for a steel for an energy absorbing device for securing an input energy to a building mainly due to an earthquake to a specific portion and securing seismic performance. Things.

【0002】[0002]

【従来の技術】従来より行われている耐震設計は、大地
震時に柱や梁の構造体が塑性化することによりエネルギ
ーを吸収しようとするものであり、建築物の倒壊を防ぎ
人的被害の防止を大前提としながら、建設コストも比較
的低く抑えることができる非常に合理的な設計法であ
る。
2. Description of the Related Art Conventionally, seismic design is intended to absorb energy by plasticizing a pillar or beam structure during a large earthquake, thereby preventing collapse of buildings and preventing human damage. It is a very rational design method that can keep construction costs relatively low while preserving prevention as a major premise.

【0003】一方、近年の耐震設計技術の発展により、
制振・免震構造の開発と実用化が進み、地震による建物
への入力エネルギーを特定の部位(エネルギー吸収デバ
イス)に吸収させ耐震性能を確保するとともに、主要構
造である柱、梁の損傷を防止する設計技術が注目されて
いる。
On the other hand, with the recent development of seismic design technology,
Development and commercialization of vibration control and seismic isolation structures are progressing, and the energy input to the building due to the earthquake is absorbed by a specific part (energy absorbing device) to ensure seismic performance, while at the same time damaging columns and beams, which are the main structures. Attention has been focused on design techniques to prevent this.

【0004】このようなエネルギー吸収デバイス用とし
て低降伏点鋼が利用される。その原理は、通常の柱や梁
の構造材よりも降伏点が低いことにより、地震時に早期
に降伏し、地震による振動エネルギーを塑性エネルギー
に変換することで振動応答を抑えるというものである。
[0004] Low yield point steels are used for such energy absorbing devices. The principle is that the yield point is lower than that of ordinary column and beam structural materials, so that it yields early in the event of an earthquake, and suppresses the vibration response by converting the vibration energy due to the earthquake into plastic energy.

【0005】低降伏点化するためには、特開平3−31
467号公報に開示されているように添加元素のほとん
どない純鉄に近いものとし、場合によっては特開平5−
214442号公報、特開平5−320760号公報、
特開平5−320761号公報などに開示されているよ
うに純鉄に近い成分をさらに高温で焼準処理される。こ
れらはいずれも粗粒なフェライトにすることによる低降
伏点化のため、低温靭性に劣るという欠点があった。ま
た、いずれもCを0.005%以下とする必要があり、
製鋼工程への負荷が高く、添加元素はほとんどないがコ
スト的には必ずしも有利ではないという問題があった。
In order to reduce the yield point, Japanese Patent Application Laid-Open No. 3-31
As disclosed in Japanese Patent Application Laid-Open No. 467/467, it is close to pure iron with almost no added element.
214442, JP-A-5-320760,
As disclosed in Japanese Patent Application Laid-Open No. 5-320761, a component close to pure iron is subjected to normalizing at a higher temperature. All of these have a drawback that they are inferior in low-temperature toughness due to lowering the yield point by forming coarse ferrite. In addition, in any case, C needs to be 0.005% or less,
There is a problem that the load on the steelmaking process is high and there are almost no added elements, but the cost is not always advantageous.

【0006】[0006]

【発明が解決しようとする課題】そこで、本発明はCを
極端に低減しなくても優れた低温靭性を有する低降伏点
鋼とすること及びその製造方法を提供することを課題と
する。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a low-yield-point steel having excellent low-temperature toughness without extremely reducing C, and to provide a method for producing the same.

【0007】[0007]

【課題を解決するための手段】本発明は、Cを極端に低
減しなくても、C、N、Ti当量間の関係を適切に制限
することにより実効的なCを低減してフェライト主体の
組織とし、低降伏点化のための粗粒フェライトでありな
がら優れた低温靭性を達成するものである。
SUMMARY OF THE INVENTION The present invention reduces the effective C by appropriately restricting the relationship between C, N, and Ti equivalents without significantly reducing the C to reduce the effective C. It has a structure and achieves excellent low-temperature toughness while being a coarse-grained ferrite for lowering the yield point.

【0008】本発明の要旨は、以下の通りである。The gist of the present invention is as follows.

【0009】(1) 重量%で、C:0.1%以下、S
i:0.4以下、Mn:1.5%以下、P:0.025
%以下、S:0.015%以下、Al:0.06%以
下、N:0.006%以下に加え、 Ti(eq.)=Ti+Nb/2+V と定義するTi当量と、C、N量との間の関係が −0.02%≦C−[Ti(eq.)−3.4N]/4
≦0.01% を満足するようにTi、Nb、Vのうち1種単独もしく
は2種以上を含有し、残部が鉄および不可避的不純物か
らなり、かつミクロ組織のフェライトの組織分率が95
%以上であることを特徴とする靭性の優れた低降伏点
鋼。
(1) By weight%, C: 0.1% or less, S
i: 0.4 or less, Mn: 1.5% or less, P: 0.025
% Or less, S: 0.015% or less, Al: 0.06% or less, N: 0.006% or less, Ti (eq.) = Ti + Nb / 2 + V, Ti equivalent, C and N amounts. -0.02% ≦ C- [Ti (eq.)-3.4N] / 4
At least one of Ti, Nb and V is contained so as to satisfy ≦ 0.01%, the balance being iron and unavoidable impurities, and the microstructure of ferrite having a microstructure fraction of 95%.
% Low yield point steel with excellent toughness, characterized in that it is not less than 10%.

【0010】(2) 重量%で、C:0.1%以下、S
i:0.4以下、Mn:1.5%以下、P:0.025
%以下、S:0.015%以下、Al:0.06%以
下、N:0.006%以下に加え、 Ti(eq.)=Ti+Nb/2+V と定義するTi当量と、C、N量との間の関係が −0.02%≦C−[Ti(eq.)−3.4N]/4
≦0.01% を満足するようにTi、Nb、Vのうち1種単独もしく
は2種以上を含有し、残部が鉄および不可避的不純物か
らなる鋼を、鋳造後直接もしくは1250℃以下の温度
に再加熱後、750℃以上の温度で熱間圧延を終了し、
その後放冷することを特徴とする靭性の優れた低降伏点
鋼の製造方法。
(2) By weight%, C: 0.1% or less, S
i: 0.4 or less, Mn: 1.5% or less, P: 0.025
% Or less, S: 0.015% or less, Al: 0.06% or less, N: 0.006% or less, Ti (eq.) = Ti + Nb / 2 + V, Ti equivalent, C and N amounts. -0.02% ≦ C- [Ti (eq.)-3.4N] / 4
A steel containing one or more of Ti, Nb, and V so as to satisfy ≦ 0.01%, and the balance consisting of iron and unavoidable impurities, is cast directly or at a temperature of 1250 ° C. or less after casting. After reheating, finish hot rolling at a temperature of 750 ° C or higher,
A method for producing a low yield point steel having excellent toughness, which is then allowed to cool.

【0011】(3) 重量%で、C:0.1%以下、S
i:0.4以下、Mn:1.5%以下、P:0.025
%以下、S:0.015%以下、Al:0.06%以
下、N:0.006%以下に加え、 Ti(eq.)=Ti+Nb/2+V と定義するTi当量と、C、N量との間の関係が −0.02%≦C−[Ti(eq.)−3.4N]/4
≦0.01% を満足するようにTi、Nb、Vのうち1種単独もしく
は2種以上を含有し、残部が鉄および不可避的不純物か
らなる鋼を、鋳造後直接もしくは1250℃以下の温度
に再加熱後、750℃以上の温度で熱間圧延し、さらに
Ac1点以下の温度で焼き戻しすることを特徴とする靭
性の優れた低降伏点鋼の製造方法。
(3) By weight%, C: 0.1% or less, S
i: 0.4 or less, Mn: 1.5% or less, P: 0.025
% Or less, S: 0.015% or less, Al: 0.06% or less, N: 0.006% or less, Ti (eq.) = Ti + Nb / 2 + V, Ti equivalent, C and N amounts. -0.02% ≦ C- [Ti (eq.)-3.4N] / 4
A steel containing one or more of Ti, Nb, and V so as to satisfy ≦ 0.01%, and the balance consisting of iron and unavoidable impurities, is cast directly or at a temperature of 1250 ° C. or less after casting. A method for producing a low yield point steel having excellent toughness, characterized in that after reheating, hot rolling is performed at a temperature of 750 ° C. or higher and tempering is performed at a temperature of 1 point or lower.

【0012】(4) 重量%で、C:0.1%以下、S
i:0.4以下、Mn:1.5%以下、P:0.025
%以下、S:0.015%以下、Al:0.06%以
下、N:0.006%以下に加え、 Ti(eq.)=Ti+Nb/2+V と定義するTi当量と、C、N量との間の関係が −0.02%≦C−[Ti(eq.)−3.4N]/4
≦0.01% を満足するようにTi、Nb、Vのうち1種単独もしく
は2種以上を含有し、残部が鉄および不可避的不純物か
らなる鋼を、鋳造後直接もしくは1250℃以下の温度
に再加熱後、750℃以上の温度で熱間圧延し、さらに
Ac3点以下の温度で焼きならしすることを特徴とする
靭性の優れた低降伏点鋼の製造方法。
(4) By weight%, C: 0.1% or less, S
i: 0.4 or less, Mn: 1.5% or less, P: 0.025
% Or less, S: 0.015% or less, Al: 0.06% or less, N: 0.006% or less, Ti (eq.) = Ti + Nb / 2 + V, Ti equivalent, C and N amounts. -0.02% ≦ C- [Ti (eq.)-3.4N] / 4
A steel containing one or more of Ti, Nb, and V so as to satisfy ≦ 0.01%, and the balance consisting of iron and unavoidable impurities, is cast directly or at a temperature of 1250 ° C. or less after casting. A method for producing a low yield point steel having excellent toughness, comprising hot rolling at a temperature of 750 ° C. or more after reheating, and normalizing at a temperature of 3 points or less of Ac.

【0013】本発明によれば、建築物のエネルギー吸収
デバイス用として低温靭性にも優れた鋼材を大量かつ安
価に供給できるようになった。
According to the present invention, it has become possible to supply a large amount of steel material excellent in low-temperature toughness at low cost for use as an energy absorbing device for buildings.

【0014】[0014]

【発明の実施の形態】本発明が、請求項の通りに鋼組成
を限定した理由について説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The reason for limiting the steel composition according to the present invention will be described.

【0015】Cは、靭性を劣化させ、強度上昇させるパ
ーライトなどの硬質第二相の生成に大きな影響を及ぼす
もので、本発明鋼においては低いほど好ましく、下限に
ついては特に限定しない。一方、上限は、後述するT
i、N量との間の関係を適正に保つことで、実効的なC
量の低減が可能であり、Ti、N量との関係で0.1%
まで許容できる。
C has a significant effect on the formation of a hard second phase such as pearlite, which deteriorates toughness and increases strength, and is preferably as low as possible in the steel of the present invention, and the lower limit is not particularly limited. On the other hand, the upper limit is T
By properly maintaining the relationship between i and N, the effective C
The amount can be reduced, and 0.1% in relation to the amount of Ti and N
Up to acceptable.

【0016】Siは、脱酸上鋼に含まれる元素である
が、多く添加すると溶接性、HAZ靭性が劣化するた
め、上限を0.4%に限定した。鋼の脱酸はTi、Al
のみでも十分可能であり、HAZ靭性、焼入性などの観
点から低いほど好ましく、必ずしも添加する必要はな
い。
[0016] Si is an element contained in the deoxidized upper steel, but if added in a large amount, the weldability and HAZ toughness deteriorate, so the upper limit was limited to 0.4%. Deoxidation of steel is Ti, Al
Alone is sufficiently possible, and the lower the better, from the viewpoints of HAZ toughness, hardenability, etc., and it is not always necessary to add.

【0017】Mnは、固溶強度元素として母材の強度を
上昇させるため、必要とする強度レベルに応じて、任意
に添加できる。しかし、Mn量が多すぎると焼入性が上
昇して溶接性、HAZ靭性を劣化させるだけでなく、連
続鋳造スラブの中心偏析を助長するので上限を1.5%
とした。
Mn can be arbitrarily added according to the required strength level in order to increase the strength of the base material as a solid solution strength element. However, if the amount of Mn is too large, the hardenability increases and not only deteriorates the weldability and the HAZ toughness, but also promotes the center segregation of the continuous cast slab.
And

【0018】Pは、本発明鋼においては不純物であり、
P量の低減はHAZにおける粒界破壊を減少させる傾向
があるため、少ないほど好ましい。含有量が多いと、母
材、溶接部の低温靭性を劣化させるため上限を0.02
5%とした。
P is an impurity in the steel of the present invention,
Since a reduction in the amount of P tends to reduce grain boundary fracture in HAZ, a smaller amount is more preferable. If the content is large, the low-temperature toughness of the base material and the welded portion is deteriorated, so the upper limit is 0.02.
5%.

【0019】Sは、Pと同様本発明鋼においては不純物
であり、母材の低温靭性の観点からは少ないほど好まし
い。含有量が多いと母材、溶接部の低温靭性を劣化させ
るため上限を0.015%とした。
S, like P, is an impurity in the steel of the present invention, and is preferably as small as possible from the viewpoint of the low-temperature toughness of the base material. If the content is large, the low-temperature toughness of the base material and the welded portion is deteriorated, so the upper limit was made 0.015%.

【0020】Alは、一般に脱酸上鋼に含まれる元素で
あるが、脱酸はSiまたはTiだけでも十分であり、本
発明鋼においては、その下限は限定しない。しかし、A
l量が多くなると鋼の清浄度が悪くなるだけでなく、溶
接金属の靭性が劣化するので上限を0.06%とした。
Al is an element generally contained in the deoxidized upper steel, but the deoxidation is sufficient with only Si or Ti, and the lower limit is not limited in the steel of the present invention. But A
When the amount of l increases, not only does the cleanliness of the steel deteriorate, but also the toughness of the weld metal deteriorates, so the upper limit was made 0.06%.

【0021】Ti、Nb、VはいずれもCを固定し、実
効的なC量を低減させる上で本発明においては不可欠な
元素である。三者はC固定の観点から化学量論的に等価
なTi量=Ti当量(Ti(eq.))として、 Ti(eq.)=Ti+Nb/2+V と表すことができる。
Ti, Nb and V are all indispensable elements in the present invention for fixing C and reducing the effective C amount. The three can be expressed as Ti (eq.) = Ti + Nb / 2 + V as Ti amount = Ti equivalent (Ti (eq.)) Stoichiometrically equivalent from the viewpoint of C fixation.

【0022】したがって、実際の添加量は、後述する
C、N、Ti当量間の関係から自ずと限定される。その
際、Ti、Nb、Vは単独添加でも、2種以上の複合添
加であってもよい。
Therefore, the actual amount of addition is naturally limited by the relationship between C, N, and Ti equivalents described later. At that time, Ti, Nb, and V may be added alone or in combination of two or more.

【0023】Nは不可避的不純物として鋼中に含まれる
ものであるが、Cを固定するためのTi、Nb、Vを窒
化物として消費してしまうため、上限を0.006%に
限定した。
Although N is contained in steel as an unavoidable impurity, Ti, Nb and V for fixing C are consumed as nitrides, so the upper limit is limited to 0.006%.

【0024】鋼の個々の成分を上記の通り限定した上
で、C、N、Ti当量間の関係を −0.02%≦C−[Ti(eq.)−3.4N]/4
≦0.01% となるように限定する。C−[Ti(eq.)−3.4
N]/4はTi、Nb、VがC、Nを固定した後、化学
量論的に残存するC量を表し、パーライトなどの硬質相
生成に関わる実効的なC量である。硬質相は脆性破壊発
生の起点となり、靭性を劣化させるため、実効C量は
0.01%以下とする必要がある。実効C量が負という
ことはTi当量が過剰であることを意味し、Ti、N
b、Vのコストや過剰添加による粗大析出物による靭性
劣化の点から−0.02%以上とした。実効C量を上記
範囲に限定することで、ミクロ組織は後述する製造方法
では必然的にフェライトの組織分率が95%以上とな
る。換言すれば、硬質相生成を抑制しフェライトの組織
分率が95%以上でなければ、高靭性は達成し得ない。
After limiting the individual components of the steel as described above, the relationship between the C, N, and Ti equivalents was set to -0.02% ≦ C- [Ti (eq.)-3.4N] / 4.
≦ 0.01%. C- [Ti (eq.)-3.4
N] / 4 represents the amount of C remaining stoichiometrically after Ti, Nb, and V fix C and N, and is the effective amount of C involved in the formation of a hard phase such as pearlite. Since the hard phase becomes a starting point of the occurrence of brittle fracture and degrades toughness, the effective C amount needs to be 0.01% or less. A negative effective C amount means that the Ti equivalent is excessive, and Ti, N
From the viewpoint of the cost of b and V and toughness deterioration due to coarse precipitates due to excessive addition, -0.02% or more. By limiting the effective C content to the above range, the microstructure inevitably has a ferrite structure fraction of 95% or more in a manufacturing method described later. In other words, high toughness cannot be achieved unless the hard phase formation is suppressed and the ferrite structure fraction is not less than 95%.

【0025】鋼成分を上記の通り限定し、そのミクロ組
織を本発明で限定するように制御するため、製造方法も
限定する必要がある。
In order to limit the steel composition as described above and to control the microstructure of the steel in the present invention, the manufacturing method also needs to be limited.

【0026】基本的には、本発明の通り成分を限定した
鋼(鋼片あるいは鋳片)を熱間圧延しその後放冷する。
このとき、加熱は必ずしも必要ではなく、圧延温度が確
保されれば、鋳造後直接圧延を行ってもよいが、125
0℃以下の温度に再加熱することで容易に圧延温度が確
保できる。上限を1250℃とする理由は、それ以上の
高温再加熱は必要以上に組織が粗大となることや、圧延
温度確保の上では十分なため省エネルギーを考慮したも
のである。また、特にTiが添加された場合には、最終
的なTiの析出形態が変化し、靭性を劣化させる場合が
あるため、再加熱時の上限温度を1250℃以下に限定
した。
Basically, according to the present invention, steel (slab or slab) having a limited composition is hot-rolled and then cooled.
At this time, heating is not necessarily required, and if the rolling temperature is secured, direct rolling may be performed after casting.
The rolling temperature can be easily secured by reheating to a temperature of 0 ° C. or less. The reason for setting the upper limit to 1250 ° C. is to consider energy saving because reheating at a high temperature beyond that causes an unnecessarily coarse structure and sufficient rolling temperature. Further, particularly when Ti is added, the final precipitation form of Ti may change and the toughness may be deteriorated. Therefore, the upper limit temperature at the time of reheating is limited to 1250 ° C. or less.

【0027】熱間圧延は750℃以上の温度で行う必要
がある。これは、実効C量が本発明の範囲に制御された
鋼では変態点(Ar3)が比較的高く、圧延温度が75
0℃を下回ると表層近傍ではα/γ二相域圧延となって
加工フェライトが生ずる場合があるためである。加工フ
ェライト、即ち二相域圧延では、靭性の劣化や各種性質
の異方性などの問題が生ずる場合があり、可能な限り避
けるべきである。
Hot rolling must be performed at a temperature of 750 ° C. or higher. This is because the transformation point (Ar 3 ) is relatively high in the steel whose effective C amount is controlled within the range of the present invention, and the rolling temperature is 75%.
If the temperature is lower than 0 ° C., in the vicinity of the surface layer, α / γ dual-phase rolling may occur, and a processed ferrite may be generated. Worked ferrite, that is, two-phase rolling, may cause problems such as deterioration of toughness and anisotropy of various properties, and should be avoided as much as possible.

【0028】圧延後は放冷することで、フェライトの組
織分率が95%以上が確保され、良好な靭性が得られる
が、得ようとする強度レベルへの調整などの目的で必要
に応じて、圧延後、Ac1以下の温度での焼き戻しやA
3以上の温度での焼きならしを行っても何ら問題はな
い。いずれも圧延あるいは変態時に導入される歪みを回
復させることにもなり、靭性上問題となることはない。
これらの熱処理によっても、フェライトの組織分率は9
5%以上を十分確保できる。
After rolling, the steel is allowed to cool to ensure a ferrite structure fraction of 95% or more and to obtain good toughness. However, if necessary, it is necessary to adjust the strength level to be obtained. After rolling, tempering at a temperature of less than Ac 1 or A
There is no problem if normalizing at a temperature of c 3 or more. In either case, the strain introduced during rolling or transformation is recovered, and there is no problem in toughness.
Even with these heat treatments, the structure fraction of ferrite is 9%.
5% or more can be sufficiently secured.

【0029】[0029]

【実施例】転炉−連続鋳造−厚板工程で種々の鋼成分の
鋼板(厚さ9〜40mm)を製造し、その下降伏点(降
伏点の出ないものについては0.2%耐力)、引張強
さ、0℃におけるVシャルピー衝撃吸収エネルギーおよ
びフェライトの組織分率を調査した。
EXAMPLES Steel plates (thickness: 9 to 40 mm) of various steel components are manufactured in the converter-continuous casting-thick plate process, and their descending yield points (for those without a yield point, 0.2% proof stress) , Tensile strength, V Charpy impact absorption energy at 0 ° C., and microstructure fraction of ferrite.

【0030】表1に比較鋼とともに本発明鋼の鋼成分
を、また表2に鋼板のミクロ組織と諸特性、およびその
時の製造プロセスを示す。
Table 1 shows the steel composition of the steel of the present invention together with the comparative steel, and Table 2 shows the microstructure and various properties of the steel sheet and the production process at that time.

【0031】本発明に則った鋼板(本発明鋼)は、いず
れも良好な特性を有する。
The steel sheet according to the present invention (the steel of the present invention) has good characteristics.

【0032】これに対し、本発明によらない比較鋼は、
いずれかの特性が劣る、すなわち、鋼成分の点から、比
較鋼9、11、12、13は、C、Ti当量(Ti(e
q.))、N量間の関係が適正でなく、C−[Ti(e
q.)−3.4N]/4の値が本発明が規定する0.0
1%を超えているために総じて靭性に劣る。加えて比較
鋼9はC量が高いため、フェライトの組織分率は本発明
が規定する値より小さく、強度が高めである。比較鋼1
0はC−[Ti(eq.)−3.4N]/4の値そのも
のは本発明の規定する範囲にあり、フェライトの組織分
率も本発明に則ったものであるが、Ti、Nb、Vのい
ずれも添加されていないため靭性(vTrs)に劣る。
On the other hand, the comparative steel not according to the present invention is:
Either property is inferior, that is, in terms of steel composition, comparative steels 9, 11, 12, and 13 have C, Ti equivalents (Ti (e
q. )), The relationship between the amounts of N is not appropriate, and C- [Ti (e
q. ) -3.4N] / 4 is 0.0 as defined by the present invention.
Since it exceeds 1%, the toughness is generally poor. In addition, since the comparative steel 9 has a high C content, the structure fraction of ferrite is smaller than the value specified by the present invention, and the strength is high. Comparative steel 1
0 is the value of C- [Ti (eq.)-3.4N] / 4 itself within the range specified by the present invention, and the structure fraction of ferrite is in accordance with the present invention. Since none of V is added, the toughness (vTrs) is poor.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【表2】 [Table 2]

【0035】[0035]

【発明の効果】本発明により、建築物の地震時のエネル
ギー吸収デバイス用として靭性に優れた低降伏点鋼が安
価に供給可能となり、地震時の建物の安全性をより一層
高めることが可能となった。
According to the present invention, low yield point steel having excellent toughness can be supplied at low cost for use as an energy absorbing device for buildings during earthquakes, and the safety of buildings during earthquakes can be further improved. became.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、C:0.1%以下、Si:
0.4以下、Mn:1.5%以下、P:0.025%以
下、S:0.015%以下、Al:0.06%以下、
N:0.006%以下に加え、 Ti(eq.)=Ti+Nb/2+V と定義するTi当量と、C、N量との間の関係が −0.02%≦C−[Ti(eq.)−3.4N]/4
≦0.01% を満足するようにTi、Nb、Vのうち1種単独もしく
は2種以上を含有し、残部が鉄および不可避的不純物か
らなり、かつミクロ組織のフェライトの組織分率が95
%以上であることを特徴とする靭性の優れた低降伏点
鋼。
C .: 0.1% or less by weight, Si:
0.4 or less, Mn: 1.5% or less, P: 0.025% or less, S: 0.015% or less, Al: 0.06% or less,
N: 0.006% or less, and the relationship between the Ti equivalent defined as Ti (eq.) = Ti + Nb / 2 + V and the amounts of C and N is −0.02% ≦ C− [Ti (eq.) -3.4N] / 4
At least one of Ti, Nb and V is contained so as to satisfy ≦ 0.01%, the balance being iron and unavoidable impurities, and the microstructure of ferrite having a microstructure fraction of 95%.
% Low yield point steel with excellent toughness, characterized in that it is not less than 10%.
【請求項2】 重量%で、C:0.1%以下、Si:
0.4以下、Mn:1.5%以下、P:0.025%以
下、S:0.015%以下、Al:0.06%以下、
N:0.006%以下に加え、 Ti(eq.)=Ti+Nb/2+V と定義するTi当量と、C、N量との間の関係が −0.02%≦C−[Ti(eq.)−3.4N]/4
≦0.01% を満足するようにTi、Nb、Vのうち1種単独もしく
は2種以上を含有し、残部が鉄および不可避的不純物か
らなる鋼を、鋳造後直接もしくは1250℃以下の温度
に再加熱後、750℃以上の温度で熱間圧延を終了し、
その後放冷することを特徴とする靭性の優れた低降伏点
鋼の製造方法。
2. In% by weight, C: 0.1% or less, Si:
0.4 or less, Mn: 1.5% or less, P: 0.025% or less, S: 0.015% or less, Al: 0.06% or less,
N: 0.006% or less, and the relationship between the Ti equivalent defined as Ti (eq.) = Ti + Nb / 2 + V and the amounts of C and N is −0.02% ≦ C− [Ti (eq.) -3.4N] / 4
A steel containing one or more of Ti, Nb, and V so as to satisfy ≦ 0.01%, and the balance consisting of iron and unavoidable impurities, is cast directly or at a temperature of 1250 ° C. or less after casting. After reheating, finish hot rolling at a temperature of 750 ° C or higher,
A method for producing a low yield point steel having excellent toughness, which is then allowed to cool.
【請求項3】 重量%で、C:0.1%以下、Si:
0.4以下、Mn:1.5%以下、P:0.025%以
下、S:0.015%以下、Al:0.06%以下、
N:0.006%以下に加え、 Ti(eq.)=Ti+Nb/2+V と定義するTi当量と、C、N量との間の関係が −0.02%≦C−[Ti(eq.)−3.4N]/4
≦0.01% を満足するようにTi、Nb、Vのうち1種単独もしく
は2種以上を含有し、残部が鉄および不可避的不純物か
らなる鋼を、鋳造後直接もしくは1250℃以下の温度
に再加熱後、750℃以上の温度で熱間圧延し、さらに
Ac1点以下の温度で焼き戻しすることを特徴とする靭
性の優れた低降伏点鋼の製造方法。
3. The method according to claim 1, wherein C: 0.1% or less, Si:
0.4 or less, Mn: 1.5% or less, P: 0.025% or less, S: 0.015% or less, Al: 0.06% or less,
N: 0.006% or less, and the relationship between the Ti equivalent defined as Ti (eq.) = Ti + Nb / 2 + V and the amounts of C and N is −0.02% ≦ C− [Ti (eq.) -3.4N] / 4
A steel containing one or more of Ti, Nb, and V so as to satisfy ≦ 0.01%, and the balance consisting of iron and unavoidable impurities, is cast directly or at a temperature of 1250 ° C. or less after casting. A method for producing a low yield point steel having excellent toughness, characterized in that after reheating, hot rolling is performed at a temperature of 750 ° C. or higher and tempering is performed at a temperature of 1 point or lower.
【請求項4】 重量%で、C:0.1%以下、Si:
0.4以下、Mn:1.5%以下、P:0.025%以
下、S:0.015%以下、Al:0.06%以下、
N:0.006%以下に加え、 Ti(eq.)=Ti+Nb/2+V と定義するTi当量と、C、N量との間の関係が −0.02%≦C−[Ti(eq.)−3.4N]/4
≦0.01% を満足するようにTi、Nb、Vのうち1種単独もしく
は2種以上を含有し、残部が鉄および不可避的不純物か
らなる鋼を、鋳造後直接もしくは1250℃以下の温度
に再加熱後、750℃以上の温度で熱間圧延し、さらに
Ac3点以下の温度で焼きならしすることを特徴とする
靭性の優れた低降伏点鋼の製造方法。
4. C .: 0.1% or less by weight, Si:
0.4 or less, Mn: 1.5% or less, P: 0.025% or less, S: 0.015% or less, Al: 0.06% or less,
N: 0.006% or less, and the relationship between the Ti equivalent defined as Ti (eq.) = Ti + Nb / 2 + V and the amounts of C and N is −0.02% ≦ C− [Ti (eq.) -3.4N] / 4
A steel containing one or more of Ti, Nb, and V so as to satisfy ≦ 0.01%, and the balance consisting of iron and unavoidable impurities, is cast directly or at a temperature of 1250 ° C. or less after casting. A method for producing a low yield point steel having excellent toughness, comprising hot rolling at a temperature of 750 ° C. or more after reheating, and normalizing at a temperature of 3 points or less of Ac.
JP06927898A 1998-03-05 1998-03-05 Method for producing steel for energy absorbing device with excellent toughness Expired - Fee Related JP3619362B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06927898A JP3619362B2 (en) 1998-03-05 1998-03-05 Method for producing steel for energy absorbing device with excellent toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06927898A JP3619362B2 (en) 1998-03-05 1998-03-05 Method for producing steel for energy absorbing device with excellent toughness

Publications (2)

Publication Number Publication Date
JPH11246937A true JPH11246937A (en) 1999-09-14
JP3619362B2 JP3619362B2 (en) 2005-02-09

Family

ID=13398025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06927898A Expired - Fee Related JP3619362B2 (en) 1998-03-05 1998-03-05 Method for producing steel for energy absorbing device with excellent toughness

Country Status (1)

Country Link
JP (1) JP3619362B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277680A (en) * 2006-04-11 2007-10-25 Nippon Steel Corp Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
CN102071358A (en) * 2011-01-26 2011-05-25 天津钢铁集团有限公司 Low-alloy and high-intensity steel plate with yield strength being 550MPa level and production method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277680A (en) * 2006-04-11 2007-10-25 Nippon Steel Corp Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
CN102071358A (en) * 2011-01-26 2011-05-25 天津钢铁集团有限公司 Low-alloy and high-intensity steel plate with yield strength being 550MPa level and production method

Also Published As

Publication number Publication date
JP3619362B2 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
KR20010060760A (en) structural steel having High strength and method for menufactreing it
JP4705601B2 (en) Low yield point steel for dampers with excellent toughness and method for producing the same
JP3619362B2 (en) Method for producing steel for energy absorbing device with excellent toughness
JPH10298644A (en) Production of steel with low yield point, excellent in toughness
JP4331971B2 (en) Method for producing 225 MPa and 235 MPa class low yield point steels excellent in toughness and material stability
JP3540927B2 (en) Low yield point steel with excellent toughness
JP3411218B2 (en) Low yield point steel with small yield rate dependence on strain rate and method of manufacturing the same
JPS63145745A (en) Hot rolled high tensile steel plate and its production
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JP2006233328A (en) Method for producing low yield point thick steel plate having excellent low temperature toughness
JP3304823B2 (en) Manufacturing method of low yield point structural steel sheet
JP2000178677A (en) Low yield point steel excellent in toughness and small in strain rate dependency of yield point and its production
JPH0118967B2 (en)
JPH10245626A (en) Production of low yield point steel excellent in toughness
JP2555436B2 (en) Hot-rolled steel sheet with excellent workability and its manufacturing method
JP3774577B2 (en) Low yield point steel for vibration control devices
JPH1112650A (en) Production of steel with low yield point, excellent in toughness
JPH10183293A (en) Steel with low yield point, excellent in toughness, and its production
JPH11343537A (en) Low yield ratio steel excellent in toughness of base material and weld zone and high in yield point
JP3271508B2 (en) Manufacturing method of low yield point structural steel sheet
KR101125986B1 (en) Steel and method for manufacturing steel plate having low yield ratio, high strength and excellent toughness and steel plate made of the same
JP3661829B2 (en) Low yield point steel plate with little strain rate dependence and its manufacturing method
JPH11172367A (en) Steel for structural purpose low in yield strength and small in anisotropy of yield strength and its production
JP2000119747A (en) Production of high tensile strength steel plate small in difference of material in plate thickness direction
KR20220085575A (en) Ultra-thick steel plate having excellent low-temperature impact toughness and method for manufacturing thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees