WO2007015311A1 - 490 MPa GRADE HIGH-TENSILE STEEL FOR WELDED STRUCTURE EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND METHOD FOR PRODUCING SAME - Google Patents

490 MPa GRADE HIGH-TENSILE STEEL FOR WELDED STRUCTURE EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND METHOD FOR PRODUCING SAME Download PDF

Info

Publication number
WO2007015311A1
WO2007015311A1 PCT/JP2005/014461 JP2005014461W WO2007015311A1 WO 2007015311 A1 WO2007015311 A1 WO 2007015311A1 JP 2005014461 W JP2005014461 W JP 2005014461W WO 2007015311 A1 WO2007015311 A1 WO 2007015311A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel
strength
temperature
temperature strength
Prior art date
Application number
PCT/JP2005/014461
Other languages
French (fr)
Japanese (ja)
Inventor
Yasushi Mizutani
Yoshiyuki Watanabe
Ryuuji Uemori
Tatsuya Kumagai
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to CNA2005800465281A priority Critical patent/CN101098978A/en
Priority to PCT/JP2005/014461 priority patent/WO2007015311A1/en
Priority to TW094126181A priority patent/TW200706659A/en
Publication of WO2007015311A1 publication Critical patent/WO2007015311A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to architecture, civil engineering, offshore structures, shipbuilding, various storage tanks.
  • This invention is mainly intended for thick plates (thick steel plates), but also includes steel pipes and shaped steel.
  • the strength of general welded structural steel has been reduced from about 350 ° C, and its allowable temperature is about 500 ° C. For this reason, when these steel materials are used in buildings, offices, residences, multi-storey parking lots, and other buildings, it is mandatory to provide fireproof coatings to ensure safety in fires.
  • the building-related laws and regulations stipulate that the temperature of a steel material does not exceed 350 " € in the event of a fire. This is because the steel material has a proof stress (yield strength) strength of about s' 350 ° C and 2/3 of room temperature. This is because the fireproof coating has a great influence on the construction cost.
  • B is in the midst of merits and demerits, such as increasing hardenability. For example, during low heat input welding, the weld heat affected zone hardens significantly, resulting in poor toughness. Conversely, if the heat input becomes too high, it precipitates at the austenite grain boundaries and the hardenability of B cannot be used effectively. The problem was that the weld heat input range was limited due to the coarse structure and poor toughness.
  • An object of the present invention is to provide a high-strength steel for welded structure having excellent high-temperature strength in a temperature range of 600 to 800 ° C, and a production method capable of industrially supplying the steel. .
  • the present invention achieves the object by limiting the steel components, microstructures, etc. to appropriate ranges, and the gist thereof is as follows.
  • P CM C + Si / 30 + Mn / 20 + CU / 20 + N1 / 60 + Cr / 20 + Mo / 15+ V / 10 + 5 B
  • Weld crack susceptibility composition P CM define the 15% or less 0.1 and contains substantially no B, with a remainder being iron and unavoidable impurities, microstructure was a mixed structure mainly of ferrite preparative base Inai Bok 490MPa class high-strength steel for welded structures with excellent high-temperature strength, characterized by a 20-90% portion of the vane.
  • the average equivalent circle diameter of the old austenite grains having a cross section parallel to the rolling direction at a thickness of 1/4 thickness is 120 m or less. 490MPa class high strength steel for welded structures with excellent high temperature strength as described.
  • High-temperature strength is enhanced by the addition of Mo and Nb, which promotes the precipitation of stable carbonitrides at high temperatures and increases the dislocation density due to the formation of chromite structure, and further dislocations by solid solution Mo and Nb. It is effective to delay recovery.
  • Mo and Nb which promotes the precipitation of stable carbonitrides at high temperatures and increases the dislocation density due to the formation of chromite structure, and further dislocations by solid solution Mo and Nb. It is effective to delay recovery.
  • a large amount of Mo is indispensable in the extension of conventional knowledge, but excellent welding as a steel for welded structures. Contrary to the viewpoint of securing the weldability and weld toughness, it is extremely difficult to achieve high temperature strength.
  • the alloy element is optimized and the structure is controlled, particularly by the thermal stability of the matrix structure at a high temperature, the appropriate coherent precipitation strengthening effect, and the dislocation recovery delay effect.
  • the thermal stability of the matrix structure at a high temperature we have found that it is possible to achieve both high weldability, weld toughness and high-temperature strength.
  • C has the most prominent effect on the properties of steel, and must be controlled within a narrow range, with a limited range of 0.005% or more and less than 0.040%.
  • the amount of C is less than 0.005%, the strength is insufficient, and when it exceeds 0.040%, the amount of Mo. added is large.
  • the weldability and weld toughness are deteriorated, and the cooling rate after the rolling is finished. If it is too large, the yield of the bainty increases and the risk of excess strength increases.
  • the mixed matrix structure of Paynite and Ferai ⁇ is kept thermodynamically stable and consistent with Mo, Nb, V, and Ti composite carbonitride precipitates. Maintenance Therefore, C is required to be less than 0.040% in order to secure the strengthening effect.
  • Si is an element contained in deoxidized upper steel and has a substitutional solid solution strengthening action, so it is effective in improving the strength of the base metal at room temperature, but is particularly effective in improving the high temperature strength above 600 ° C. There is no.
  • the upper limit is limited to 0.5%. Deoxidation of steel is possible with Ti and A1 alone, and is preferably as low as possible from the viewpoint of weld toughness and hardenability, and is not necessarily added.
  • Mn is an indispensable element for securing strength and toughness, but Mn, a substitutional solid solution strengthening element, is effective in increasing the strength at room temperature, but it is particularly suitable for high-temperature strength at 600. There is not much improvement effect. Therefore, it is necessary to relatively viewpoint from less than 0.5% of the weldability improving i.e. P CM reduced in steel containing a large amount of Mo such as in the present invention.
  • the upper limit of M n low, it is advantageous from the viewpoint of center segregation of the continuous forged slab.
  • addition of 0.1% or more is necessary to adjust the strength and toughness of the base metal.
  • P and S are impurities in the steel of the present invention, and the lower the better. P segregates at the grain boundaries and promotes grain boundary fracture, and S forms sulfides typified by MnS and degrades the toughness of the base metal and welds, so the upper limit is 0.02% and 0.01% respectively. %.
  • Mo is an indispensable element along with Nb from the viewpoint of high temperature strength development and maintenance in the steel of the present invention. It is more advantageous to add more from the standpoint of high-temperature strength, but it should be constrained in consideration of the base metal strength, weldability, and weld toughness.
  • Mo is allowed up to 1.5%.
  • the lower limit is the combined addition with Nb, or the addition of V and Ti, which are effective for improving the high temperature strength described later, ensuring stable high temperature strength. In order to achieve this, it is necessary to add 0.3% or more.
  • Nb is an element that must be added in combination with Mo.
  • Nb is an element useful for raising the recrystallization temperature of austenite and maximizing the effect of controlled rolling during hot rolling. It also contributes to the refinement of the heated austenite cake during reheating prior to rolling. In addition, it has the effect of improving high temperature strength by strengthening precipitation and suppressing dislocation recovery, and by adding it together with Mo, it contributes to further improvement of high strength. If less than 0.03%, the effect of suppressing precipitation hardening and dislocation recovery at 700 ° C and 800 ° C is small ⁇ , and if exceeding 0.15%, the degree of hardening decreases with respect to the amount added, which is also economically favorable. Not only does it deteriorate, but the toughness of the welds also deteriorates. For these reasons, Nb is limited to the range of 0.03 to 0.15%.
  • a 1 is an element generally contained on deoxidation, but deoxidation is performed by Si or
  • N is contained in steel as an unavoidable impurity.
  • Nb and T i described later are added, Nb combines with Nb to form carbonitride to increase the strength. To enhance the properties of steel. For this reason, at least 0.001% is necessary as the N amount.
  • an increase in the amount of N is detrimental to weld zone toughness and weldability, and in the present invention the upper limit is 0.006%.
  • This upper limit is not necessarily limited in terms of characteristics, and is limited within the range confirmed by the present inventors.
  • Cu, Ni which can be contained if necessary
  • the reasons for the addition of Cr, V, Ti, Ca, REM, and Mg and the range of the amount added are explained.
  • the main purpose of adding these elements to the basic components is This is because the characteristics such as strength and toughness are improved without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount of addition is of a nature that should be restricted naturally.
  • the upper limit was limited to 1.0%. It is known that the Cu crack itself can be avoided by adding appropriate Ni depending on the amount of Cu. Since the weldability is also related to the amount of other alloy elements including the C amount, the upper limit is not necessarily limited. It does not have a limit taste.
  • Ni exhibits almost the same effect as Cu, and has a particularly large effect on improving the toughness of the base metal. In order to enjoy these effects reliably, at least
  • the upper limit is 1.0%.
  • Cr can be added as necessary to improve the strength of the base material. It can be clearly distinguished from the small amount of playing cards / elements from scrap, etc.
  • V has almost the same effect and action as Nb, including improved high-temperature strength. The effect is small compared to that of Nb.
  • V is as can be seen from the fact that also contains the expression of P CM, hardenability, ⁇ boss the impact on the weldability. Therefore, the lower limit is set to 0.01% to ensure the effect of V addition, and the upper limit is set to 0.1% to eliminate adverse effects.
  • Ti like Nb and V, is effective in improving high temperature strength. In addition to this, it is preferable to add them particularly when the requirements for the base metal and the weld zone toughness are severe. Because, Ti, when the amount of A1 is small (e.g., 0.003%), combined with O form precipitates composed mainly of Ti 2 0 3, becomes intragranular ferrite formation of nuclei, weld zone toughness Improve. In addition, Ti combines with N and precipitates finely in the slab as TiN, which suppresses the coarsening of austenite grains during heating and is effective in refining the rolling structure. The fine TiN present in the steel sheet ⁇ Refine the grain structure of the heat affected zone during welding. To obtain these effects, Ti must be at least 0.005%. However, if the amount is too large, TiC is formed and low temperature toughness deteriorates weldability, so the upper limit is 0.025%.
  • Ca and REM combine with the impurity S to improve toughness and suppress cracking due to diffusible hydrogen in the weld, but if too much, coarse inclusions are formed, which adversely affects toughness. Therefore, both are limited to the range of 0.0005 to 0.004%. Since both elements have almost the same effect, at least one of them should be added in order to enjoy the above-described effect.
  • Mg has the effect of suppressing the growth of austenite grains in the weld heat-affected zone and making it finer, making it possible to strengthen the weld zone. In order to enjoy such effects, Mg needs to be 0.0001% ⁇ . On the other hand, as the additive amount increases, the effect on the additive amount decreases and the economic efficiency is lost, so the upper limit was set to 0.006%.
  • B is not made intentionally, and steelmaking The point is that it does not contain substantially beyond the level included as a contamination in the process.
  • B is extremely advantageous in terms of microstructure control and strength improvement when used in high-strength steel because B significantly increases hardenability, but it also has the risk of degrading weldability and weld toughness. Have both.
  • the graphical addition of B is avoided and the material is substantially B-free.
  • P CM C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15+ V / 10+ ⁇ B
  • P CM has excellent low as weldability, not more than 0.22%, preheating (for welding cold cracking prevention) during welding are said unnecessary.
  • preheating for welding cold cracking prevention
  • Pe M is 0 15% or less is a very low value
  • ⁇ ⁇ ⁇ organization is also limited.
  • the microstructure is mainly composed of a mixture of ferrite and Payne cake, and the fraction of the Payne cake is limited to 20 to 90%. This is because 490MPa class room temperature is a little higher than the pay rate fraction.
  • the present invention is limited to clarify the characteristics of the present invention, and is not necessarily limited.
  • microstructures are representative of 14 thickness positions in the thickness direction.
  • name of “Bainite” as an organization name is unclear at certain points in the area when measuring fractions due to the variety of force variations that are widely used by those skilled in the art. May occur. In that case, there is also a method of judging with “Ferrai ⁇ ”, which is another organization in the organizational structure.
  • the X-ray distribution ratio of this place a is 10% to 80%. It is a polygonal or pseudopolygonal ferrule that does not contain any light (not including needle-shaped ferrules).
  • the austenite grain size before transformation after rolling needs to be appropriately limited in order to control (toughen) the toughness of a relatively high Mo-added steel such as the present invention.
  • the finer the austenite the finer the final transformation structure and the better the toughness.
  • the austenite grain size at the position of 1 to 4 'thickness in the sheet thickness cross-section direction in the final rolling direction of the steel sheet is limited to an average equivalent circle diameter of 120 m or less.
  • the austenity particle size In many cases, it is not always easy to determine the austenity particle size. In such a case, use an impact test piece with a notch sampled in the direction perpendicular to the final rolling direction of the steel sheet, centering on the position where the thickness is 1/4 thickness, for example, JISZ 2202 2mmV notch test piece, Brittle fracture at sufficiently low temperature In this case, the average equivalent circle diameter should be 120 m or less as well. is there.
  • the excellent properties aimed at by the present invention including the structure (structure, tissue fraction, former austenite particle size, etc.) and the high temperature characteristics as limited to the above, are as follows. It can be easily obtained.
  • the reheating of billets or slabs with a given steel composition is limited to a temperature range of 1 100-1250 ° C.
  • the lower limit of 1100 is to make Mo, Nb, and V and Ti added as needed, in a solid solution state with the primary purpose of ensuring high-temperature properties.
  • the higher the reheating temperature the better, but the heating austenite grains are coarsened and are not preferred from the standpoint of base material toughness, so the upper limit is limited to 1250.
  • the limitation of the rolling conditions is directly to control the austenite grain size before the transformation after rolling to a relatively fine grain as described above, mainly for ensuring toughness. For this reason, rolling requires that the cumulative reduction at 1 100 ° C or less be 30% or more.
  • the rolling end temperature is limited to 850: or more as the lower limit temperature for precipitation of Mo, Nb, or V, Ti added as needed as carbides under low temperature pressure.
  • Cooling after rolling should also be limited from the viewpoint of structure control. Although it depends on the steel composition, a relatively thin material can obtain a specified structure even at a cooling rate that is about the same as that of cooling. However, if it is thicker, the cooling rate becomes slower when cooling is needed, and accelerated cooling is required. There is. In this case, accelerated cooling is most commonly water cooling in the production of thick steel sheets, but it is not always necessary to use water cooling. In addition, accelerated cooling is aimed at increasing the cooling speed in the transformation region for controlling the structure, so it is necessary to perform from 800 to above 650 ° C.
  • P high temperature yield stress
  • Force Steel temperature T (° C) Force Within the range of 600 ° C to 800 ° C, p ⁇ —0.0033 XT + 2.80.
  • Steel sheets of various steel components are manufactured in a continuous forging process of a converter-thick plate process.
  • the mechanical properties, weldability, and weld toughness are evaluated according to JIS.
  • the presence or absence of root cracks in the shape weld cracking test and the HAZ toughness of reproduction equivalent to small heat input and super large heat input welding by the welding reproducible heat cycle were investigated.
  • Table 1 shows the steel components of the present invention together with the comparative example
  • Table 2 shows the manufacturing conditions
  • Table 3 shows the results of the investigation of the structure and various properties.
  • the comparative example is inferior in characteristics to the inventive example because at least one of the steel components, production conditions, and structure deviates from the limited range of the present invention. I understand. That is, in Comparative Example 19, the amount of C is low, and thus the fraction of the vein is low, and both the room temperature strength and the high temperature strength (ratio) are low. In Comparative Example 20, the amount of C is high, so the bainitic fraction is high, and the room temperature strength is high. In addition, the base metal toughness, reproducible HAZ toughness is also inferior.
  • Comparative Example 21 Since Comparative Example 21 has a low Mo content and a low acceleration cooling start temperature, the high-temperature strength (ratio) is low due to the low payin fraction. Comparative Example IV has a low Nb content, a low heating temperature and a rolling end temperature, and a high accelerated cooling stop temperature, resulting in low normal temperature strength and high temperature strength (ratio). In Comparative Example 23, since B is added, when accelerated cooling is applied, the bainite fraction is high and the base metal toughness is poor. In addition, the reproducible HAZ toughness is inferior.
  • Comparative Example 24 has a high amount of Mn, P CM In addition, the cumulative reduction amount below 1 100 is also low, and therefore the base material strength becomes excessive as 490MPa grade steel with a high percentage of baseite, resulting in poor base metal toughness and reproducible HAZ toughness.
  • the root crack in the oblique y-type weld crack test was about 0.185% in Comparative Example 24 although Pc M was higher than the limited range of the present invention, and it did not occur in any case.
  • Charpy impact test piece JIS I 2202 2mniV notch, rolling direction
  • High-temperature tensile specimen Round bar (8 ⁇ or 10mm ⁇ , 1/4 thickness position, perpendicular to the rolling direction
  • Thermal history 1 1400 at X 1 sec, '800 ⁇ 500 cooling time 8 sec
  • the steel materials produced by the steel components and production methods based on the present invention have been demonstrated in the examples that the microstructure also satisfies the limited range of the present invention and is excellent not only in high temperature strength but also in weldability and weld toughness. It was. In other words, it is possible to industrially stably mass-produce welded structural steels with high-temperature properties far exceeding the conventional refractory steels that guarantee high-temperature properties up to about 600. For architectural use, for example, it is expected that applied buildings and completely fire-resistant coatings will be greatly expanded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Provided is a 490 MPa grade high-tensile steel for welded structures which is excellent in high-temperature strength in a range of 600 to 800˚C. This 490 MPa grade high-tensile steel for welded structures is characterized by having a chemical composition consisting of not less than 0.005% and less than 0.040% of C, 0.5% or less of Si, not less than 0.1% and less than 0.5% of Mn, 0.02% or less of P, 0.01% or less of S, 0.3 to 1.5% of Mo, 0.03 to 0.15% of Nb, 0.06% or less of Al, 0.006 % or less of N and the balance of iron and inevitable impurities, while optionally containing, if necessary, one or more of Cu, Ni, Cr, V, Ti, Ca, REM and Mg. This high-tensile steel is further characterized by having a weld cracking sensitivity composition (PCM), which is defined as PCM = C + Si/30 + Mn/20 + Cu/20 + Ni/60 + Cr/20 + Mo/15 + V/10 + 5B, of not more than 0.15%, and substantially containing no B. This high-tensile steel is still further characterized in that it has a micro structure mainly composed of a mixed structure of ferrite and bainite, and bainite accounts for 20 to 90 % of the mixed structure. A method for producing such a high-tensile steel is also provided.

Description

高温強度に れた溶接構造用 490MPa級高張力鋼ならびにその製造方 優 490MPa class high strength steel for welded structure with high temperature strength and its manufacturing method
法. Law.
技術分野 Technical field
本発明は 、 建築、 土木、 海洋構造物、 造船、 各種の貯槽夕ンクな 明  The present invention relates to architecture, civil engineering, offshore structures, shipbuilding, various storage tanks.
どの一般的溶接構造物に用いられ、 600°C以上 800 °C以下の温度範囲 において、 1 時間程度の比較的短時間における高 ϊ皿曰強度に優れた溶 接構造用高張力鋼ならびにその製造方書法に関するちのである。 本発 明は、 主として厚板 (厚鋼板) を対象としているが 、 鋼管や形鋼な ども含むものである High-strength steel for welded structures with excellent strength and high strength in a hot plate in a relatively short time of about 1 hour in a temperature range of 600 ° C to 800 ° C It is about the script. This invention is mainly intended for thick plates (thick steel plates), but also includes steel pipes and shaped steel.
背景技術 Background art
一般的な溶接構造用鋼材の強度は、 約 350°Cから強度が低下し、 その許容温度は約 500°Cとされている。 このため、 それらの鋼材を ビルや事務所、 住居、 立体駐車場などの建築物に用いた場合には、 火災における安全性を確保するため、 十分耐火被覆を施すことが義 務付けられており、 建築関連諸法令では、 火災時に鋼材温度が 350 "€以上にならないよう規定されている。 これは、 前記鋼材では、 耐 力 (降伏強度) 力 s' 350°C程度で常温の 2 / 3程度になり、 必要な強 度を下回るためである。 このような耐火被覆は、 建設コス トに多大 な影響を及ぼしているのが実態である。  The strength of general welded structural steel has been reduced from about 350 ° C, and its allowable temperature is about 500 ° C. For this reason, when these steel materials are used in buildings, offices, residences, multi-storey parking lots, and other buildings, it is mandatory to provide fireproof coatings to ensure safety in fires. The building-related laws and regulations stipulate that the temperature of a steel material does not exceed 350 "€ in the event of a fire. This is because the steel material has a proof stress (yield strength) strength of about s' 350 ° C and 2/3 of room temperature. This is because the fireproof coating has a great influence on the construction cost.
このような課題を解決するため、 高温時の耐カを備えた 「耐火鋼 」 が開発されている (例えば、 特開平 2 — 77523号公報、 特開平 10 — 68044号公報参照) 。 それぞれ 600°C 、 700°Cでの耐力が常温での 規格最小耐カ (降伏強度) の 2 Z 3以上を維持できるとするもので ある。 しかし、 いずれも特定の温度での耐力が示されるのみで、 そ れより高温での耐力については、 全く言及されていない。 特に、 70 0°C超の温度は、 鋼成分によっては部分的に変態を開始する温度領 域に入るため、 急激な耐カ (降伏強度) 低下が懸念されるほど、 設 計に反映できるような安定した実用鋼製造はきわめて困難であった 先に本発明者らは、 700〜 800°Cでの高温強度を確保できる鋼およ びその製造方法として、 発明をなしている (例えば、 特開 2004-439 6 1号公報参照) 。 鋼成分的には B添加を必須とするもので、 組織制 御を容易にし、 特に建築構造用鋼と しての低降伏比を達成し得るも のである。 しかし、 一般的に知られているように、 Bは焼入性を増 大させるなど功罪相半ばする。 例えば、 小入熱溶接時には、 溶接熱 影響部が著しく硬化するため靱性に劣り、 逆に溶接入熱が大きくな り過ぎるとオーステナイ ト粒界に析出し、 Bの焼入性を有効利用で きず組織が粗大となって靱性に劣るため、 溶接入熱範囲が限られる という問題を孕んでいた。 In order to solve such problems, “refractory steel” having resistance against high temperatures has been developed (see, for example, JP-A-2-77523 and JP-A-10-68044). The proof stress at 600 ° C and 700 ° C can be maintained at 2 Z 3 or more, the standard minimum resistance (yield strength) at room temperature. is there. However, in all cases, the proof stress at a specific temperature is shown, and the proof stress at a higher temperature is not mentioned at all. In particular, since temperatures exceeding 700 ° C fall within the temperature region where transformation is partially initiated depending on the steel composition, it can be reflected in the design to the extent that there is a concern about a sudden drop in yield strength (yield strength). It has been extremely difficult to produce a stable and practical steel. Previously, the present inventors have made an invention as a steel capable of securing high-temperature strength at 700 to 800 ° C. and a method for producing the same (for example, 2004-439 6 1)). As a steel component, B addition is essential, making it easy to control the structure and achieving a low yield ratio, especially as steel for building structures. However, as is generally known, B is in the midst of merits and demerits, such as increasing hardenability. For example, during low heat input welding, the weld heat affected zone hardens significantly, resulting in poor toughness. Conversely, if the heat input becomes too high, it precipitates at the austenite grain boundaries and the hardenability of B cannot be used effectively. The problem was that the weld heat input range was limited due to the coarse structure and poor toughness.
ところで、 建築構造用鋼としては、 耐震性の観点から低降伏比の 要求があり、 I I Sにおける 「建築構造用圧延鋼材」 規格でも 80 %以 下と規定されている。 本発明者らによる先の発明は、 これらを念頭 に置いたものであった。 しかし、 平成 1 2年 6 月に施行された改正建 築基準法では、 これまでの使用規定から性能規定に改正され、 新し い技術、 材料を早期に実用化することが含まれている。 建築用鋼材 に関しては、 建築基準法 37条において、 第 1項 : ; I I S材で建築構造 用として使用が許可されるもの、 第 2項 : 必要各種性能に応じて鋼 材の性能を評価した上で国土交通大臣が認定したものが使用できる ことになつた。 そこで、 本発明者らは、 J I S建築用鋼材における降 伏比の規定にとらわれることなく、 高温強度はもとより、 溶接性、 広い入熱範囲での溶接部靱性に優れる鋼材を鋭意検討し、 本願発明 に至った。 By the way, as steel for building structures, there is a demand for a low yield ratio from the viewpoint of earthquake resistance, and it is specified as 80% or less in the “Rolled steel for building structures” standard in IIS. The previous invention by the present inventors was made with these in mind. However, the revised Building Standards Law, which came into effect in June 2001, has been revised from the previous usage rules to performance specifications, and includes the early commercialization of new technologies and materials. Regarding building steel, Article 37 of the Building Standards Law, Article 1:; IIS materials that are permitted to be used for building structures, Section 2: After evaluating the performance of steel according to various performance requirements The one approved by the Minister of Land, Infrastructure, Transport and Tourism can be used. Therefore, the present inventors are not limited by the definition of the yield ratio in JIS steel for construction. The present inventors have intensively studied a steel material having excellent weld toughness in a wide heat input range, and have reached the present invention.
発明の開示 Disclosure of the invention
上述したように、 建築物に鋼材を利用する場合、 通常の鋼材では 高温強度 (耐カ =降伏応力) が低いため、 無被覆や耐火被覆軽減で 利用することができず、 高価な耐火被覆を施さなければならなかつ た。 また、 新しく 開発された鋼材でも、 その耐火温度は 600〜 700°C までの保証が限界であり、 700〜 800°Cでの無耐火被覆使用およびこ れによる耐火被覆工程の省略が可能となる鋼材の開発が望まれてい た。  As described above, when steel is used for buildings, normal steel has low high-temperature strength (resistance to yield stress), so it cannot be used for uncoated or fire-resistant coating reduction. I had to give it. In addition, even with newly developed steel materials, the limit of the fireproof temperature is limited to 600 to 700 ° C, which makes it possible to use a fireproof coating at 700 to 800 ° C and to eliminate the fireproof coating process. The development of steel was desired.
本発明の目的は、 600で以上 800°C以下の温度範囲における高温強 度に優れた溶接構造用高張力鋼ならびに当該鋼を工業的に安定して 供給可能な製造方法を提供することにある。  An object of the present invention is to provide a high-strength steel for welded structure having excellent high-temperature strength in a temperature range of 600 to 800 ° C, and a production method capable of industrially supplying the steel. .
本発明は、 前述の課題を克服するために、 鋼成分やミクロ組織な どを適正範囲に限定することで目的を達成したもので、 その要旨は 以下の通りである。  In order to overcome the above-mentioned problems, the present invention achieves the object by limiting the steel components, microstructures, etc. to appropriate ranges, and the gist thereof is as follows.
( 1 ) 鋼成分が質量%で、  (1) Steel component is mass%,
C : 0. 005 %以上 0. 040 %未満、 C: 0.005% or more and less than 0.040%,
S i : 0. 5 %以下、 S i: 0.5% or less,
Mn : 0. 1〜0. 5 %未満 Mn: 0.1 to less than 0.5%
P : 0. 02 %以下、 P: 0.02% or less,
S : 0. 0 1 %以下、 S: 0.01% or less,
Mo : 0. 3〜 1. 5 %、 Mo: 0.3-1.5%,
Nb : 0. 03〜0. 15 %、 Nb: 0.03 to 0.15%,
A 1 : 0. 06 %以下、 A1: 0.06% or less,
N : 0. 006 %以下、 かつ、 N: 0.006% or less, And,
P CM = C + Si/30 + Mn/20 + CU/20 + N1/60 + Cr/20 + Mo/ 15+ V /10+ 5 B P CM = C + Si / 30 + Mn / 20 + CU / 20 + N1 / 60 + Cr / 20 + Mo / 15+ V / 10 + 5 B
と定義する溶接割れ感受性組成 P CMが 0. 15%以下で、 実質的に Bを 含有せず、 残部が鉄および不可避的不純物からなり、 ミクロ組織が フェライ トとべイナィ 卜の混合組織主体であって、 そのべィナイ ト の分率が 20〜 90%であることを特徴とする高温強度に優れた溶接構 造用 490MPa級高張力鋼。 Weld crack susceptibility composition P CM define the 15% or less 0.1 and contains substantially no B, with a remainder being iron and unavoidable impurities, microstructure was a mixed structure mainly of ferrite preparative base Inai Bok 490MPa class high-strength steel for welded structures with excellent high-temperature strength, characterized by a 20-90% portion of the vane.
( 2 ) 上記鋼が質量%で、 さ らに、  (2) The above steel is in% by mass.
Cu: 0.05〜 1.0%、 Cu: 0.05-1.0%
Ni : 0.05〜 1.0%、 Ni: 0.05-1.0%
Gr: 0.05〜 1.0%、 Gr: 0.05-1.0%
V : 0.0ト 0. 1%、 V: 0.0 to 0.1%,
Ti : 0.005〜0.025 %、 Ti: 0.005 to 0.025%,
Ca: 0.0005〜0.004%、 Ca: 0.0005 to 0.004%,
REM: 0.0005〜0.004%、 REM: 0.0005-0.004%,
Mg: 0.0001〜0.006 % Mg: 0.0001 to 0.006%
のいずれか 1種または 2種以上を含有することを特徴とする上記 ( 1 ) に記載の高温強度に優れた溶接構造用 490MPa級高張力鋼。 490 MPa class high-tensile steel for welded structures having excellent high-temperature strength as described in (1) above, characterized by containing one or more of any of the above.
( 3 ) 板厚 1 / 4厚位置の圧延方向と平行な断面の旧オーステナ ィ ト粒の平均円相当径が、 120 m以下であることを特徴とする上 記 ( 1 ) または ( 2 ) に記載の高温強度に優れた溶接構造用 490MPa 級高張力鋼。  (3) In the above (1) or (2), the average equivalent circle diameter of the old austenite grains having a cross section parallel to the rolling direction at a thickness of 1/4 thickness is 120 m or less. 490MPa class high strength steel for welded structures with excellent high temperature strength as described.
( 4 ) 上記 ( 1 ) または ( 2 ) に記載の鋼成分からなる鋼片また は铸片を 1100〜 1250での温度範囲に再加熱後、 1100°C以下での累積 圧下量を 30%以上として、 850°C以上の温度で圧延し、 その後放冷 、 あるいは 800°C以上の温度から 650で以下の温度まで加速冷却する ことを特徴とする高温強度に優れた溶接構造用 490MPa級高張力鋼の 製造方法。 発明を実施するための最良の実施形態 (4) After reheating the slab or slab of the steel component described in (1) or (2) above to the temperature range of 1100 to 1250, the cumulative reduction amount at 1100 ° C or less is 30% or more. Rolled at a temperature of 850 ° C or higher and then allowed to cool, or accelerated from 800 ° C or higher to the following temperature at 650 490MPa class high strength steel for welded structures with excellent high temperature strength. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の詳細を説明する。  Details of the present invention will be described below.
高温強度は、 Moと Nbの複合添加により、 高温時に安定な炭窒化物 の析出を促進するとともに、 クロ組織のペイナイ ト化による転位 密度を増大させ、 さ らには固溶 Moおよび Nbにより転位回復を遅延さ せることが有効である 。 特に 、 本発明の目的とする 700〜 800°Cとい うきわめて高温での強度発現のためには、 従来知見の延長では Moの 多量添加が必須であるが、 溶接構造用鋼としての優れた溶接性、 溶 接部靱性確保の観点とは相反し 、 高温強度との両立はきわめて困難 であ'る。  High-temperature strength is enhanced by the addition of Mo and Nb, which promotes the precipitation of stable carbonitrides at high temperatures and increases the dislocation density due to the formation of chromite structure, and further dislocations by solid solution Mo and Nb. It is effective to delay recovery. In particular, in order to develop strength at an extremely high temperature of 700 to 800 ° C., which is the object of the present invention, a large amount of Mo is indispensable in the extension of conventional knowledge, but excellent welding as a steel for welded structures. Contrary to the viewpoint of securing the weldability and weld toughness, it is extremely difficult to achieve high temperature strength.
本発明者らの研究によれば 、 合金元素の適正化と組織制御、 特に 高温における母相組織の熱的安定性と適切な整合析出強化効果およ び転位回復遅延効果を しとにより、 優れた溶接性、 溶接部靱性 と高温強度とを両立することができることを見出した。  According to the study by the present inventors, the alloy element is optimized and the structure is controlled, particularly by the thermal stability of the matrix structure at a high temperature, the appropriate coherent precipitation strengthening effect, and the dislocation recovery delay effect. We have found that it is possible to achieve both high weldability, weld toughness and high-temperature strength.
まず、 本発明が請求項の通り に鋼成分を限定した理由について説 明する。  First, the reason why the present invention limits the steel components as claimed will be described.
Cは、 鋼材の特性に最も顕著な効果を及ぼすもので、 狭い範囲に 制御されなければならず、 0. 005 %以上 0. 040 %未満が限定範囲であ る。 0. 005 %未満の C量では強度が不足し、 0. 040 %以上となると Mo. 添加量が多い本発明においては溶接性、 溶接部靱性を劣化させると ともに、 圧延終了後の冷却速度が過大の場合はべイナィ トの生成分 率が増加し強度が超過する危険性が高まる。 さ らに、 火災相当の高 温加熱時に、 ペイナイ トとフェライ 卜の混合母相組織を熱力学的に 安定に保ち、 Mo, Nb, V , T iの複合炭窒化析出物との整合性を維持 して、 強化効果を確保する上でも Cを 0.040%未満とする必要があ る。 C has the most prominent effect on the properties of steel, and must be controlled within a narrow range, with a limited range of 0.005% or more and less than 0.040%. When the amount of C is less than 0.005%, the strength is insufficient, and when it exceeds 0.040%, the amount of Mo. added is large. In the present invention, the weldability and weld toughness are deteriorated, and the cooling rate after the rolling is finished. If it is too large, the yield of the bainty increases and the risk of excess strength increases. Furthermore, during high-temperature heating equivalent to a fire, the mixed matrix structure of Paynite and Ferai 卜 is kept thermodynamically stable and consistent with Mo, Nb, V, and Ti composite carbonitride precipitates. Maintenance Therefore, C is required to be less than 0.040% in order to secure the strengthening effect.
Siは、 脱酸上鋼に含まれる元素であり、 置換型の固溶強化作用を もつことから常温での母材強度向上に有効であるが、 特に 600°C超 の高温強度を改善する効果はない。 また、 多く添加すると溶接性、 溶接部靱性が劣化するため、 上限を 0.5%に限定した。 鋼の脱酸は T i, A1のみでも可能であり、 溶接部靭性ゃ焼入性などの観点から低 いほど好ましく、 必ずしも添加する必要はない。  Si is an element contained in deoxidized upper steel and has a substitutional solid solution strengthening action, so it is effective in improving the strength of the base metal at room temperature, but is particularly effective in improving the high temperature strength above 600 ° C. There is no. In addition, since the weldability and weld toughness deteriorate when a large amount is added, the upper limit is limited to 0.5%. Deoxidation of steel is possible with Ti and A1 alone, and is preferably as low as possible from the viewpoint of weld toughness and hardenability, and is not necessarily added.
Mnは、 強度、 靱性を確保する上で不可欠な元素ではあるが、 置換 型の固溶強化元素である Mnは、 常温での強度上昇には有効であるが 、 特に 600で超の高温強度にはあま り大きな改善効果はない。 した がって、 本発明のような比較的多量の Moを含有する鋼において溶接 性向上すなわち P C M低減の観点から 0.5%未満とする必要がある。 M nの上限を低く抑えることにより、 連続铸造スラブの中心偏析の点 からも有利となる。 なお、 下限については、 母材の強度、 靱性調整 上、 0. 1 %以上の添加が必要である。 Mn is an indispensable element for securing strength and toughness, but Mn, a substitutional solid solution strengthening element, is effective in increasing the strength at room temperature, but it is particularly suitable for high-temperature strength at 600. There is not much improvement effect. Therefore, it is necessary to relatively viewpoint from less than 0.5% of the weldability improving i.e. P CM reduced in steel containing a large amount of Mo such as in the present invention. By keeping the upper limit of M n low, it is advantageous from the viewpoint of center segregation of the continuous forged slab. As for the lower limit, addition of 0.1% or more is necessary to adjust the strength and toughness of the base metal.
Pおよび Sは、 本発明鋼においては不純物であり、 低いほど好ま しい。 Pは粒界に偏析して粒界破壊を助長し、 Sは MnSに代表され る硫化物を形成して母材および溶接部の靱性を劣化させるため、 そ れぞれ上限を 0.02%、 0.01%とした。  P and S are impurities in the steel of the present invention, and the lower the better. P segregates at the grain boundaries and promotes grain boundary fracture, and S forms sulfides typified by MnS and degrades the toughness of the base metal and welds, so the upper limit is 0.02% and 0.01% respectively. %.
Moは、 本発明鋼においては高温強度発現、 維持の観点から Nbと並 んで必要不可欠の元素である。 単に高温強度の観点からは多く添加 するほど有利であるが、 母材強度や溶接性、 溶接部靱性をも考慮す れば制約すべきものである。 Cを低く抑える本発明においては、 後 述する PCMの範囲内 (0. 16%以下) であれば、 Moは 1.5%まで許容 される。 下限は、 Nbとの複合添加、 あるいはさ らに後述する高温強 度向上に有効な V, Tiを添加したとしても安定して高温強度を確保 するためには 0. 3 %以上の添加が必要である。 Mo is an indispensable element along with Nb from the viewpoint of high temperature strength development and maintenance in the steel of the present invention. It is more advantageous to add more from the standpoint of high-temperature strength, but it should be constrained in consideration of the base metal strength, weldability, and weld toughness. In the present invention to reduce the C, as long as it is within the range of P CM section later (0.16% or less), Mo is allowed up to 1.5%. The lower limit is the combined addition with Nb, or the addition of V and Ti, which are effective for improving the high temperature strength described later, ensuring stable high temperature strength. In order to achieve this, it is necessary to add 0.3% or more.
Nbは、 Moとともに複合添加が必須の元素である。 まず、 Nbの一般 的な効果として、 オーステナイ トの再結晶温度を上昇させ、 熱間圧 延時の制御圧延の効果を最大限に発揮する上で有用な元素である。 また、 圧延に先立つ再加熱時の加熱オーステナイ 卜の細粒化にも寄 与する。 さ らに、 析出強化および転位回復抑制による高温強度向上 効果を有し、 Moとの複合添加により、 一層の高度強度向上に寄与す る。 0. 03 %未満では 700°Cおよび 800°Cにおける析出硬化および転位 回復抑制の効果が少な < 、 0. 15 %を超えると添加量に対し硬化の度 合いが減少し、 経済的にも好ましくないばかりでなく、 溶接部の靱 性も劣化する。 これらの理由により、 Nbは 0. 03〜0. 15 %の範面に限 定する。  Nb is an element that must be added in combination with Mo. First, as a general effect of Nb, it is an element useful for raising the recrystallization temperature of austenite and maximizing the effect of controlled rolling during hot rolling. It also contributes to the refinement of the heated austenite cake during reheating prior to rolling. In addition, it has the effect of improving high temperature strength by strengthening precipitation and suppressing dislocation recovery, and by adding it together with Mo, it contributes to further improvement of high strength. If less than 0.03%, the effect of suppressing precipitation hardening and dislocation recovery at 700 ° C and 800 ° C is small <, and if exceeding 0.15%, the degree of hardening decreases with respect to the amount added, which is also economically favorable. Not only does it deteriorate, but the toughness of the welds also deteriorates. For these reasons, Nb is limited to the range of 0.03 to 0.15%.
A 1は、 一般に脱酸上 に含まれる元素であ が、 脱酸は S iまたは A 1 is an element generally contained on deoxidation, but deoxidation is performed by Si or
T iだけでも十分であり 、 本発明においては、 その下限は限定しないTi alone is sufficient, and in the present invention, the lower limit is not limited.
( 0 %を含む) 。 しかし 、 A 1量が多くなると鋼の清浄度が悪 <なる だけでなく 、 溶接部の靱性が劣化するので、 上限を 0. 06 %とした。 (Including 0%). However, if the amount of A 1 is increased, not only the cleanliness of the steel is deteriorated, but also the toughness of the welded portion deteriorates, so the upper limit was set to 0.06%.
Nは、 不可避的不純物として鋼中に含まれるものであるが、 Nbお よび後述する T iを添加した場合、 Nbと結合して炭窒化物を形成して 強度を増加させたり、 T i Nを形成して鋼の性質を高める。 このため 、 N量として最低 0. 00 1 %は必要である。 しかしながら、 N量の増 加は溶接部靱性、 溶接性に有害であり、 本発明においてはその上限 は 0. 006 %である。 なお、 この上限は必ずしも特性上の限界的な意 味合いはなく、 本発明者らが確認した範囲内で限定したものである 次に、 必要に応じて含有することができる Cu, N i , C r, V, T iお よび Ca, REM, Mgの添加理由とその添加量範囲について説明する。 基本となる成分に、 さ らにこれらの元素を添加する主たる目的は 、 本発明鋼の優れた特徴を損なう ことなく、 強度、 靱性などの特性 を向上させるためである。 したがって、 その添加量は自ずと制限さ れるべき性質のものである。 N is contained in steel as an unavoidable impurity. However, when Nb and T i described later are added, Nb combines with Nb to form carbonitride to increase the strength. To enhance the properties of steel. For this reason, at least 0.001% is necessary as the N amount. However, an increase in the amount of N is detrimental to weld zone toughness and weldability, and in the present invention the upper limit is 0.006%. This upper limit is not necessarily limited in terms of characteristics, and is limited within the range confirmed by the present inventors. Next, Cu, Ni, which can be contained if necessary The reasons for the addition of Cr, V, Ti, Ca, REM, and Mg and the range of the amount added are explained. The main purpose of adding these elements to the basic components is This is because the characteristics such as strength and toughness are improved without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount of addition is of a nature that should be restricted naturally.
は、 溶接性、 溶接部靱性に顕著な悪影響を及ぼすことなく母材 の強度、 靱性を向上させる。 これらの効果を発揮させるためには、 少なく とも 0. 05 %以上の添加が必須である。 一方、 過剰な添加は溶 接性劣化に加え、 熱間圧延時に Cuクラック発生の危険性を増大させ ることにもつながるので、 上限を 1. 0 %に限定した。 なお、 Cuクラ ック 自体は、 Cu量に応じた適正な N i添加で回避できることが知られ ており、 溶接性も C量をはじめとする他の合金元素量とも関係する ので、 上限は必ずしも限界的な总味合いを持つものではない。  Improves the strength and toughness of the base metal without significantly affecting the weldability and weld toughness. In order to exert these effects, addition of at least 0.05% is essential. On the other hand, excessive addition leads to a deterioration of weldability and also increases the risk of Cu cracking during hot rolling, so the upper limit was limited to 1.0%. It is known that the Cu crack itself can be avoided by adding appropriate Ni depending on the amount of Cu. Since the weldability is also related to the amount of other alloy elements including the C amount, the upper limit is not necessarily limited. It does not have a limit taste.
N iは、 Cuとほぼ同様の効果を示し、 特に母材の靱性向上には大さ な効果がある。 これらの効果を確実に享受するためには少なく とも Ni exhibits almost the same effect as Cu, and has a particularly large effect on improving the toughness of the base metal. In order to enjoy these effects reliably, at least
0. 05 %以上の添加が必須である 一方、 過剰な添加は、 N iといえど も溶接性を劣化させるとともに 、 比較的高価な元素であるため、 経 済性を損ねることにもなるので 、 本発明においては 490MPa級鋼を夕On the other hand, addition of 0.05% or more is essential. On the other hand, excessive addition deteriorates weldability even with Ni, and is also a relatively expensive element. In the present invention, 490 MPa class steel is used.
—ゲッ 卜としていることも考慮し 、 1. 0 %を上限とする。 -In consideration of the fact that it is a get-together, the upper limit is 1.0%.
C rは、 母材の強度を向上させるため、 必要に応じて添加すること ができる。 スクラップなどからの トランプ · エレメン トとしての微 量混入と明確に区別でき、 確実に効果を享受する上で、 最低限 0. 05 Cr can be added as necessary to improve the strength of the base material. It can be clearly distinguished from the small amount of playing cards / elements from scrap, etc.
%以上の添加が必要である。 多すぎる添加は、 他の元素同様、 溶接 性や溶接部靱性を劣化させるため 、 上限を 1. 0 %に限定する。 % Or more must be added. Too much addition, like other elements, degrades weldability and weld toughness, so the upper limit is limited to 1.0%.
上記、 Cu, N i , C rは、 母材の機械的特性上の観点のみならず、 耐 候性にも有効であり、 そのような目的においては、 溶接性、 溶接部 靱性を大きく損ねることのない範囲で積極的に添加することが好ま しい。  The above Cu, Ni and Cr are effective not only in terms of mechanical properties of the base metal but also in weather resistance. For such purposes, weldability and weld toughness are greatly impaired. It is preferable to add it as much as possible.
Vは、 高温強度向上も含め Nbとほぼ同様の効果 · 作用を有するも のであるカ^ Nbに比べてその効果は小さい。 また、 Vは PC Mの式に も入っていることから分かるように、 焼入性、 溶接性にも影響を及 ぼす。 したがって、 V添加の効果を確実に享受する上で下限を 0.01 %とするとともに、 悪影響を排除するため上限を 0. 1%とする。 V has almost the same effect and action as Nb, including improved high-temperature strength. The effect is small compared to that of Nb. In addition, V is as can be seen from the fact that also contains the expression of P CM, hardenability,及boss the impact on the weldability. Therefore, the lower limit is set to 0.01% to ensure the effect of V addition, and the upper limit is set to 0.1% to eliminate adverse effects.
Tiは、 Nb, Vなどと同様、 高温強度向上に有効である。 それ以外 にも、 特に、 母材および溶接部靱性に対する要求が厳しい場合には 、 添加することが好ましい。 なぜならば、 Tiは、 A1量が少ない時 ( 例えば 0.003 %以下) 、 Oと結合して Ti203を主成分とする析出物を 形成、 粒内変態フェライ ト生成の核となり、 溶接部靭性を向上させ る。 また、 Tiは Nと結合して TiNとしてスラブ中に微細析出し、 加 熱時のオーステナイ ト粒の粗大化を抑え、 圧延組織の微細化に有効 であり、 また鋼板中に存在する微細 TiNは、 溶接時に溶接熱影響部 組織を細粒化する。 これらの効果を得るためには、 Tiは最低 0.005 %必要である。 しかし、 多すぎると TiCを形成し、 低温靱性ゃ溶接 性を劣化させるので、 その上限は 0.025%である。 Ti, like Nb and V, is effective in improving high temperature strength. In addition to this, it is preferable to add them particularly when the requirements for the base metal and the weld zone toughness are severe. Because, Ti, when the amount of A1 is small (e.g., 0.003%), combined with O form precipitates composed mainly of Ti 2 0 3, becomes intragranular ferrite formation of nuclei, weld zone toughness Improve. In addition, Ti combines with N and precipitates finely in the slab as TiN, which suppresses the coarsening of austenite grains during heating and is effective in refining the rolling structure. The fine TiN present in the steel sheet・ Refine the grain structure of the heat affected zone during welding. To obtain these effects, Ti must be at least 0.005%. However, if the amount is too large, TiC is formed and low temperature toughness deteriorates weldability, so the upper limit is 0.025%.
Ca, REMは、 不純物である Sと結合し、 靱性の向上や溶接部の拡 散性水素による割れを抑制する働きを有するが、 多すぎると粗大な 介在物を形成し、 靱性に悪影響を及ぼすので、 いずれも 0.0005〜0. 004%の範囲に限定する。 両元素は、 ほぼ同等の効果を有するので 、 上述した効果を享受するためには少なく ともいずれか一方を添加 すればよい。  Ca and REM combine with the impurity S to improve toughness and suppress cracking due to diffusible hydrogen in the weld, but if too much, coarse inclusions are formed, which adversely affects toughness. Therefore, both are limited to the range of 0.0005 to 0.004%. Since both elements have almost the same effect, at least one of them should be added in order to enjoy the above-described effect.
Mgは、 溶接熱影響部においてオーステナイ ト粒の成長を抑制し細 粒化する作用があり、 溶接部の強靭化が図れる。 このような効果を 享受するためには、 Mgは 0.0001 %≥必要である。 一方、 添加量が増 えると添加量に対する効果代が小さ くなり、 経済性を失するため、 上限は 0.006 %とした。  Mg has the effect of suppressing the growth of austenite grains in the weld heat-affected zone and making it finer, making it possible to strengthen the weld zone. In order to enjoy such effects, Mg needs to be 0.0001% ≥. On the other hand, as the additive amount increases, the effect on the additive amount decreases and the economic efficiency is lost, so the upper limit was set to 0.006%.
なお、 本発明においては、 Bは意図的に添加することなく、 製鋼 工程におけるコンタミネ一シヨ ンとして含まれるレベルを超えては 実質的に含有しないことがポイ ン トである。 Bは微量添加で焼入性 を顕著に高めるため、 高張力鋼に用いる場合には組織制御や強度向 上の点で有利であるが、 溶接性や溶接部靱性を劣化させる危険性を も同時に併せ持つ。 本発明は 、 高温特性に加 て溶接構造用鋼とし ての使用性能を一段と高めることを目的として 、 図的な B添加を 忌避し、 実質的に Bフリーとした。 In the present invention, B is not made intentionally, and steelmaking The point is that it does not contain substantially beyond the level included as a contamination in the process. B is extremely advantageous in terms of microstructure control and strength improvement when used in high-strength steel because B significantly increases hardenability, but it also has the risk of degrading weldability and weld toughness. Have both. In the present invention, in order to further improve the use performance as a welded structural steel in addition to the high temperature characteristics, the graphical addition of B is avoided and the material is substantially B-free.
鋼の個々の成分を上述した通り限定しても 、 成分系全体が適切で ないと、 本発明の特徴である優れた特性は得られない 。 特に 、 本発 明者らによる先の特許 (特願 2004- 43961号) よ Ό、 溶接性、 溶接部 靱性を大きく改善させることを意図したものであるため、 P C Mの値 を 0.15%以下に限定する。 ここで P c Mとは溶接割れ感受性を表す指 数で次の式により定義される。  Even if the individual components of the steel are limited as described above, the excellent characteristics that are the characteristics of the present invention cannot be obtained unless the entire component system is appropriate. In particular, according to a previous patent by the present inventors (Japanese Patent Application No. 2004-43961), it is intended to greatly improve weldability and weld toughness, so the PCM value is limited to 0.15% or less. To do. Here, P c M is an index representing weld crack sensitivity and is defined by the following equation.
P CM = C + Si/30 + Mn/20 + Cu/20 + Ni/60 + Cr/20 + Mo/ 15+ V / 10+ δ B P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15+ V / 10+ δ B
一般に、 PCMは低いほど溶接性に優れ、 0.22%以下であれば 、 溶 接時の (溶接冷間割れ防止のための ) 予熱が不要といわれている。■ 高張力鋼、 なかでも本発明のような高温強度に優れた高張力鋼で、 しかも焼入性を顕著に高める元素である Bを実質的に含まない鋼に おいて、 P e Mが 0. 15%以下というのは 、 きわめて低い値である In general, P CM has excellent low as weldability, not more than 0.22%, preheating (for welding cold cracking prevention) during welding are said unnecessary. ■ In high-strength steels, especially high-strength steels with excellent high-temperature strength, such as the present invention, and that does not substantially contain B, an element that significantly increases hardenability, Pe M is 0 15% or less is a very low value
さらに、 本発明においては 、 ≤ク □組織をも限定する。 鋼成分の みの限定では、 溶接構造用 としての優れた溶接性や溶接部靱性は 確保可能であるが、 高温特性や何より 490MPa級鋼と しての基本特性 (特に強度) を満足することはできない。 このため、 本発明の目的 に適う ものとして、 ミクロ組織はフェライ トとペイナイ 卜の混合組 織主体であって、 そのうちのペイナイ 卜の分率を 20〜90%であるこ とに限定する。 これは、 ペイナイ ト分率が低いと 490MPa級の常温強 度および高温強度の確保が困難であり、 ペイナイ ト分率が高すぎる と J I Sなどで規定される 490MP a級鋼の強度範囲を超過する危険性が 増大するという、 本発明者らの実験結果に基づいて本発明の特徴を 明確にするために限定したもので、 必ずしも限界的な意味を持つも のではない。 Furthermore, in the present invention, ≤ □ □ organization is also limited. With only steel components, excellent weldability and weld toughness for welded structures can be ensured, but high-temperature properties and above all the basic properties (particularly strength) of 490 MPa grade steel are not satisfied. Can not. For this reason, to meet the object of the present invention, the microstructure is mainly composed of a mixture of ferrite and Payne cake, and the fraction of the Payne cake is limited to 20 to 90%. This is because 490MPa class room temperature is a little higher than the pay rate fraction. It is difficult to ensure the strength and high temperature strength, and the experiment results of the present inventors have shown that the risk of exceeding the strength range of 490MPa class steel specified by JIS increases if the ratio of the paynite is too high. The present invention is limited to clarify the characteristics of the present invention, and is not necessarily limited.
なお、 これらのミクロ組織は板厚断面方向 1 4厚位置を代表さ せるものとする。 また、 組織名としての 「ベイナイ ト」 の呼称は、 当業者においては広く用いられているものである力 バリエーショ ンの多様さなどから分率測定に際しては、 その領域の特定の点で不 明確さが生じる可能性があ ο。 その場合、 組織構成上のち つの 組織である 「フェライ 卜」 で判定する方法もある この場 aのフ X ライ 卜分率は 1 0 〜 80 %である ここで呼ぶところのフェラィ 卜は 、 セメン夕ィ トを含まないポリゴナルまたは擬ポリ ゴナルフェラィ である (針状フェライ 卜は含まない) 。  These microstructures are representative of 14 thickness positions in the thickness direction. In addition, the name of “Bainite” as an organization name is unclear at certain points in the area when measuring fractions due to the variety of force variations that are widely used by those skilled in the art. May occur. In that case, there is also a method of judging with “Ferrai 卜”, which is another organization in the organizational structure. The X-ray distribution ratio of this place a is 10% to 80%. It is a polygonal or pseudopolygonal ferrule that does not contain any light (not including needle-shaped ferrules).
圧延後の変態前のオーステナイ 卜粒径は、 本発明のような比較的 高い Mo添加鋼の靭性を制御 (高靱化) する上で適正に限定する必要 がある。 該オーステナイ トが細粒であるほど、 最終変態組織も微細 となり靱性を向上させる。 通常の Moの低い鋼と遜色ない靱性を得る ため、 鋼板の最終圧延方向の板厚断面方向 1ノ 4'厚位置における該 オーステナイ 卜粒径を平均円相当直径で 1 20 m以下に限定する。 板厚や鋼成分によっては、 1 20 ^ m超でも十分な靱性が得られるケ —スもある力 確実に安定して靱性を確保できる粒径として限定し たもので、 必ずしも限界的意味合いはない。 なお、 オーステナィ 卜 粒径は、 その判別が必ずしも容易でないケースも少なからずある。 このような場合には、 板厚 1 / 4厚位置を中心として、 鋼板の最終 圧延方向と直角方向に採取した切り欠き付き衝撃試験片、 例えば、 J I S Z 2202 2mmVノ ッチ試験片などを用い、 十分低温で脆性破壊さ せた際の破面単位をオーステナイ ト粒径と読み替え得る有効結晶粒 怪と定義し、 その平均円相当直径を測定することと し、 この場合で も同様に 120 m以下であることが必要である。 The austenite grain size before transformation after rolling needs to be appropriately limited in order to control (toughen) the toughness of a relatively high Mo-added steel such as the present invention. The finer the austenite, the finer the final transformation structure and the better the toughness. In order to obtain toughness comparable to that of ordinary steel with low Mo, the austenite grain size at the position of 1 to 4 'thickness in the sheet thickness cross-section direction in the final rolling direction of the steel sheet is limited to an average equivalent circle diameter of 120 m or less. Depending on the plate thickness and steel composition, there is a case where sufficient toughness can be obtained even if it exceeds 120 ^ m. It is limited as a particle size that can ensure stable toughness reliably, and does not necessarily have a limit meaning. . In many cases, it is not always easy to determine the austenity particle size. In such a case, use an impact test piece with a notch sampled in the direction perpendicular to the final rolling direction of the steel sheet, centering on the position where the thickness is 1/4 thickness, for example, JISZ 2202 2mmV notch test piece, Brittle fracture at sufficiently low temperature In this case, the average equivalent circle diameter should be 120 m or less as well. is there.
上記に限定した通りの組織 (組織、 組織分率、 旧オーステナイ ト 粒径など) と高温特性をはじめとする本発明が目的とする優れた諸 特性は、 製造方法を以下の通り限定することで容易に得ることがで さる。  The excellent properties aimed at by the present invention, including the structure (structure, tissue fraction, former austenite particle size, etc.) and the high temperature characteristics as limited to the above, are as follows. It can be easily obtained.
所定の鋼成分を有する鋼片または铸片の再加熱は、 1 100〜 1 250°C の温度範囲に限定する。 下限の 1 100では、 Mo, Nbおよび必要に応じ て添加する V, T iを高温特性確保を第一の目的として固溶状態とす るためである。 この目的のためには、 再加熱温度は高いほど好まし いが 、 加熱ォーステナイ ト粒が粗大化し、 母材靱性の観点から好ま し <ないため、 上限を 1250でに限定す  The reheating of billets or slabs with a given steel composition is limited to a temperature range of 1 100-1250 ° C. The lower limit of 1100 is to make Mo, Nb, and V and Ti added as needed, in a solid solution state with the primary purpose of ensuring high-temperature properties. For this purpose, the higher the reheating temperature, the better, but the heating austenite grains are coarsened and are not preferred from the standpoint of base material toughness, so the upper limit is limited to 1250.
圧延条件の限定は、 直接的には圧延後変態前のオーステナイ ト粒 径を上述の通り に比較的細粒に制御するためであり、 主として靱性 確保のためである。 このため、 圧延は 1 100°C以下での累積圧下量を 30 %以上とする必要がある。 圧延終了温度は、 低温域の圧下で Mo, Nb、 あるいは必要に応じて添加する V , T iが炭化物として析出する ための下限温度として 850 :以上に限定する。  The limitation of the rolling conditions is directly to control the austenite grain size before the transformation after rolling to a relatively fine grain as described above, mainly for ensuring toughness. For this reason, rolling requires that the cumulative reduction at 1 100 ° C or less be 30% or more. The rolling end temperature is limited to 850: or more as the lower limit temperature for precipitation of Mo, Nb, or V, Ti added as needed as carbides under low temperature pressure.
圧延後の冷却も、 組織制御の観点から限定すべきものである。 鋼 成分にもよるが、 比較的薄手においては、 放冷程度の冷速でも所定 の組織を得ることができるが、 厚手になると放冷では冷速が遅くな り、 加速冷却が必要となる場合がある。 この場合の加速冷却は、 厚 鋼板製造においては水冷が最も一般的であるが、 必ずしも水冷であ る必要はない。 また、 加速冷却は組織制御のため変態域の冷速を上 げることが目的であるので、 800で以上の温度から 650°C以下の温度 まで行う必要がある。 なお、 本発明においては、 高温強度とは 600°Cから 800°Cまでを夕 一ゲッ トとしており、 その定量的目標は、 高温時の降伏応力の常温 降伏応力に対する比 P ( =高温降伏応力 常温降伏応力) 力 鋼材 温度 T ( °C ) 力 600°C以上 800°C以下の範囲で、 p≥— 0. 0033 X T + 2. 80である。 実施例 Cooling after rolling should also be limited from the viewpoint of structure control. Although it depends on the steel composition, a relatively thin material can obtain a specified structure even at a cooling rate that is about the same as that of cooling. However, if it is thicker, the cooling rate becomes slower when cooling is needed, and accelerated cooling is required. There is. In this case, accelerated cooling is most commonly water cooling in the production of thick steel sheets, but it is not always necessary to use water cooling. In addition, accelerated cooling is aimed at increasing the cooling speed in the transformation region for controlling the structure, so it is necessary to perform from 800 to above 650 ° C. In the present invention, the high temperature strength is obtained from 600 ° C to 800 ° C in the evening, and the quantitative target is the ratio P (= high temperature yield stress) of the yield stress at high temperature to the room temperature yield stress. (Yield stress at normal temperature) Force Steel temperature T (° C) Force Within the range of 600 ° C to 800 ° C, p≥—0.0033 XT + 2.80. Example
転炉一連続铸造ー厚板工程で、 種々の鋼成分の鋼板 (厚さ 1 2〜80 mm) を製造し、 その機械的性質および溶接性、 溶接部靱性評価とし て J I Sに準拠した斜め y形溶接割れ試験におけるルー ト割れの有無 および溶接再現熱サイクルによる小入熱と超大入熱溶接相当の再現 HAZ靱性を調査した。 表 1 に比較例とともに本発明例の鋼成分を、 表 2 に製造条件、 表 3 に組織および諸特性の調査結果を示す。  Steel sheets of various steel components (thickness 12 to 80 mm) are manufactured in a continuous forging process of a converter-thick plate process. The mechanical properties, weldability, and weld toughness are evaluated according to JIS. The presence or absence of root cracks in the shape weld cracking test and the HAZ toughness of reproduction equivalent to small heat input and super large heat input welding by the welding reproducible heat cycle were investigated. Table 1 shows the steel components of the present invention together with the comparative example, Table 2 shows the manufacturing conditions, and Table 3 shows the results of the investigation of the structure and various properties.
本発明例では、 いずれも本発明の限定範囲を満足し、 高温強度、 再現 HAZ靭性を含めた各種特性も極めて良好である。 これに対し、 比較例は鋼成分や製造条件、 組織などの少なく とも一つ以上が本発 明の限定範囲を逸脱しているために、 本発明例に対し、 特性が劣つ ていることが分かる。 すなわち、 比較例 19は、 C量が低いためべィ ナイ ト分率が低く、 常温強度、 高温強度 (比) とも低い。 比較例 20 は、 C量が高いためべイナイ ト分率が高く、 常温強度が高い。 また 、 母材靱性、 再現 HAZ靭性にも劣る。 比較例 2 1は、 Mo量が低く、 加 速冷却開始温度も低いため、 ペイナイ ト分率が低いこともあって、 高温強度 (比) が低い。 比較例 Πは、 Nb量が低く、 加熱温度、 圧延 終了温度も低いことに加え、 加速冷却停止温度が高いため、 常温強 度、 高温強度 (比) が低い。 比較例 23は、 Bが添加されているため 、 加速冷却を適用した場合、 ベイナイ ト分率が高く、 母材靭性に劣 る。 また、 再現 HAZ靭性にも劣る。 比較例 24は、 Mn量が高く、 P C M も高いのに加え、 1 100 以下での累積圧下量も低いため、 ペイナイ ト分率が高くなつて 490MP a級鋼として母材強度が過剰となり、 母材 靱性、 再現 HAZ靭性にも劣る。 In the examples of the present invention, all satisfy the limited range of the present invention, and various properties including high temperature strength and reproducible HAZ toughness are extremely good. In contrast, the comparative example is inferior in characteristics to the inventive example because at least one of the steel components, production conditions, and structure deviates from the limited range of the present invention. I understand. That is, in Comparative Example 19, the amount of C is low, and thus the fraction of the vein is low, and both the room temperature strength and the high temperature strength (ratio) are low. In Comparative Example 20, the amount of C is high, so the bainitic fraction is high, and the room temperature strength is high. In addition, the base metal toughness, reproducible HAZ toughness is also inferior. Since Comparative Example 21 has a low Mo content and a low acceleration cooling start temperature, the high-temperature strength (ratio) is low due to the low payin fraction. Comparative Example IV has a low Nb content, a low heating temperature and a rolling end temperature, and a high accelerated cooling stop temperature, resulting in low normal temperature strength and high temperature strength (ratio). In Comparative Example 23, since B is added, when accelerated cooling is applied, the bainite fraction is high and the base metal toughness is poor. In addition, the reproducible HAZ toughness is inferior. Comparative Example 24 has a high amount of Mn, P CM In addition, the cumulative reduction amount below 1 100 is also low, and therefore the base material strength becomes excessive as 490MPa grade steel with a high percentage of baseite, resulting in poor base metal toughness and reproducible HAZ toughness.
なお、 斜め y形溶接割れ試験におけるルー ト割れは、 比較例 24が P c Mが本発明の限定範囲より高いとはいえ 0. 185 %程度であり、 い ずれのケースでも発生しなった。 The root crack in the oblique y-type weld crack test was about 0.185% in Comparative Example 24 although Pc M was higher than the limited range of the present invention, and it did not occur in any case.
Figure imgf000016_0001
Figure imgf000016_0001
2 2
Figure imgf000017_0001
Figure imgf000017_0001
表 3 Table 3
Figure imgf000018_0001
Figure imgf000018_0001
引張試験片 : 板厚 40mm以下 JIS Z 2201 1A号 (全厚), 板厚 50 超 J IS Z 2201 4号 Tensile specimen: JIS Z 2201 No. 1A (total thickness), board thickness over 50 J IS Z 2201 No. 4
(1/4厚)、 圧延方向に対し直角方向  (1/4 thickness), perpendicular to the rolling direction
シャルピー衝撃試験片 : JIS I 2202 2mniVノ ッチ、 圧延方向 Charpy impact test piece: JIS I 2202 2mniV notch, rolling direction
高温引張試験片 : 丸棒 (8ωηιまたは 10mm< 、 1/4厚位置、 圧延方向と直角方向 熱履歴 1 : 1400で X 1秒、 ' 800→ 500での冷却時間 8秒 High-temperature tensile specimen: Round bar (8ωηι or 10mm <, 1/4 thickness position, perpendicular to the rolling direction Thermal history 1: 1400 at X 1 sec, '800 → 500 cooling time 8 sec
熱履歴 2 : 1400で X30秒、 800→500での冷却時間 330秒 産業上の利用可能性 Thermal history 2: 1400 X30 seconds, 800 → 500 cooling time 330 seconds Industrial applicability
本発明に基づいた鋼成分、 製造方法で製造された鋼材は、 ミク ロ 組織も本発明の限定範囲を満たし、 高温強度はもとより、 溶接性、 溶接部靱性にも優れることが実施例で実証された。 すなわち、 従来 の 600で程度までの高温特性を保証した耐火鋼をはるかに凌ぐ高温 特性を有する溶接構造用鋼が工業的に安定して大量生産できること が示され、 例えば建築用途としては、 適用建築物や完全無耐火被覆 の大幅拡大が期待される。 The steel materials produced by the steel components and production methods based on the present invention have been demonstrated in the examples that the microstructure also satisfies the limited range of the present invention and is excellent not only in high temperature strength but also in weldability and weld toughness. It was. In other words, it is possible to industrially stably mass-produce welded structural steels with high-temperature properties far exceeding the conventional refractory steels that guarantee high-temperature properties up to about 600. For architectural use, for example, it is expected that applied buildings and completely fire-resistant coatings will be greatly expanded.

Claims

請 求 の 範 囲 The scope of the claims
1. 鋼成分が質量%で、 1. Steel component is mass%,
C : 0.005 %以上 0.040 %未満、 C: 0.005% or more and less than 0.040%,
Si : 0.5%以下、 Si: 0.5% or less,
Mn: 0.1〜0.5%未満、 Mn: 0.1 to less than 0.5%
P : 0.02%以下、. P: 0.02% or less.
S : 0.01%以下、 S: 0.01% or less,
Mo: 0.3〜 1.5%、 Mo: 0.3-1.5%,
Nb: 0.03〜0. 15%、 Nb: 0.03 ~ 0.15%,
A1 : 0.06%以下、 A1: 0.06% or less,
: 0.006 %以下、  : 0.006% or less,
かつ、 And,
PC M = C + Si/30 + Mn/20 + Cu/20 + Ni/60 + Cr/20 + Mo/ 15+ V / 10+ δ B P CM = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15+ V / 10+ δ B
と定義する溶接割れ感受性組成 Ρ\Μが 0. 15%以下で、 実質的に Bを 含有せず、 残部が鉄および不可避的不純物からなり、 ミク ロ組織が フェライ トとべイナィ 卜の混合組織主体であって、 そのべィナイ ト の分率が 20〜 90 %であることを特徴とする高温強度に優れた溶接構 造用 490MPa級高張力鋼。 \ [Rho weld crack susceptibility composition defined Μ is 15% or less 0.1 and contains substantially no B, with a remainder being iron and unavoidable impurities, Miku b mixed structure mainly organizations ferrite preparative base Inai Bok 490MPa class high-strength steel for welded structures with excellent high-temperature strength, characterized in that the fraction of the vein is 20 to 90%.
2 前記鋼が質量%で  2 The steel is
Cu: 0. 05〜 1.0%、  Cu: 0.05-1.0%
Ni : 0. 05〜 1.0%、  Ni: 0.05-1.0%,
Cr: 0. 05〜 1.0%、  Cr: 0.05-1.0%
V : 0. 01〜0. 1%、  V: 0.01% to 0.1%,
Ti : 0. 005〜0.025 %、  Ti: 0.005-0.025%,
Ca: 0. 0005〜0.004%、 REM: 0. 0005〜 0. 004%、 Ca: 0.0005% to 0.004%, REM: 0.0005% to 0.004%,
Mg: 0. 0001〜0· 006 % Mg: 0.0001 to 0.006%
のいずれか 1種または 2種以上を含有することを特徴とする請求項 1 に記載の高温強度に優れた溶接構造用 490MPa級高張力鋼。 The 490 MPa class high-tensile steel for welded structures excellent in high-temperature strength according to claim 1, comprising one or more of any of the above.
3 . 板厚 1 4厚位置の圧延方向と平行な断面の旧オーステナイ ト粒の平均円相当径が、 120 m以下であることを特徴とする請求 項 1 または 2 に記載の高温強度に優れた溶接構造用 490MPa:級高張力 鋼。  3. Plate thickness 14 Excellent in high-temperature strength according to claim 1 or 2, characterized in that the average equivalent circular diameter of the old austenite grains having a cross section parallel to the rolling direction at a thickness of 14 is 120 m or less. For welded structures 490MPa: Grade high strength steel.
4. 請求項 1 または 2 に記載の鋼成分からなる鋼片または踌片を 1100〜 1250での温度範囲に再加熱後、 1100°C以下での累積圧下量を 30%以上として、 850°C以上の温度で圧延し、 その後放冷、 あるい は 800°C以上の温度から 650 以下の温度まで加速冷却することを特 徴とする高温強度に優れた溶接構造用 490MPa級高張力鋼の製造方法  4. After reheating the steel slab or slab comprising the steel component according to claim 1 or 2 to a temperature range of 1100 to 1250, the cumulative reduction at 1100 ° C or less is 30% or more, and 850 ° C Manufacture of 490 MPa class high strength steel for welded structures with excellent high-temperature strength, characterized by rolling at the above temperature and then allowing it to cool, or accelerated cooling from 800 ° C or higher to 650 or lower Method
PCT/JP2005/014461 2005-08-01 2005-08-01 490 MPa GRADE HIGH-TENSILE STEEL FOR WELDED STRUCTURE EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND METHOD FOR PRODUCING SAME WO2007015311A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CNA2005800465281A CN101098978A (en) 2005-08-01 2005-08-01 490 Mpa grade high-tensile steel for welded structure excellent in high-temperature strength and method for producing same
PCT/JP2005/014461 WO2007015311A1 (en) 2005-08-01 2005-08-01 490 MPa GRADE HIGH-TENSILE STEEL FOR WELDED STRUCTURE EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND METHOD FOR PRODUCING SAME
TW094126181A TW200706659A (en) 2005-08-01 2005-08-02 490 MPa grade high strength weldable structural steel having excellent in high temperature strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/014461 WO2007015311A1 (en) 2005-08-01 2005-08-01 490 MPa GRADE HIGH-TENSILE STEEL FOR WELDED STRUCTURE EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND METHOD FOR PRODUCING SAME

Publications (1)

Publication Number Publication Date
WO2007015311A1 true WO2007015311A1 (en) 2007-02-08

Family

ID=37708594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/014461 WO2007015311A1 (en) 2005-08-01 2005-08-01 490 MPa GRADE HIGH-TENSILE STEEL FOR WELDED STRUCTURE EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND METHOD FOR PRODUCING SAME

Country Status (3)

Country Link
CN (1) CN101098978A (en)
TW (1) TW200706659A (en)
WO (1) WO2007015311A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112012019769B1 (en) * 2010-02-08 2018-05-02 Nippon Steel & Sumitomo Metal Corporation STEEL PLATE PRODUCTION METHOD.
CN104419871B (en) * 2013-09-05 2017-02-01 鞍钢股份有限公司 Steel for welding structure with excellent marine environment corrosion resistance and manufacturing method of steel
CN107475630B (en) * 2017-09-01 2019-09-27 新冶高科技集团有限公司 A kind of hot galvanizing nano reinforcement high strength low-carbon Nb bearing steel and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941035A (en) * 1995-08-04 1997-02-10 Kawasaki Steel Corp Production of low yield ratio hot rolled steel sheet excellent in toughness
JP2002294393A (en) * 2001-04-02 2002-10-09 Nippon Steel Corp High tensile strength steel having excellent weldability and production method therefor
JP2004339549A (en) * 2003-05-14 2004-12-02 Nippon Steel Corp 490 MPa CLASS HIGH-TENSILE STRENGTH FIRE RESISTANT STEEL FOR STRUCTURAL USE HAVING EXCELLENT WELDABILITY AND GAS CUTTABILITY, AND ITS PRODUCTION METHOD

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941035A (en) * 1995-08-04 1997-02-10 Kawasaki Steel Corp Production of low yield ratio hot rolled steel sheet excellent in toughness
JP2002294393A (en) * 2001-04-02 2002-10-09 Nippon Steel Corp High tensile strength steel having excellent weldability and production method therefor
JP2004339549A (en) * 2003-05-14 2004-12-02 Nippon Steel Corp 490 MPa CLASS HIGH-TENSILE STRENGTH FIRE RESISTANT STEEL FOR STRUCTURAL USE HAVING EXCELLENT WELDABILITY AND GAS CUTTABILITY, AND ITS PRODUCTION METHOD

Also Published As

Publication number Publication date
CN101098978A (en) 2008-01-02
TW200706659A (en) 2007-02-16

Similar Documents

Publication Publication Date Title
WO2006009091A1 (en) 490 MPa GRADE HIGH TENSILE STEEL FOR WELDED STRUCTURE EXHIBITING EXCELLENT HIGH TEMPERATURE STRENGTH AND METHOD FOR PRODUCTION THEREOF
JP4834149B2 (en) Welded structural steel excellent in high temperature strength and low temperature toughness and its manufacturing method
JP5073396B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP4833611B2 (en) 490 MPa class thick high-strength refractory steel for welded structures excellent in weldability and gas-cutting property, and method for producing the same
WO2006093282A1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP4709632B2 (en) Manufacturing method of high strength steel for welded structure with excellent high temperature strength and low temperature toughness
KR100630402B1 (en) High tensile steel excellent in high temperature strength and method for production thereof
JP5098210B2 (en) Refractory steel and method for producing the same
JP4571915B2 (en) Refractory thick steel plate and manufacturing method thereof
JP5098317B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
WO2007015311A1 (en) 490 MPa GRADE HIGH-TENSILE STEEL FOR WELDED STRUCTURE EXCELLENT IN HIGH-TEMPERATURE STRENGTH AND METHOD FOR PRODUCING SAME
JP5098207B2 (en) Manufacturing method of high strength steel for welded structure with excellent high temperature strength and low temperature toughness
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP4031730B2 (en) Structural 490 MPa class high-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JP4348102B2 (en) 490 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof
JP4028815B2 (en) 780 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof
JP2007277680A (en) Method for producing steel for welded structure excellent in high temperature strength and low temperature toughness
JP4348103B2 (en) 590 MPa class high strength steel excellent in high temperature strength and method for producing the same
JP5272878B2 (en) Manufacturing method of welded structural steel with excellent high temperature strength and low temperature toughness
KR20070021308A (en) 490 MPa GRADE HIGH TENSILE STEEL FOR WELDED STRUCTURE EXHIBITING EXCELLENT HIGH TEMPERATURE STRENGTH AND METHOD FOR PRODUCTION THEREOF
JP2006241509A (en) HT590MPa CLASS REFRACTORY STEEL FOR WELDED STRUCTURE HAVING EXCELLENT GALVANIZING CRACK RESISTANCE IN WELD ZONE AND ITS PRODUCTION METHOD
KR20070095353A (en) 490 ???? grade high-tensile steel for welded structure excellent in high-temperature strength and method for producing same
JP2004315860A (en) Steel sheet having excellent earthquake resistance and weldability, and its production method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580046528.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077016766

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 05768583

Country of ref document: EP

Kind code of ref document: A1