JPH1180832A - Production of high tensile strength steel with low yield ratio, excellent in weldability and toughness at low temperature - Google Patents

Production of high tensile strength steel with low yield ratio, excellent in weldability and toughness at low temperature

Info

Publication number
JPH1180832A
JPH1180832A JP25939797A JP25939797A JPH1180832A JP H1180832 A JPH1180832 A JP H1180832A JP 25939797 A JP25939797 A JP 25939797A JP 25939797 A JP25939797 A JP 25939797A JP H1180832 A JPH1180832 A JP H1180832A
Authority
JP
Japan
Prior art keywords
steel
low
toughness
temperature
weldability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25939797A
Other languages
Japanese (ja)
Inventor
Hidenori Fukamizu
秀範 深水
Yoshiyuki Watabe
義之 渡部
Seiji Isoda
征司 磯田
Takeshi Nakamura
中村  剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP25939797A priority Critical patent/JPH1180832A/en
Publication of JPH1180832A publication Critical patent/JPH1180832A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a steel material combining excellent weldability and tough ness at low temp. with characteristics of high strength and low yield ratio by specifying steel components and heat treatment conditions, respectively. SOLUTION: A steel having a composition which consists of, by weight, 0.05-0.15% C, <=0.4% Si, 1.0-2.0% Mn, <=0.02% P, $0.01% S, 0.05-1.0% Ni, 0.005-0.02% Nb, 0.005-0.025% Ti, <=0.06% Al, 0.001-0.005% N, and the balance iron and contains, if necessary, 0.05-0.5% each of Cu, Cr, and Mo and 0.01-0.05% V and in which the value of Pcm =C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B is regulated to <=0.25, is used. This steel is heated to 1,000 to 1,250 deg.C, and cumulative draft in the austenite unrecrystallization temp. region is regulated to >=30% and hot rolling is finished at >=800 deg.C. Successively, the steel is subjected to accelerated cooling from >=(Ar3 -50 deg.C) at (5 to 50) deg.C/sec cooling rate. Further, the steel is reheated to 750 to 870 deg.C, hardened, successively heated to a temp. not higher than the Ac1 point, and then tempered.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、主として液体アン
モニア(LAG)とLPGなどの他種液化ガスを混載す
る多目的タンク用鋼材として、溶接性および低温靭性に
優れた低降伏比高張力鋼の製造方法に関するものであ
る。
[0001] The present invention relates to the production of a low yield ratio high tensile strength steel excellent in weldability and low temperature toughness as a multipurpose tank steel mainly loaded with other kinds of liquefied gas such as liquid ammonia (LAG) and LPG. It is about the method.

【0002】[0002]

【従来の技術】液化ガス貯槽用タンクに使用される鋼材
は、液化ガスの種類によって異なるが、ガスの液化温度
は一般に常圧では低温(LPGの場合、−48℃)であ
るため、母材はもちろん溶接継手部においても優れた低
温靭性が要求される。これに対し、特開昭63−290
246号公報には6.5〜12.0%のNiを添加する
方法や、特開昭58−153730号公報には特定組成
の鋼を焼入れ焼戻し処理を行って、焼戻しマルテンサイ
トとベイナイトの強靭性を利用する方法が開示されてい
る。
2. Description of the Related Art Steel materials used for liquefied gas storage tanks vary depending on the type of liquefied gas. However, the liquefaction temperature of gas is generally low at normal pressure (-48 ° C. for LPG). Of course, excellent low-temperature toughness is also required in the welded joint. In contrast, JP-A-63-290
No. 246 discloses a method of adding 6.5 to 12.0% Ni, and Japanese Patent Application Laid-Open No. 58-153730 discloses a method of quenching and tempering a steel having a specific composition to obtain a toughness of tempered martensite and bainite. A method utilizing the property is disclosed.

【0003】また、液体アンモニアは鋼材の応力腐食割
れ(SCC)を引き起こすことが知られ、IGC CO
DE 17.13(International Co
defor the Construction an
d Equipmentof Ships Carry
ing Liquefied Gases inBul
k)では、酸素分圧、温度などの貯槽時の操業条件を規
制するとともに、鋼材のNi含有量を5%以下に制限す
ることや実降伏強さを440N/mm2以下に抑えるこ
となどを規定している。このため、特開平4−1761
3号公報では表層のみ軟化処理した鋼板や、特開昭57
−139493号公報では軟鋼クラッド鋼と軟質溶接最
終層によるタンク製造方法などが開示されている。
[0003] Liquid ammonia is known to cause stress corrosion cracking (SCC) of steel materials.
DE 17.13 (International Co
default the Construction an
d Equipment of Ships Carry
ing Requested Gases inBul
In k), operating conditions during storage, such as oxygen partial pressure and temperature, are regulated, and the Ni content of steel is limited to 5% or less, and the actual yield strength is suppressed to 440 N / mm 2 or less. Stipulates. For this reason, Japanese Unexamined Patent Publication No.
No. 3 discloses a steel sheet in which only the surface layer is softened,
Japanese Patent Application Laid-Open No. 139493 discloses a tank manufacturing method using mild steel clad steel and a soft welding final layer.

【0004】しかし、上記LPGと液体アンモニアを混
載するタンクでは、当然のことながら両者に要求される
使用を満足する必要がある。一方、タンクの大容量化や
船舶に搭載されることの多いこの種のタンクにおいては
高張力かが求められており、LPGからの優れた低温靭
性と液体アンモニアからの降伏強さの上限規制に伴う低
降伏比化の同時達成が大きな課題となっていた。
However, the tank in which the above-mentioned LPG and liquid ammonia are mixed and loaded needs to satisfy the usage required for both. On the other hand, large-capacity tanks and tanks of this type, which are often mounted on ships, are required to have high tensile strength, and are subject to superior low-temperature toughness from LPG and the upper limit of yield strength from liquid ammonia. At the same time, achieving a low yield ratio at the same time has been a major issue.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記課題を
解決するもので、主として液体アンモニア(LAG)と
LPGなどの他種液化ガスを混載する多目的タンク用鋼
材の製造方法として、優れた溶接性、低温靭性と同時に
高強度で低降伏比の性質を同時に兼ね備えた鋼材の製造
方法を提供することにある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems, and is an excellent welding method as a method for producing a steel material for a multi-purpose tank in which other kinds of liquefied gas such as liquid ammonia (LAG) and LPG are mixed. It is an object of the present invention to provide a method for producing a steel material having both high strength and low yield ratio as well as high strength and low temperature toughness.

【0006】[0006]

【課題を解決するための手段】本願発明は、優れた溶接
性、低温靭性と同時に高強度で低降伏比を図るために、
鋼成分と熱処理条件を限定することにより組織制御を十
分に行うことを特徴とする。
DISCLOSURE OF THE INVENTION The present invention is intended to provide excellent weldability and low-temperature toughness as well as high strength and a low yield ratio.
It is characterized by sufficiently controlling the structure by limiting the steel components and the heat treatment conditions.

【0007】本願発明によれば、液体アンモニアとLP
Gなどとの混載タンク用として溶接性の優れた鋼材を大
量かつ安価に供給でき、特に高強度化も可能としたた
め、該タンクの船舶への搭載も容易となった。
According to the present invention, liquid ammonia and LP
A steel material having excellent weldability can be supplied in large quantities and inexpensively for use as a mixed tank with G or the like, and particularly high strength can be provided, so that the tank can be easily mounted on a ship.

【0008】本発明の要旨は、以下の通りである。The gist of the present invention is as follows.

【0009】(1) 重量%で、 C:0.05〜0.15% Si:0.4%以下 Mn:1.0〜2.0% P:0.02%以下 S:0.01%以下 Ni:0.05〜1.0% Nb:0.005〜0.02% Ti:0.005〜0.025% Al:0.06%以下 N:0.001〜0.005% かつPcm=C+Si/30+Mn/20+Cu/20
+Ni/60+Cr/20+Mo/15+V/10+5
Bが0.25%以下 残部が鉄および不可避的不純物からなる鋼を1000〜
1250℃に加熱し、オーステナイト未再結晶温度域で
の累積圧下量を30%以上とし、800℃以上の温度で
熱間圧延を終了後、引き続いてAr3−50℃以上の温
度から5℃/sec.〜50℃/sec.の冷却速度に
よる加速冷却を行い、さらに750〜870℃に再加熱
後焼入れ、引続きAc1点以下の温度に加熱して焼戻し
処理をすることを特徴とする溶接性および低温靭性に優
れた低降伏比高張力鋼の製造方法。
(1) In weight%, C: 0.05 to 0.15% Si: 0.4% or less Mn: 1.0 to 2.0% P: 0.02% or less S: 0.01% Ni: 0.05 to 1.0% Nb: 0.005 to 0.02% Ti: 0.005 to 0.025% Al: 0.06% or less N: 0.001 to 0.005% and Pcm = C + Si / 30 + Mn / 20 + Cu / 20
+ Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5
B is 0.25% or less Steel whose balance is iron and unavoidable impurities is 1000 to 1000%.
It was heated to 1250 ° C., the cumulative reduction ratio of austenite non-recrystallization temperature region is 30% or more, after the completion of the hot rolling at 800 ° C. or higher, followed by 5 ° C. from Ar 3 -50 ° C. or more temperature / sec. 5050 ° C./sec. Low-yield excellent in weldability and low-temperature toughness characterized by performing accelerated cooling at a cooling rate of, quenching after reheating to 750 to 870 ° C, and subsequently tempering by heating to a temperature of 1 point or less. Manufacturing method for high tensile strength steel.

【0010】(2) 上記に記載の鋼がさらに、 Cu:0.05〜0.5% Cr:0.05〜0.5% Mo:0.05〜0.5% V:0.01〜0.05% の内の一種以上を含有し、かつ Pcm=C+Si/30+Mn/20+Cu/20+N
i/60+Cr/20+Mo/15+V/10+5Bが
0.25%以下 を満足することを特徴とする前記(1)記載の溶接性お
よび低温靭性に優れた低降伏比高張力鋼の製造方法。
(2) The steel described above further comprises: Cu: 0.05-0.5% Cr: 0.05-0.5% Mo: 0.05-0.5% V: 0.01- Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
i / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B satisfies 0.25% or less, The method for producing a low-yield-ratio high-strength steel excellent in weldability and low-temperature toughness according to the above (1).

【0011】[0011]

【発明の実施の形態】本発明が、請求項の通りに鋼組
成、製造方法としての熱処理条件を限定した理由につい
て説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The reason for limiting the steel composition and the heat treatment conditions as a manufacturing method according to the present invention will be described.

【0012】Cは焼入性に最も顕著に効くもので、下限
0.05%は後述するように焼入れ時の組織制御を可能
にする最小量である。しかし、C量が多すぎると焼入性
が必要以上に上がり、鋼材が本来有すべき強度、靭性の
バランス、溶接性などに悪影響を及ぼすため、上限を
0.15%とした。
C has the most remarkable effect on hardenability, and the lower limit of 0.05% is the minimum amount that enables the control of the structure during quenching as described later. However, if the C content is too large, the hardenability increases more than necessary, and the steel material has an adverse effect on the inherent strength, toughness balance, weldability, etc., so the upper limit was made 0.15%.

【0013】Siは脱酸上鋼に含まれる元素であるが、
多く添加すると溶接性、HAZ靭性が劣化するため、上
限を0.4%に限定した。鋼の脱酸はTi、Alのみで
も十分可能であり、HAZ靭性、焼入性などの観点から
低いほど好ましく、必ずしも添加する必要はない。
[0013] Si is an element contained in the deoxidized upper steel,
If a large amount is added, the weldability and the HAZ toughness deteriorate, so the upper limit is limited to 0.4%. Deoxidation of steel is sufficiently possible only with Ti and Al, and the lower the better, from the viewpoint of HAZ toughness, hardenability and the like, the more preferable, and it is not always necessary to add.

【0014】Mnは強度、靭性を確保する上で不可欠な
元素であり、その下限は1.0%である。しかし、Mn
量が多すぎると焼入性が上昇して溶接性、HAZ靭性を
劣化させるだけでなく、連続鋳造スラブの中心偏析を助
長するので上限を2.0%とした。
Mn is an indispensable element for securing strength and toughness, and its lower limit is 1.0%. However, Mn
If the amount is too large, the hardenability increases and not only deteriorates the weldability and HAZ toughness, but also promotes the center segregation of the continuous cast slab, so the upper limit was made 2.0%.

【0015】Pは本発明鋼においては不純物であり、P
量の低減はHAZにおける粒界破壊を減少させる傾向が
あるため、少ないほど好ましい。含有量が多いと母材、
溶接部の低温靭性を劣化させるため上限を0.02%と
した。
P is an impurity in the steel of the present invention.
Since a reduction in the amount tends to reduce grain boundary fracture in the HAZ, a smaller amount is preferable. If the content is high, the base material,
The upper limit is set to 0.02% in order to deteriorate the low-temperature toughness of the weld.

【0016】SはPと同様本発明鋼においては不純物で
あり、母材の低温靭性の観点からは少ないほど好まし
い。含有量が多いと母材、溶接部の低温靭性を劣化させ
るため上限を0.01%とした。
S, like P, is an impurity in the steel of the present invention, and is preferably as small as possible from the viewpoint of the low-temperature toughness of the base material. If the content is large, the low-temperature toughness of the base material and the welded portion is deteriorated, so the upper limit was made 0.01%.

【0017】Niは過剰に添加しなければ、溶接性、H
AZ靭性に悪影響を及ぼすことなく母材の強度、靭性を
向上させる。これら効果を発揮させるためには、少なく
とも0.05%以上の添加が必須である。一方、過剰な
添加は高価なだけでなく、溶接姓に好ましくない。ま
た、Niを多く添加すると液体アンモニア中で応力腐食
割れ(SCC)を誘起する可能性が指摘されている。発
明者らの実験によれば、1%までの添加は溶接性や液体
アンモニア中でのSCCを大きく劣化させず、強度靭性
向上効果の方が大きいため、上限を1.0%とした。
If Ni is not added excessively, weldability, H
Improves the strength and toughness of the base material without adversely affecting AZ toughness. In order to exert these effects, it is essential to add at least 0.05% or more. On the other hand, excessive addition is not only expensive but also unfavorable for welding surnames. In addition, it has been pointed out that adding a large amount of Ni may induce stress corrosion cracking (SCC) in liquid ammonia. According to the experiments by the inventors, the addition of up to 1% does not significantly deteriorate the weldability and SCC in liquid ammonia and has a greater effect of improving the strength toughness, so the upper limit was made 1.0%.

【0018】Nbはオーステナイトの未再結晶温度を上
昇させ、熱間圧延時の制御圧延の効果を最大限に発揮す
る上で必須元素で、最低0.005%の添加が必要であ
る。また、焼入れの際の加熱オーステナイトの細粒化に
も寄与する。しかし、過剰な添加は、溶接部の靭性劣化
を招くため上限を0.02%とした。
Nb is an essential element for raising the unrecrystallization temperature of austenite and maximizing the effect of controlled rolling during hot rolling, and requires at least 0.005% of addition. It also contributes to the refinement of heated austenite during quenching. However, excessive addition causes toughness degradation of the welded portion, so the upper limit was made 0.02%.

【0019】Tiは母材およびHAZ靭性向上のために
必須である。なぜならばTiは、Al量が少ないとき
(例えば0.003%以下)、Oと結合してTi23
主成分とする析出物を形成、粒内変態フェライト生成の
核となりHAZ靭性を向上させる。また、TiはNと結
合してTiNとしてスラブ中に微細析出し、加熱時のγ
粒の粗大化を抑え圧延組織の細粒化に有効であり、また
鋼板中に存在する微細TiNは、溶接時にHAZ組織を
細粒化するためである。これらの効果を得るためには、
Tiは最低0.005%必要である。しかし多すぎると
TiCを形成し、低温靭性や溶接性を劣化させるので、
その上限は0.025%である。
Ti is essential for improving the base material and HAZ toughness. Because, when the amount of Al is small (for example, 0.003% or less), Ti combines with O to form a precipitate containing Ti 2 O 3 as a main component, becomes a nucleus for the formation of intragranular transformed ferrite, and improves the HAZ toughness. Let it. Further, Ti is combined with N and finely precipitated as TiN in the slab, and γ during heating is obtained.
This is because it suppresses coarsening of the grains and is effective in reducing the grain size of the rolled structure, and the fine TiN present in the steel sheet refines the HAZ structure during welding. To get these effects,
Ti must be at least 0.005%. However, if too much, TiC is formed and the low-temperature toughness and weldability are deteriorated.
The upper limit is 0.025%.

【0020】Alは、一般に脱酸上鋼に含まれる元素で
あるが、脱酸はSiまたはTiだけでも十分であり、本
発明鋼においては、その下限は限定しない。しかし、A
l量が多くなると鋼の清浄度が悪くなるだけでなく、溶
接金属の靭性が劣化するので上限を0.06%とした。
Al is an element generally contained in the deoxidized upper steel, but the deoxidation is sufficient with only Si or Ti, and the lower limit is not limited in the steel of the present invention. But A
When the amount of l increases, not only does the cleanliness of the steel deteriorate, but also the toughness of the weld metal deteriorates, so the upper limit was made 0.06%.

【0021】Nは、不可避的不純物として鋼中に含まれ
るものであるが、Nbと結合して炭窒化物を形成して強
度を増加させ、また、TiNを形成して前述のように鋼
の性質を高める。このため、N量として最低0.001
%必要である。しかしながら、N量の増加はHAZ靭
性、溶接性にきわめて有害であり、本発明鋼においては
その上限は0.005%である。
N, which is contained in steel as an unavoidable impurity, combines with Nb to form a carbonitride to increase the strength, and forms TiN to form a steel as described above. Enhance the nature. Therefore, the amount of N is at least 0.001.
%is necessary. However, an increase in the amount of N is extremely harmful to HAZ toughness and weldability, and the upper limit of the steel of the present invention is 0.005%.

【0022】次に必要に応じて含有することができるC
u、Cr、Mo、Vの添加理由について説明する。
Next, C which can be optionally contained
The reason for adding u, Cr, Mo, and V will be described.

【0023】基本となる成分に、さらにこれらの元素を
添加する主たる目的は、本発明鋼の優れた特徴を損なう
ことなく、強度、靭性などの特性を向上させるためであ
る。したがってその添加量は自ずと制限されるべき性質
のものである。
The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should be naturally restricted.

【0024】CuはNiとほぼ同様の効果、現象を示
し、上限の0.5%は溶接性劣化に加え、過剰な添加は
熱間圧延時にCu−クラックが発生し製造困難となるた
め規制される。下限は実質的な効果が得られるための最
小量とすべきで0.05%である。これは次のCr、M
oについても同様である。
Cu exhibits almost the same effects and phenomena as Ni. The upper limit of 0.5% is not only deteriorated in weldability, but excessive addition is regulated because Cu-cracks are generated during hot rolling and production becomes difficult. You. The lower limit should be 0.05%, which should be the minimum for a substantial effect to be obtained. This is the next Cr, M
The same applies to o.

【0025】Cr、Moは、母材の強度、靭性をともに
向上させる。しかし添加量が多すぎると母材、溶接部の
靭性および溶接性の劣化を招き、また後述する組織制御
が困難となって好ましくないため上限を0.5%とし
た。
Cr and Mo both improve the strength and toughness of the base material. However, if the added amount is too large, the toughness and weldability of the base material and the welded portion are deteriorated, and the control of the structure described later becomes difficult.

【0026】VはNbとほぼ同様の作用を有するもので
あるが、Nbに比べてその効果は小さい。また、Vは焼
入れ性にも影響を及ぼし、上記元素と同様組織制御の観
点から添加するものである。Nbと同様の効果は0.0
1%未満では効果が少なく、上限は0.05%まで許容
できる。
V has almost the same effect as Nb, but its effect is smaller than that of Nb. Further, V also affects the hardenability, and is added from the viewpoint of controlling the structure as in the case of the above-mentioned elements. The effect similar to Nb is 0.0
If it is less than 1%, the effect is small, and the upper limit is allowable up to 0.05%.

【0027】鋼の個々の成分を限定しても、成分系全体
が適切でないと優れた特性は得られない。このため、P
cmの値を0.25%以下に限定する。Pcmは溶接性
を表す指標で、低いほど溶接性は良好である。本発明鋼
においては、Pcmが0.25%以下であれば、優れた
溶接性の確保が可能である。
Even if the individual components of the steel are limited, excellent properties cannot be obtained unless the entire component system is appropriate. Therefore, P
The value of cm is limited to 0.25% or less. Pcm is an index indicating weldability, and the lower the value, the better the weldability. In the steel of the present invention, if Pcm is 0.25% or less, excellent weldability can be ensured.

【0028】上記のように鋼成分を限定した上で、さら
に製造条件を本願発明の通り限定する理由について説明
する。
The reasons for limiting the steel composition as described above and further limiting the manufacturing conditions as in the present invention will be described.

【0029】圧延に先立つ加熱温度を1000〜125
0℃に限定した理由は、加熱時のオーステナイト粒を小
さく保ち、圧延組織の微細化を図るためである。125
0℃は加熱時のオーステナイトが極端に粗大化しない上
限温度であり、加熱温度がこれを超えるとオーステナイ
ト粒が粗大混粒化し、変態後の組織も粗大化するための
鋼の靭性が著しく劣化する。一方、加熱温度が低すぎる
と、後述する圧延終了温度(Ar3点以上)の確保が困
難となる。また、Nb、Vなどの析出硬化元素添加時に
は、これらが十分に固溶せず強度、靭性バランスが劣化
する。このため下限を1000℃に限定した。
The heating temperature prior to rolling is 1000 to 125
The reason for limiting the temperature to 0 ° C. is to keep the austenite grains small during heating and to make the rolling structure finer. 125
0 ° C. is the upper limit temperature at which austenite during heating does not become extremely coarse, and if the heating temperature exceeds this, austenite grains become coarsely mixed and the structure after transformation also becomes coarse, thereby significantly deteriorating the toughness of steel. . On the other hand, if the heating temperature is too low, it is difficult to secure a rolling end temperature (Ar 3 point or more) described later. In addition, when precipitation hardening elements such as Nb and V are added, they do not form a solid solution and the balance between strength and toughness is deteriorated. For this reason, the lower limit was limited to 1000 ° C.

【0030】上述のような条件で加熱した鋼片を、オー
ステナイト未再結晶温度域での累積圧下量を30%以上
とし、800℃以上で熱間圧延を終了後、引き続いてA
3−50℃以上の温度から5℃/sec.〜50℃/
sec.の冷却速度による加速冷却を行う。オーステナ
イト未再結晶温度域での圧延を行うことによって、オー
ステナイト粒を顕著に細粒化するため、少なくとも30
%以上の累積圧下量が必要である。800℃以上で熱間
圧延を終了後、引き続いてAr3−50℃以上の温度か
ら5℃/sec.〜50℃/sec.の冷却速度による
加熱冷却を行う理由を以下に述べる。Ar3点以下から
の加速冷却によって鋼板に初析フェライトを生成させる
ことにより、鋼板の低降伏比を図ることが可能である
が、Ar3−50℃以下では、粗大な初析フェライトが
析出し低温靭性を劣化させる。このため下限をAr3
50℃と限定した。冷却速度については、板厚10〜8
0mmの鋼板をベイナイト主体の組織とする冷却速度に
相当する。
The steel slab heated under the above conditions was subjected to a cumulative rolling reduction in the austenite non-recrystallization temperature range of 30% or more, and after hot rolling at 800 ° C. or more, the A
r 3 -50 ° C. or higher to 5 ° C./sec. ~ 50 ° C /
sec. Accelerated cooling at a cooling rate of By performing rolling in the austenite non-recrystallization temperature range, austenite grains are remarkably refined.
% Or more is required. After the completion of the hot rolling at 800 ° C. or higher, the temperature is continuously increased from Ar 3 −50 ° C. or higher to 5 ° C./sec. 5050 ° C./sec. The reason for performing the heating and cooling at the cooling rate of the above will be described below. By generating pro-eutectoid ferrite in the steel sheet by accelerated cooling from the Ar 3 point or less, it is possible to achieve a low yield ratio of the steel sheet, but below Ar 3 -50 ° C, coarse pro-eutectoid ferrite precipitates. Deteriorates low-temperature toughness. Therefore, the lower limit is Ar 3
It was limited to 50 ° C. The cooling rate was 10 to 8
This corresponds to a cooling rate at which a steel sheet of 0 mm is mainly composed of bainite.

【0031】このような800℃以上で熱間圧延を終了
後、引き続いてAr3−50℃の温度から5℃/se
c.〜50℃/sec.の冷却速度による加速冷却を行
う熱加工制御法は、再加熱焼入れと同等以上の冶金的効
果を有し、省エネルギーの観点からもきわめて有効であ
る。
After the completion of the hot rolling at 800 ° C. or higher, subsequently, the temperature is reduced from Ar 3 -50 ° C. to 5 ° C./sec.
c. 5050 ° C./sec. The thermal processing control method of performing accelerated cooling by the cooling rate of the above has a metallurgical effect equal to or higher than reheating and quenching, and is extremely effective from the viewpoint of energy saving.

【0032】加速冷却後、さらに750〜870℃に再
加熱後焼入れし、引続きAc1点以下の温度に加熱して
焼戻し処理する必要がある。
After the accelerated cooling, it is necessary to reheat to 750 to 870 ° C. and then to perform quenching, and then to perform tempering by heating to a temperature not higher than the Ac 1 point.

【0033】750〜870℃に再加熱、焼入れする理
由は、降伏比の低減のためである。一般に、Nb添加鋼
は圧延ままでは降伏比が高く、Nbが炭窒化物として析
出し、析出硬化する場合にはさらに降伏比は高くなる。
The reason for reheating and quenching to 750 to 870 ° C. is to reduce the yield ratio. Generally, the Nb-added steel has a high yield ratio as it is rolled, and the yield ratio further increases when Nb precipitates as carbonitride and precipitates and hardens.

【0034】そこで、750〜870℃のγ+α二相域
に再加熱、焼入れを行う。部分的にγ変態させることに
よって組織の実質的な微細化が進行し靭性が向上すると
ともに、未変態の領域は軟化、γ変態領域は硬化してミ
クロ組織が二相化(軟らかい相と硬い相)し、降伏比の
低減が可能となる。再加熱温度が750℃未満では、γ
に変態する領域が小さいために前述の効果が得られな
い。一方、870℃を超えるとγへの変態領域が多くな
り過ぎ、目的とする二相組織が得られず低降伏比や優れ
た靭性が達成できない。
Thus, reheating and quenching are performed in the γ + α two-phase region at 750 to 870 ° C. By partially transforming the γ, the microstructure is substantially refined and the toughness is improved, and the untransformed region is softened, and the γ transformed region is hardened to form a two-phase microstructure (a soft phase and a hard phase). ), And the yield ratio can be reduced. If the reheating temperature is lower than 750 ° C, γ
The above-mentioned effects cannot be obtained because the region transformed into the sphere is small. On the other hand, if the temperature exceeds 870 ° C., the transformation region to γ becomes too large, and a desired two-phase structure cannot be obtained, so that a low yield ratio and excellent toughness cannot be achieved.

【0035】焼戻し処理は、鋼の靭性改善と溶接、応力
除去処理などによる軟化を防止するために必須である。
しかし、その温度がAc1点を超えると強度が著しく低
下するので、Ac1点以下としなければならない(望ま
しい焼戻し温度は400〜650℃である)。
The tempering treatment is indispensable for improving the toughness of the steel and preventing the steel from being softened by welding, stress removing treatment, or the like.
However, if the temperature exceeds the Ac 1 point, the strength is remarkably reduced. Therefore, the temperature must be lower than the Ac 1 point (a desirable tempering temperature is 400 to 650 ° C.).

【0036】[0036]

【実施例】転炉−連続鋳造−厚板工程で種々の鋼成分の
鋼板(厚さ15〜50mm)を製造し、その強度、降伏
比(YR)、靭性および溶接性(斜めy形溶接割れ試
験)を調査した。
EXAMPLE A steel plate (thickness: 15 to 50 mm) of various steel components was manufactured in a converter-continuous casting-thick plate process, and its strength, yield ratio (YR), toughness, and weldability (oblique y-shaped weld cracking) Test) was investigated.

【0037】表1に比較鋼とともに本願発明鋼の鋼成分
を、表2に鋼板の諸特性を示す。
Table 1 shows the steel composition of the steel of the present invention together with the comparative steel, and Table 2 shows the properties of the steel sheet.

【0038】本願発明法にしたがって製造した鋼板(本
発明鋼)は、すべて良好な特性を有する。これに対し、
本願発明によらない比較鋼は、いずれかの特性が劣る。
The steel sheets manufactured according to the method of the present invention (the steels of the present invention) all have good properties. In contrast,
Comparative steel not according to the present invention is inferior in either property.

【0039】比較鋼7は、C量が低いため溶接性は良好
であるが強度が低めである。また熱処理中、焼入れ(二
相域加熱焼入れ)を行っていないため、YRも高い。比
較鋼8は、圧延終了温度が低いため、同一のPcmであ
る本願発明鋼1より強度が低く、またNi量が低いた
め、低温靭性に劣る。比較鋼9は、Pcmが高いため溶
接性に劣る。また、焼入れ温度が高いためYRが高く、
さらにNb添加量が低いため組織の細粒化が十分でなく
低温靭性に劣る。比較鋼10は、Tiがなく、また、焼
戻し処理を行っていないため、低温靭性に劣る。比較鋼
11は、C量が高く、Pcmも高いため溶接性に劣る。
さらに、本発明鋼3の鋼成分を有する比較鋼3−1およ
び3−2は、熱処理条件が適切でないためYRが高い。
すなわち、比較鋼3−1は熱処理がなく、比較鋼3−2
は焼入れ処理(二相域加熱焼入)を行っていないため、
いずれもYRが高い。また比較鋼3−3では冷却開始温
度がAr3−50℃を下回っているため低温靭性に劣
る。比較鋼3−4では冷却速度が下限を下回っており再
加熱前の組織がフェライト+パーライト組織となり、こ
のため二相域熱処理後も、低温靭性に劣る。比較鋼3−
5では冷却速度が上限を上回っており、このため再加熱
による熱処理後もYRが高い。
The comparative steel 7 has a low C content and thus has good weldability but low strength. In addition, YR is high because quenching (two-phase region heating quenching) is not performed during the heat treatment. The comparative steel 8 has a lower rolling end temperature and thus has lower strength than the steel 1 of the present invention having the same Pcm, and also has a lower Ni content, and thus is inferior in low-temperature toughness. Comparative steel 9 is inferior in weldability due to its high Pcm. In addition, YR is high due to high quenching temperature,
Further, since the Nb addition amount is low, the grain refinement of the structure is not sufficient, and the low-temperature toughness is poor. The comparative steel 10 is inferior in low-temperature toughness because it has no Ti and has not been tempered. The comparative steel 11 is inferior in weldability because it has a high C content and a high Pcm.
Further, Comparative Steels 3-1 and 3-2 having the steel component of Invention Steel 3 have a high YR because the heat treatment conditions are not appropriate.
That is, the comparative steel 3-1 has no heat treatment, and the comparative steel 3-2 has no heat treatment.
Has not been quenched (two-phase heating quenching),
Both have high YR. Further, Comparative Steel 3-3 is inferior in low-temperature toughness because the cooling start temperature is lower than Ar 3 -50 ° C. In Comparative Steel 3-4, the cooling rate was lower than the lower limit, and the structure before reheating was a ferrite + pearlite structure. Therefore, even after the heat treatment in the two-phase region, the low-temperature toughness was poor. Comparative steel 3-
In No. 5, the cooling rate exceeded the upper limit, and thus the YR was high even after the heat treatment by reheating.

【0040】[0040]

【表1】 [Table 1]

【0041】[0041]

【表2】 [Table 2]

【0042】[0042]

【発明の効果】本発明により、溶接性、低温靭性に優れ
た低降伏比高張力鋼の製造が可能となった。その結果、
液体アンモニアとLPGなどとの混載タンク用として溶
接性の優れた鋼材を大量かつ安価に供給でき、特に高強
度化も可能としたため、該タンクの船舶への搭載も容易
となった。
According to the present invention, it has become possible to produce a low-yield-ratio high-tensile steel excellent in weldability and low-temperature toughness. as a result,
A steel material having excellent weldability can be supplied in large quantities and at low cost for a mixed tank of liquid ammonia and LPG and the like, and particularly high strength can be provided, so that the tank can be easily mounted on a ship.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中村 剛 君津市君津1番地 新日本製鐵株式会社君 津製鐵所内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tsuyoshi Nakamura 1 Kimitsu, Kimitsu City Inside Nippon Steel Corporation Kimitsu Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.05〜0.15% Si:0.4%以下 Mn:1.0〜2.0% P:0.02%以下 S:0.01%以下 Ni:0.05〜1.0% Nb:0.005〜0.02% Ti:0.005〜0.025% Al:0.06%以下 N:0.001〜0.005% かつPcm=C+Si/30+Mn/20+Cu/20
+Ni/60+Cr/20+Mo/15+V/10+5
Bが0.25%以下 残部が鉄および不可避的不純物からなる鋼を1000〜
1250℃に加熱し、オーステナイト未再結晶温度域で
の累積圧下量を30%以上とし、800℃以上の温度で
熱間圧延を終了後、引き続いてAr3−50℃以上の温
度から5℃/sec.〜50℃/sec.の冷却速度に
よる加速冷却を行い、さらに750〜870℃に再加熱
後焼入れ、引続きAc1点以下の温度に加熱して焼戻し
処理をすることを特徴とする溶接性および低温靭性に優
れた低降伏比高張力鋼の製造方法。
C: 0.05 to 0.15% Si: 0.4% or less Mn: 1.0 to 2.0% P: 0.02% or less S: 0.01% or less by weight% Ni: 0.05 to 1.0% Nb: 0.005 to 0.02% Ti: 0.005 to 0.025% Al: 0.06% or less N: 0.001 to 0.005% and Pcm = C + Si / 30 + Mn / 20 + Cu / 20
+ Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5
B is 0.25% or less Steel whose balance is iron and unavoidable impurities is 1000 to 1000%.
It was heated to 1250 ° C., the cumulative reduction ratio of austenite non-recrystallization temperature region is 30% or more, after the completion of the hot rolling at 800 ° C. or higher, followed by 5 ° C. from Ar 3 -50 ° C. or more temperature / sec. 5050 ° C./sec. Low-yield excellent in weldability and low-temperature toughness characterized by performing accelerated cooling at a cooling rate of, quenching after reheating to 750 to 870 ° C, and subsequently tempering by heating to a temperature of 1 point or less. Manufacturing method for high tensile strength steel.
【請求項2】 上記に記載の鋼がさらに、 Cu:0.05〜0.5% Cr:0.05〜0.5% Mo:0.05〜0.5% V:0.01〜0.05% の内の一種以上を含有し、かつ Pcm=C+Si/30+Mn/20+Cu/20+N
i/60+Cr/20+Mo/15+V/10+5Bが
0.25%以下 を満足することを特徴とする請求項1記載の溶接性およ
び低温靭性に優れた低降伏比高張力鋼の製造方法。
2. The steel according to claim 1, further comprising: Cu: 0.05 to 0.5% Cr: 0.05 to 0.5% Mo: 0.05 to 0.5% V: 0.01 to 0% Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + N
2. The method of claim 1, wherein i / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B satisfies 0.25% or less.
JP25939797A 1997-09-09 1997-09-09 Production of high tensile strength steel with low yield ratio, excellent in weldability and toughness at low temperature Pending JPH1180832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25939797A JPH1180832A (en) 1997-09-09 1997-09-09 Production of high tensile strength steel with low yield ratio, excellent in weldability and toughness at low temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25939797A JPH1180832A (en) 1997-09-09 1997-09-09 Production of high tensile strength steel with low yield ratio, excellent in weldability and toughness at low temperature

Publications (1)

Publication Number Publication Date
JPH1180832A true JPH1180832A (en) 1999-03-26

Family

ID=17333574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25939797A Pending JPH1180832A (en) 1997-09-09 1997-09-09 Production of high tensile strength steel with low yield ratio, excellent in weldability and toughness at low temperature

Country Status (1)

Country Link
JP (1) JPH1180832A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025014A (en) * 2006-07-25 2008-02-07 Sumitomo Metal Ind Ltd Steel material used for tank for lpg and ammonia transporting ship
CN100463978C (en) * 2007-05-25 2009-02-25 山西太钢不锈钢股份有限公司 Method for increasing toughness of low temperature steel plate
EP2762594A4 (en) * 2011-09-26 2015-08-12 Baoshan Iron & Steel High-strength and high-toughness steel plate with yield strength being 700 mpa and manufacturing method thereof
US9683275B2 (en) 2011-09-26 2017-06-20 Baoshan Iron & Steel Co., Ltd. Steel plate with low yield-tensile ratio and high toughness and method of manufacturing the same
CN110358973A (en) * 2019-07-25 2019-10-22 南京钢铁股份有限公司 A kind of low cost S 420NL low-temperature flexibility steel plate and manufacturing method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025014A (en) * 2006-07-25 2008-02-07 Sumitomo Metal Ind Ltd Steel material used for tank for lpg and ammonia transporting ship
JP4605117B2 (en) * 2006-07-25 2011-01-05 住友金属工業株式会社 Steel used for tanks for LPG / ammonia carrier
CN100463978C (en) * 2007-05-25 2009-02-25 山西太钢不锈钢股份有限公司 Method for increasing toughness of low temperature steel plate
EP2762594A4 (en) * 2011-09-26 2015-08-12 Baoshan Iron & Steel High-strength and high-toughness steel plate with yield strength being 700 mpa and manufacturing method thereof
US9683275B2 (en) 2011-09-26 2017-06-20 Baoshan Iron & Steel Co., Ltd. Steel plate with low yield-tensile ratio and high toughness and method of manufacturing the same
US9771639B2 (en) 2011-09-26 2017-09-26 Baoshan Iron & Steel Co., Ltd. High-strength and high-toughness steel plate with yield strength of 700 MPa and method of manufacturing the same
CN110358973A (en) * 2019-07-25 2019-10-22 南京钢铁股份有限公司 A kind of low cost S 420NL low-temperature flexibility steel plate and manufacturing method

Similar Documents

Publication Publication Date Title
JP4071906B2 (en) Manufacturing method of steel pipe for high tension line pipe with excellent low temperature toughness
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPH09143557A (en) Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength
JP2002003983A (en) Low yielding ratio, high-tensile steel excellent in weldability and toughness at low temperature, and its manufacturing method
JPH1180832A (en) Production of high tensile strength steel with low yield ratio, excellent in weldability and toughness at low temperature
JPH02125812A (en) Manufacture of cu added steel having superior toughness of weld heat-affected zone
KR102400036B1 (en) Steel sheet having excellent low temperature toughness and low yield ratio and method of manufacturing the same
JPH10130721A (en) Production of low yield ratio high tensile strength steel excellent in weldability and low temperature toughness
JPH09194990A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP2004124114A (en) Non-water-cooled thin low yield ratio high tensile steel having excellent toughness, and production method therefor
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPH10183241A (en) Production of low yield ratio high tensile strength steel excellent in weldability and low temperature toughness
JP2001342538A (en) High tensile steel with low yield ratio, excellent in weldability and low temperature toughness, and production of the same
JP3526740B2 (en) Low yield ratio high strength steel excellent in weldability and low temperature toughness and method for producing the same
JPH075968B2 (en) Method for producing steel sheet excellent in hydrogen-induced cracking resistance, sulfide stress corrosion cracking resistance and low temperature toughness
JP3850913B2 (en) Manufacturing method of high strength bend pipe with excellent weld metal toughness
KR20210142405A (en) Steel having excellent low-temperature fracture toughness and method of manufacturing the same
JP3848415B2 (en) Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness
JP3854412B2 (en) Sour-resistant steel plate with excellent weld heat-affected zone toughness and its manufacturing method
JPH083636A (en) Production of low yield ratio high toughness steel
JPH02129317A (en) Production of 80kgf/mm2 class high tension steel having excellent weldability
JPH09302445A (en) Nickel-containing steel for low temperature use and its production
JP3802626B2 (en) Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness
JP3367388B2 (en) High ductility and high toughness steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051004