JP3802626B2 - Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness - Google Patents

Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness Download PDF

Info

Publication number
JP3802626B2
JP3802626B2 JP31415996A JP31415996A JP3802626B2 JP 3802626 B2 JP3802626 B2 JP 3802626B2 JP 31415996 A JP31415996 A JP 31415996A JP 31415996 A JP31415996 A JP 31415996A JP 3802626 B2 JP3802626 B2 JP 3802626B2
Authority
JP
Japan
Prior art keywords
steel
less
weldability
toughness
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31415996A
Other languages
Japanese (ja)
Other versions
JPH10140235A (en
Inventor
義之 渡部
淳彦 吉江
晴雄 今井
譲 吉田
征司 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31415996A priority Critical patent/JP3802626B2/en
Publication of JPH10140235A publication Critical patent/JPH10140235A/en
Application granted granted Critical
Publication of JP3802626B2 publication Critical patent/JP3802626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、主として液体アンモニア(LAG)とLPGなどの他種液化ガスを混載する多目的タンク用鋼材として、溶接性および低温靭性に優れた低降伏比高張力鋼の製造方法に関するものである。
【0002】
【従来の技術】
液化ガス貯槽用タンクに使用される鋼材は、液化ガスの種類によって異なるが、ガスの液化温度は一般に常圧では低温(LPGの場合、−48℃)であるため、母材はもちろん溶接継手部においても優れた低温靭性が要求される。これに対し、特開昭63−290246号公報には6.5〜12.0%のNiを添加する方法や、特開昭58−153730号公報には特定組成の鋼を焼入れ焼戻し処理を行って、焼戻しマルテンサイトとベイナイトの強靭性を利用する方法が開示されている。
【0003】
また、液体アンモニアは鋼材の応力腐食割れ(SCC)を引き起こすことが知られ、IGC CODE 17.13(International Codefor the Construction and Equipmentof Ships Carrying Liquefied Gases in Bulk)では、酸素分圧、温度などの貯槽時の操業条件を規制するとともに、鋼材のNi含有量を5%以下に制限することや実降伏強さを440N/mm2以下に抑えることなどを規定している。このため、特開平4−17613号公報では表層のみ軟化処理した鋼板や、特開昭57−139493号公報では軟鋼クラッド鋼と軟質溶接最終層によるタンク製造方法などが開示されている。
【0004】
しかし、上記LPGと液体アンモニアを混載するタンクでは、当然のことながら両者に要求される仕様を満足する必要がある。一方、タンクの大容量化や船舶に搭載されることの多いこの種のタンクにおいては高張力化が求められており、LPGからの優れた低温靭性と液体アンモニアからの降伏強さの上限規制に伴う低降伏比化の同時達成が大きな課題となっていた。
【0005】
【発明が解決しようとする課題】
本発明は、主として液体アンモニア(LAG)とLPGなどの他種液化ガスを混載する多目的タンク用鋼材として使用するに適する、溶接性および低温靭性に優れ、同時に高強度で低降伏比である高張力鋼の製造方法を提供する。
【0006】
【課題を解決するための手段】
本願発明は、優れた溶接性、低温靭性と同時に高強度で低降伏比を図るために、鋼成分と熱処理条件を限定することにより組織制御を十分に行うことを特徴とする。
【0007】
本願発明によれば、液体アンモニアとLPGなどとの混載タンク用として溶接性の優れた鋼材を大量かつ安価に供給でき、特に高強度化も可能としたため、該タンクの船舶への搭載も容易となった。
【0008】
本発明の要旨は、以下の通りである。
【0009】
(1)重量%で、
C:0.05〜0.15%、
Si:0.40%以下、
Mn:1.0〜2.0%、
P:0.020%以下、
S:0.010%以下、
Ni:0.05〜1.0%、
Nb:0.005〜0.020%、
Ti:0.005〜0.025%、
Al:0.060%以下、
N:0.001〜0.005%上記に加え必要に応じ、
Cu:0.05〜0.50%、
Cr:0.05〜0.50%、
V:0.01〜0.05%の一種以上をさらに含有し、
かつ、Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bが0.25%以下、
残部が鉄および不可避的不純物からなる鋼を熱間圧延後、Ar3点以上950℃以下に加熱して焼入れし、さらに750〜870℃に加熱後焼入れ、引続きAc1点以下の温度に加熱して焼戻し処理をすることを特徴とする溶接性および低温靭性に優れた低降伏比高張力鋼の製造方法。
【0010】
【発明の実施の形態】
本発明が、請求項の通りに鋼組成、製造方法としての熱処理条件を限定した理由について説明する。
【0011】
Cは焼入性に最も顕著に効くもので、下限0.05%は後述するように焼入れ時の組織制御を可能にする最小量である。しかし、C量が多すぎると焼入性が必要以上に上がり、鋼材が本来有すべき強度、靱性のバランス、溶接性などに悪影響を及ぼすため、上限を0.15%とした。
【0012】
Siは脱酸上鋼に含まれる元素であるが、多く添加すると溶接性、HAZ靭性が劣化するため、上限を0.40%に限定した。鋼の脱酸はTi、Alのみでも十分可能であり、HAZ靱性、焼入性などの観点から低いほど好ましく、必ずしも添加する必要はない。
【0013】
Mnは強度、靭性を確保する上で不可欠な元素であり、その下限は1.0%である。しかし、Mn量が多すぎると焼入性が上昇して溶接性、HAZ靭性を劣化させるだけでなく、連続鋳造スラブの中心偏析を助長するので上限を2.0%とした。
【0014】
Pは本発明鋼においては不純物であり、P量の低減はHAZにおける粒界破壊を減少させる傾向があるため、少ないほど好ましい。含有量が多いと母材、溶接部の低温靭性を劣化させるため上限を0.020%とした。
【0015】
SはPと同様本発明鋼においては不純物であり、母材の低温靭性の観点からは少ないほど好ましい。含有量が多いと母材、溶接部の低温靭性を劣化させるため上限を0.010%とした。
【0016】
Niは過剰に添加しなければ、溶接性、HAZ靭性に悪影響を及ぼすことなく母材の強度、靭性を向上させる。これら効果を発揮させるためには、少なくとも0.05%以上の添加が必須である。一方、過剰な添加は高価なだけでなく、溶接性に好ましくない。また、Niを多く添加すると液体アンモニア中で応力腐食割れ(SCC)を誘起する可能性が指摘されている。発明者らの実験によれば、1%までの添加は溶接性や液体アンモニア中でのSCCを大きく劣化させず、強度、靭性向上効果の方が大きいため、上限を1.0%とした。
【0017】
Nbはオーステナイトの未再結晶温度を上昇させ、熱間圧延時の制御圧延の効果を最大限に発揮する上で必須元素で、最低0.005%の添加が必要である。また、焼入れの際の加熱オーステナイトの細粒化にも寄与する。しかし、過剰な添加は、溶接部の靭性劣化を招くため上限を0.020%とした。
【0018】
Tiは母材およびHAZ靭性向上のために必須である。なぜならばTiは、Al量が少ないとき(例えば0.003%以下)、Oと結合してTi23を主成分とする析出物を形成、粒内変態フェライト生成の核となりHAZ靭性を向上させる。また、TiはNと結合してTiNとしてスラブ中に微細析出し、加熱時のγ粒の粗大化を抑え圧延組織の細粒化に有効であり、また鋼板中に存在する微細TiNは、溶接時にHAZ組織を細粒化するためである。これらの効果を得るためには、Tiは最低0.005%必要である。しかし多過ぎるとTiCを形成し、低温靭性や溶接性を劣化させるので、その上限は0.025%である。
【0019】
Alは、一般に脱酸上鋼に含まれる元素であるが、脱酸はSiまたはTiだけでも十分であり、本発明鋼においては、その下限は限定しない。しかし、Al量が多くなると鋼の清浄度が悪くなるだけでなく、溶接金属の靭性が劣化するので上限を0.060%とした。
【0020】
Nは、不可避的不純物として鋼中に含まれるものであるが、Nbと結合して炭窒化物を形成して強度を増加させ、また、TiNを形成して前述のように鋼の性質を高める。このため、N量として最低0.001%必要である。しかしながら、N量の増加はHAZ靭性、溶接性にきわめて有害であり、本発明鋼においてはその上限は0.005%である。
【0021】
次に必要に応じて含有することができるCu、Cr、Vの添加理由について説明する。
【0022】
基本となる成分に、さらにこれらの元素を添加する主たる目的は、本発明鋼の優れた特徴を損なうことなく、強度、靭性などの特性を向上させるためである。したがってその添加量は自ずと制限されるべき性質のものである。
【0023】
CuはNiとほぼ同様の効果、現象を示し、上限の0.50%は溶接性劣化に加え、過剰な添加は熱間圧延時にCu−クラックが発生し製造困難となるため規制される。下限は実質的な効果が得られるための最小量とすべきで0.05%である。これは次のCrについても同様である。
【0024】
Crは、母材の強度、靭性をともに向上させる。しかし添加量が多すぎると母材、溶接部の靭性および溶接性を劣化を招き、また後述する組織制御が困難となって好ましくないため上限を0.50%とした。
【0025】
VはNbとほぼ同様の作用を有するものであるが、Nbに比べてその効果は小さい。また、Vは焼入れ性にも影響を及ぼし、上記元素と同様組織制御の観点から添加するものである。Nbと同様の効果は0.01%未満では効果が少なく、上限は0.05%まで許容できる。
【0026】
鋼の個々の成分を限定しても、成分系全体が適切でないと優れた特性は得られない。このため、Pcmの値を0.25%以下に限定する。Pcmは溶接性を表す指標で、低いほど溶接性は良好である。本発明鋼においては、Pcmが0.25%以下であれば、優れた溶接性の確保が可能である。
【0027】
上記のように鋼成分を限定した上で、さらに熱処理条件を本願発明の通り限定する理由について説明する。
【0028】
熱処理は、Ar3点以上950℃以下に加熱後焼入れし、さらに750〜870℃に再加熱後焼入れし、引続きAc1点以下の温度に加熱して焼戻し処理する。
【0029】
まず最初の加熱温度をAr3点以上に限定する理由は、鋼を完全にγ化させ溶体化した後、焼き入れるためである。しかし、焼入温度が高過ぎると、γ粒の成長を抑制できなくなり、結晶粒は圧延材よりも大きくなって低温靱性の劣化を招く。このため加熱温度は950℃以下としなければならない。ここで形成された結晶粒の大きさは最終製品まで受け継がれるので、低温靱性の観点から極めて重要である。
【0030】
続いて750〜870℃に再加熱、焼入れする理由は、降伏比の低減のためである。一般に、Nb添加鋼は圧延ままでは降伏比が高く、Nbが炭窒化物として析出し、析出硬化する場合にはさらに降伏比は高くなる。
【0031】
そこで、750〜870℃のγ+α二相域に再加熱、焼入れを行う。部分的にγ変態させることによって組織の実質的な微細化が進行し靭性が向上するとともに、未変態の領域は軟化、γ変態領域は硬化してミクロ組織が二相化(軟らかい相と硬い相)し、降伏比の低減が可能となる。再加熱温度が750℃未満では、γに変態する領域が小さいために前述の効果が得られない。一方、870℃を超えるとγへの変態領域が多くなり過ぎ、目的とする二相組織が得られず低降伏比化や優れた靭性が達成できない。
【0032】
焼戻し処理は、鋼の靭性改善と溶接、応力除去処理などによる軟化を防止するために必須である。しかし、その温度がAc1点を超えると強度が著しく低下するので、Ac1点以下としなければならない(望ましい焼戻し温度は400〜650℃である)。
【0033】
【実施例】
転炉−連続鋳造−厚板工程で種々の鋼成分の鋼板(厚さ15〜50mm)を製造し、その強度、降伏比(YR)、靭性および溶接性(斜めy形溶接割れ試験)を調査した。
【0034】
表1に比較鋼とともに本願発明鋼の鋼成分を、第2表に鋼板の諸特性を示す。
【0035】
本願発明法にしたがって製造した鋼板(本発明鋼)は、すべて良好な特性を有する。これに対し、本願発明によらない比較鋼は、いずれかの特性が劣る。
【0036】
比較鋼7は、C量が低いため溶接性は良好であるが強度が低めである。また二段目の焼入処理(二相域加熱焼入)を行っていないため、YRも高い。比較鋼8は、Ni量が低く、また焼入温度も高いため、低温靭性に劣る。比較鋼9は、CおよびPcmが高いため溶接性に劣る。また、二段目の焼入処理(二相域加熱焼入)を行っていないため、YRが高い。さらに、Nbも低いため細粒化が不十分で低温靭性に劣る。比較鋼10は、Tiが焼戻処理がないため靭性に劣る。また、焼入処理を行っていないため、同一Pcmである本発明鋼6に比較し強度が低めである。比較鋼11は、個々の成分は本願発明の範囲内にあるがPcmが高いため溶接性に劣る。さらに、本発明鋼3の鋼成分を有する比較鋼3−1および3−2は、熱処理条件が適切でないためYRが高い。すなわち、比較鋼3−1は熱処理がなく、比較鋼3−2は二段目の焼入処理を行っていないため、いずれもYRが高い。
【0037】
【表1】

Figure 0003802626
【0038】
【表2】
Figure 0003802626
【0039】
【発明の効果】
本発明により、溶接性、低温靭性に優れた低降伏比高張力鋼の製造が可能となった。その結果、液体アンモニアとLPGなどとの混載タンク用として溶接性の優れた鋼材を大量かつ安価に供給でき、特に高強度化も可能としたため、該タンクの船舶への搭載も容易となった。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a low-yield ratio high-strength steel excellent in weldability and low-temperature toughness as a steel for a multi-purpose tank that mainly contains liquid ammonia (LAG) and other liquefied gases such as LPG.
[0002]
[Prior art]
Steel materials used in liquefied gas storage tanks differ depending on the type of liquefied gas, but the gas liquefaction temperature is generally low at normal pressure (-48 ° C in the case of LPG). Excellent low temperature toughness is also required. In contrast, JP-A-63-290246 discloses a method of adding 6.5 to 12.0% Ni, and JP-A-58-153730 discloses a steel having a specific composition that is quenched and tempered. Thus, a method using the toughness of tempered martensite and bainite is disclosed.
[0003]
In addition, liquid ammonia is known to cause stress corrosion cracking (SCC) of steel materials. In IGC CODE 17.13 (International Code for the Construction and Equipment of Shipping Carrying Liquidated Gases in Bulk), In addition to restricting the Ni content of the steel material to 5% or less and limiting the actual yield strength to 440 N / mm 2 or less. For this reason, JP-A-4-17613 discloses a steel plate in which only the surface layer is softened, and JP-A-57-139493 discloses a tank manufacturing method using a soft steel clad steel and a soft weld final layer.
[0004]
However, the tank in which the LPG and the liquid ammonia are mixedly mounted must naturally satisfy the specifications required for both. On the other hand, this type of tank, which is often installed on ships and has a large capacity, is required to have high tension, and it is an upper limit regulation for excellent low temperature toughness from LPG and yield strength from liquid ammonia. At the same time, the achievement of the low yield ratio was a major issue.
[0005]
[Problems to be solved by the invention]
The present invention is suitable for use as a steel for multipurpose tanks mainly containing liquid ammonia (LAG) and other liquefied gases such as LPG, and is excellent in weldability and low temperature toughness, and at the same time has high strength and low yield ratio. A method for manufacturing steel is provided.
[0006]
[Means for Solving the Problems]
The present invention is characterized in that the structure is sufficiently controlled by limiting the steel components and the heat treatment conditions in order to achieve high strength and low yield ratio as well as excellent weldability and low temperature toughness.
[0007]
According to the present invention, a steel material having excellent weldability can be supplied in a large amount and at a low cost for a mixed tank of liquid ammonia and LPG, and particularly high strength can be provided. became.
[0008]
The gist of the present invention is as follows.
[0009]
(1) By weight%
C: 0.05 to 0.15%,
Si: 0.40% or less,
Mn: 1.0-2.0%,
P: 0.020% or less,
S: 0.010% or less,
Ni: 0.05 to 1.0%,
Nb: 0.005 to 0.020%,
Ti: 0.005 to 0.025%,
Al: 0.060% or less,
N: 0.001 to 0.005% In addition to the above, if necessary,
Cu: 0.05 to 0.50%,
Cr: 0.05 to 0.50%,
V: further containing one or more of 0.01 to 0.05%,
And Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B is 0.25% or less,
After the steel comprising the balance iron and inevitable impurities is hot-rolled, it is quenched by heating to an Ar 3 point or higher and 950 ° C. or lower, further heated to 750 to 870 ° C., and subsequently heated to a temperature of Ac 1 point or lower. A method of producing a low-yield ratio high-strength steel excellent in weldability and low-temperature toughness characterized by tempering.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The reason why the present invention limited the steel composition and the heat treatment conditions as the production method as described in the claims will be described.
[0011]
C is most effective for hardenability, and the lower limit of 0.05% is the minimum amount that enables the structure control during quenching as will be described later. However, if the amount of C is too large, the hardenability is unnecessarily increased and the steel material should have inherent strength, toughness balance, weldability, etc., so the upper limit was made 0.15%.
[0012]
Si is an element contained in deoxidized upper steel, but if added in large amounts, weldability and HAZ toughness deteriorate, so the upper limit was limited to 0.40%. Deoxidation of steel can be sufficiently performed only with Ti and Al, and is preferably as low as possible from the viewpoints of HAZ toughness, hardenability, and the like, and does not necessarily need to be added.
[0013]
Mn is an indispensable element for securing strength and toughness, and its lower limit is 1.0%. However, if the amount of Mn is too large, not only the hardenability is increased and the weldability and HAZ toughness are deteriorated, but also the center segregation of the continuously cast slab is promoted, so the upper limit was made 2.0%.
[0014]
P is an impurity in the steel of the present invention, and a reduction in the amount of P tends to reduce the grain boundary fracture in HAZ, so the smaller the better. If the content is large, the low temperature toughness of the base metal and the welded portion is deteriorated, so the upper limit was made 0.020%.
[0015]
S, like P, is an impurity in the steel of the present invention, and is preferably as small as possible from the viewpoint of low temperature toughness of the base material. If the content is large, the low temperature toughness of the base metal and the welded portion is deteriorated, so the upper limit was made 0.010%.
[0016]
If Ni is not added excessively, it improves the strength and toughness of the base material without adversely affecting the weldability and HAZ toughness. In order to exert these effects, addition of at least 0.05% is essential. On the other hand, excessive addition is not only expensive, but is not preferable for weldability. Further, it has been pointed out that the addition of a large amount of Ni may induce stress corrosion cracking (SCC) in liquid ammonia. According to the experiments by the inventors, addition up to 1% does not significantly deteriorate weldability and SCC in liquid ammonia, and the effect of improving the strength and toughness is larger, so the upper limit was set to 1.0%.
[0017]
Nb is an essential element for raising the non-recrystallization temperature of austenite and maximizing the effect of controlled rolling at the time of hot rolling, and addition of at least 0.005% is necessary. It also contributes to the refinement of the heated austenite during quenching. However, excessive addition causes deterioration of the toughness of the weld zone, so the upper limit was made 0.020%.
[0018]
Ti is essential for improving the base material and the HAZ toughness. This is because when Ti has a small amount of Al (for example, 0.003% or less), it combines with O to form precipitates mainly composed of Ti 2 O 3 , and becomes the nucleus of intragranular transformation ferrite formation and improves HAZ toughness. Let Ti is combined with N and finely precipitated in the slab as TiN, which suppresses the coarsening of γ grains during heating and is effective for refining the rolled structure. The fine TiN present in the steel sheet is welded. This is because sometimes the HAZ structure is refined. In order to obtain these effects, Ti needs to be at least 0.005%. However, if it is too much, TiC is formed and the low temperature toughness and weldability are deteriorated, so the upper limit is 0.025%.
[0019]
Al is an element generally contained in deoxidized upper steel, but Si or Ti is sufficient for deoxidation, and the lower limit is not limited in the steel of the present invention. However, when the amount of Al increases, not only the cleanliness of the steel deteriorates but also the toughness of the weld metal deteriorates, so the upper limit was made 0.060%.
[0020]
N is contained in the steel as an unavoidable impurity, but combines with Nb to form carbonitride to increase the strength, and TiN to increase the properties of the steel as described above. . For this reason, the N amount is required to be at least 0.001%. However, the increase in the amount of N is extremely harmful to the HAZ toughness and weldability, and the upper limit is 0.005% in the steel of the present invention.
[0021]
Next, the reason for adding Cu, Cr, and V that can be contained as necessary will be described.
[0022]
The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added is of a nature that should naturally be limited.
[0023]
Cu exhibits substantially the same effects and phenomena as Ni, and the upper limit of 0.50% is restricted because weldability is deteriorated, and excessive addition causes Cu-cracks during hot rolling, making it difficult to produce. The lower limit should be the minimum amount for obtaining a substantial effect, and is 0.05%. The same applies to the next Cr.
[0024]
Cr improves both the strength and toughness of the base material. However, if the addition amount is too large, the base material, the toughness and weldability of the welded portion are deteriorated, and the structure control described later becomes difficult, which is not preferable, so the upper limit was made 0.50%.
[0025]
V has substantially the same action as Nb, but its effect is smaller than that of Nb. V also affects the hardenability, and is added from the viewpoint of controlling the structure in the same manner as the above elements. The effect similar to Nb is less if it is less than 0.01%, and the upper limit is acceptable up to 0.05%.
[0026]
Even if the individual components of the steel are limited, excellent properties cannot be obtained unless the entire component system is appropriate. For this reason, the value of Pcm is limited to 0.25% or less. Pcm is an index representing weldability. The lower the Pcm, the better the weldability. In the steel of the present invention, excellent weldability can be secured if Pcm is 0.25% or less.
[0027]
The reason why the heat treatment conditions are further limited as described in the present invention after limiting the steel components as described above will be described.
[0028]
The heat treatment is performed after tempering by heating to Ar 3 point or more and 950 ° C. or less, further quenching after reheating to 750 to 870 ° C., and subsequently heating to a temperature of Ac 1 point or less.
[0029]
The reason why the initial heating temperature is limited to the Ar 3 point or higher is that the steel is completely γ-converted into a solution and then quenched. However, if the quenching temperature is too high, the growth of γ grains cannot be suppressed, and the crystal grains become larger than the rolled material, resulting in deterioration of low temperature toughness. For this reason, heating temperature must be 950 degrees C or less. Since the size of the crystal grains formed here is inherited up to the final product, it is extremely important from the viewpoint of low temperature toughness.
[0030]
The reason for subsequently reheating and quenching at 750 to 870 ° C. is to reduce the yield ratio. In general, Nb-added steel has a high yield ratio as it is rolled, and when Nb precipitates as carbonitride and precipitates and hardens, the yield ratio further increases.
[0031]
Therefore, reheating and quenching are performed in the γ + α two-phase region at 750 to 870 ° C. By partial γ transformation, the microstructure becomes progressively finer and the toughness is improved. The untransformed region is softened and the γ transformation region is hardened, and the microstructure becomes two-phase (soft phase and hard phase). ) And the yield ratio can be reduced. When the reheating temperature is less than 750 ° C., the above-mentioned effect cannot be obtained because the region that transforms to γ is small. On the other hand, when the temperature exceeds 870 ° C., the transformation region to γ increases so much that the desired two-phase structure cannot be obtained, and a low yield ratio and excellent toughness cannot be achieved.
[0032]
The tempering treatment is indispensable for improving the toughness of steel and preventing softening due to welding, stress removal treatment, and the like. However, when the temperature exceeds the Ac 1 point, the strength is remarkably lowered, so the Ac 1 point or less must be set (a desirable tempering temperature is 400 to 650 ° C.).
[0033]
【Example】
Manufacture steel plates with various steel components (thickness 15-50mm) in the converter-continuous casting-thick plate process and investigate their strength, yield ratio (YR), toughness and weldability (diagonal y-type weld crack test). did.
[0034]
Table 1 shows the steel components of the present invention steel together with the comparative steel, and Table 2 shows the properties of the steel sheet.
[0035]
All the steel plates manufactured according to the present invention method (present invention steel) have good characteristics. On the other hand, the comparative steel not according to the present invention is inferior in either characteristic.
[0036]
Since the comparative steel 7 has a low C content, the weldability is good, but the strength is low. Moreover, since the second-stage quenching process (two-phase region heating quenching) is not performed, YR is also high. Since the comparative steel 8 has a low Ni content and a high quenching temperature, the low temperature toughness is inferior. Since the comparative steel 9 has high C and Pcm, it has poor weldability. Moreover, since the second-stage quenching process (two-phase region heating quenching) is not performed, YR is high. Furthermore, since Nb is also low, fine graining is insufficient and low temperature toughness is poor. The comparative steel 10 is inferior in toughness because Ti has no tempering treatment. Moreover, since the quenching treatment is not performed, the strength is lower than that of the steel 6 of the present invention having the same Pcm. The comparative steel 11 is inferior in weldability because the individual components are within the scope of the present invention but the Pcm is high. Furthermore, Comparative Steels 3-1 and 3-2 having steel components of Invention Steel 3 have high YR because the heat treatment conditions are not appropriate. That is, since the comparative steel 3-1 is not heat-treated and the comparative steel 3-2 is not subjected to the second-stage quenching treatment, both have high YR.
[0037]
[Table 1]
Figure 0003802626
[0038]
[Table 2]
Figure 0003802626
[0039]
【The invention's effect】
According to the present invention, it is possible to produce a low yield ratio high strength steel excellent in weldability and low temperature toughness. As a result, a steel material excellent in weldability can be supplied in a large amount and at a low cost for a mixed tank of liquid ammonia and LPG, and the strength can be increased particularly, so that the tank can be easily mounted on a ship.

Claims (2)

重量%で、
C:0.05〜0.15%、
Si:0.40%以下、
Mn:1.0〜2.0%、
P:0.020%以下、
S:0.010%以下、
Ni:0.05〜1.0%、
Nb:0.005〜0.020%、
Ti:0.005〜0.025%、
Al:0.060%以下、
N:0.001〜0.005%
かつ、
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bが0.25%以下
残部が鉄および不可避的不純物からなる鋼を熱間圧延後、Ar3点以上950℃以下に加熱して焼入れし、さらに750〜870℃に加熱後焼入れ、引続きAc1点以下の温度に加熱して焼戻し処理をすることを特徴とする溶接性および低温靭性に優れた低降伏比高張力鋼の製造方法。
% By weight
C: 0.05 to 0.15%,
Si: 0.40% or less,
Mn: 1.0-2.0%,
P: 0.020% or less,
S: 0.010% or less,
Ni: 0.05 to 1.0%,
Nb: 0.005 to 0.020%,
Ti: 0.005 to 0.025%,
Al: 0.060% or less,
N: 0.001 to 0.005%
And,
Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B is 0.25% or less Hot-rolled steel consisting of iron and inevitable impurities, and then heated to Ar 3 point or more and 950 ° C. or less A method for producing a low-yield ratio high-strength steel excellent in weldability and low-temperature toughness characterized by quenching, further quenching after heating to 750 to 870 ° C., and subsequently tempering by heating to a temperature of Ac 1 point or lower .
請求項1に記載の鋼が、さらに、
Cu:0.05〜0.50%、
Cr:0.05〜0.50%、
V:0.01〜0.05%
の一種以上を含有し、かつ
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bが0.25%以下
を満足することを特徴とする請求項1記載の溶接性および低温靭性に優れた低降伏比高張力鋼の製造方法。
The steel according to claim 1, further comprising:
Cu: 0.05 to 0.50%,
Cr: 0.05 to 0.50%,
V: 0.01-0.05%
The weldability and low-temperature toughness according to claim 1, wherein Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B satisfies 0.25% or less. An excellent low yield ratio high strength steel manufacturing method.
JP31415996A 1996-11-12 1996-11-12 Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness Expired - Fee Related JP3802626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31415996A JP3802626B2 (en) 1996-11-12 1996-11-12 Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31415996A JP3802626B2 (en) 1996-11-12 1996-11-12 Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness

Publications (2)

Publication Number Publication Date
JPH10140235A JPH10140235A (en) 1998-05-26
JP3802626B2 true JP3802626B2 (en) 2006-07-26

Family

ID=18049961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31415996A Expired - Fee Related JP3802626B2 (en) 1996-11-12 1996-11-12 Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness

Country Status (1)

Country Link
JP (1) JP3802626B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220030288A (en) 2019-11-27 2022-03-10 제이에프이 스틸 가부시키가이샤 Steel plate and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220030288A (en) 2019-11-27 2022-03-10 제이에프이 스틸 가부시키가이샤 Steel plate and its manufacturing method

Also Published As

Publication number Publication date
JPH10140235A (en) 1998-05-26

Similar Documents

Publication Publication Date Title
KR101657828B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same
JP4767590B2 (en) Production method of low yield ratio high strength steel and low yield ratio high strength steel
JP7221477B2 (en) Steel material excellent in resistance to hydrogen-induced cracking and method for producing the same
KR101585724B1 (en) A thick plate of pipeline with excellent DWTT at low temperature and YR ratio characteristics, and method of the same
JP2013014812A (en) Steel material for very low temperature use having excellent ctod property after strain application, and method for manufacturing the same
JP4344073B2 (en) High strength steel excellent in high temperature strength and method for producing the same
JP2006241551A (en) Thick steel plate having excellent weldability and low temperature toughness
JPH09143557A (en) Production of thick nickel-containing steel plate excellent in toughness at low temperature and having high strength
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP4362219B2 (en) Steel excellent in high temperature strength and method for producing the same
JPH11256270A (en) High tensile strength steel plate excellent in toughness in base material and large heat input weld heat-affected zone, and its production
JP4517525B2 (en) Manufacturing method of low yield ratio steel for low temperature
JP4261765B2 (en) Low yield ratio high strength steel excellent in weldability and low temperature toughness and method for producing the same
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
KR102349426B1 (en) Steel having excellent low-temperature fracture toughness and method of manufacturing the same
JP7265008B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
JP3802626B2 (en) Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness
JPH10130721A (en) Production of low yield ratio high tensile strength steel excellent in weldability and low temperature toughness
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JP3848415B2 (en) Method for producing low yield ratio high strength steel with excellent weldability and low temperature toughness
JPH1180832A (en) Production of high tensile strength steel with low yield ratio, excellent in weldability and toughness at low temperature
JPH10183241A (en) Production of low yield ratio high tensile strength steel excellent in weldability and low temperature toughness
JP3526740B2 (en) Low yield ratio high strength steel excellent in weldability and low temperature toughness and method for producing the same
KR20210062892A (en) Steel sheet with excellent low temperature toughness and its manufacturing method
JPH083636A (en) Production of low yield ratio high toughness steel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060428

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees