KR20210062892A - Steel sheet with excellent low temperature toughness and its manufacturing method - Google Patents

Steel sheet with excellent low temperature toughness and its manufacturing method Download PDF

Info

Publication number
KR20210062892A
KR20210062892A KR1020190151095A KR20190151095A KR20210062892A KR 20210062892 A KR20210062892 A KR 20210062892A KR 1020190151095 A KR1020190151095 A KR 1020190151095A KR 20190151095 A KR20190151095 A KR 20190151095A KR 20210062892 A KR20210062892 A KR 20210062892A
Authority
KR
South Korea
Prior art keywords
steel sheet
less
toughness
manufacturing
temperature
Prior art date
Application number
KR1020190151095A
Other languages
Korean (ko)
Inventor
이상민
서명규
유용재
이영호
이찬영
최종민
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020190151095A priority Critical patent/KR20210062892A/en
Publication of KR20210062892A publication Critical patent/KR20210062892A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Abstract

The present invention relates to a steel sheet with an excellent low temperature toughness and a manufacturing method thereof. According to a perspective of the present invention, the manufacturing method of the steel sheet with the excellent low temperature toughness comprises: a step of reheating a slab including 0.05-0.08 wt% of carbon (C), 0.15-0.25 wt% of silicone (Si), 1.5-1.7 wt% of manganese (Mn), more than 0 and 0.018 wt% or less of phosphorous (P), more than 0 and 0.003 wt% or less of sulfur (S), 0.01-0.05 wt% of aluminum (Al), 0.045-0.055 wt% of niobium (Nb), 0.035-0.045 wt% of vanadium (V), 0.015-0.025 wt% of titanium (Ti), 0.2-0.3 wt% of chrome (Cr), 0.03-0.10 wt% of molybdenum (Mo), 0.006 wt% or less of nitrogen (N), and remaining iron (Fe) and other inevitable impurities, at a temperature of 1,180-1,250℃; a step of rough-rolling the heated slab at 850-980℃ of RDT; a step of finishing-milling the rough-rolled steel sheet at 760-800℃ of FDT and obtaining a rolled steel sheet; and a step of cooling and winding the rolled steel sheet.

Description

극저온 인성이 우수한 강판 및 그 제조방법{STEEL SHEET WITH EXCELLENT LOW TEMPERATURE TOUGHNESS AND ITS MANUFACTURING METHOD}Steel sheet with excellent cryogenic toughness and manufacturing method thereof {STEEL SHEET WITH EXCELLENT LOW TEMPERATURE TOUGHNESS AND ITS MANUFACTURING METHOD}

본 발명은 강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 극저온 인성이 우수한 고강도 강판 및 그 제조방법에 관한 것이다.The present invention relates to a steel sheet and a method for manufacturing the same, and more particularly, to a high-strength steel sheet having excellent cryogenic toughness and a method for manufacturing the same.

선박, 해양 구조물 등의 구조용 강재나, 이산화탄소, 암모니아, LNG 등의 다종 액화가스를 혼재하는 다목적 탱크용 후강판은 그 사용환경이 매우 가혹하다. 따라서 강도가 매우 중요시되는데, 이러한 해양 구조용 강재나 탱크용 강재는 강도뿐만 아니라 저온에서의 인성이 매우 중요시된다. 해양구조용 강재는 온난지역에서의 자원 고갈로 인해 해상석유가스 자원이 풍부한 북극과 같은 한랭지역으로 그 사용환경이 점차 이동하고 있어 기존의 저온인성이 우수한 고강도 강판만으로는 상기와 같이 가혹해지는 극저온 환경을 견디기가 어려워지고 있다.Structural steels for ships and offshore structures, etc., and thick steel plates for multi-purpose tanks in which various types of liquefied gases such as carbon dioxide, ammonia, and LNG are mixed, have a very harsh usage environment. Therefore, strength is very important, and in these steel materials for marine structures or tanks, not only strength but also toughness at low temperatures are very important. Due to the depletion of resources in warm regions, the use environment for marine structural steel is gradually shifting to cold regions such as the Arctic, where marine oil and gas resources are abundant. is getting difficult

기존에는 0℃에서의 인성만 보증하여도 안전성이 확보되었지만, 신규로 송유관이 설치되는 지역이 극한지역으로 바뀌어감에 따라 0℃ 이하 극저온에서의 인성 보증이 요구되고 있다. 이는 원래 주된 보증사항이던 API(American Petroleum Institute) 규격인, 0℃에서 DWTT(Drop weight tear test) 후 연성파면율 85% 이상인 조건보다 더 가혹한 조건이며, 일반적으로 송유관용 소재의 두께가 두꺼워질수록 인성이 감소하기 때문에 극후물재에서 극저온인성을 보증하는 것은 매우 어려운 기술이다. 송유관의 저온인성은 CVN(Charpy V-notch) 시험보다 파괴 경로가 긴 DWTT로 평가하는 것이 파괴 전파 양상을 나타내는데 적합하다고 알려져 있다.In the past, safety was secured only by guaranteeing toughness at 0°C, but as the area where new oil pipelines are installed is changed to an extreme area, it is required to guarantee toughness at cryogenic temperatures below 0°C. This is a more severe condition than the API (American Petroleum Institute) standard, which was the original main guarantee, of 85% or more of ductile fracture after drop weight tear test (DWTT) at 0°C. In general, the thicker the material for oil pipelines, the more severe it is. Because toughness is reduced, it is a very difficult technology to guarantee cryogenic toughness in ultra-thick materials. It is known that evaluating the low-temperature toughness of oil pipelines with DWTT, which has a longer fracture path than the CVN (Charpy V-notch) test, is suitable for indicating fracture propagation patterns.

일반적으로 강재는 결정립이 미세하거나 침상형 페라이트(acicular ferrite) 조직을 가질 때 우수한 저온인성을 가진다고 알려져 있다. 따라서, 송유관용 열연 강판의 저온 인성을 향상시키는 방법으로, 니오븀(Nb), 몰리브덴(Mo) 등 미세 합금 원소를 첨가하여 결정립을 미세화하고, 침상형 페라이트의 생성을 촉진시키고 있다.In general, it is known that steel has excellent low-temperature toughness when the grains are fine or have an acicular ferrite structure. Therefore, as a method of improving the low-temperature toughness of hot-rolled steel sheets for oil pipelines, fine alloying elements such as niobium (Nb) and molybdenum (Mo) are added to refine crystal grains, and the production of needle-shaped ferrite is promoted.

0℃ 이하의 극저온에서 강의 인성을 확보하기 위해서는 위에 언급한 미세조직 제어가 매우 중요하며, 열연 강판이 후육화될수록 동일 조건으로 생산 시 저온인성 특성이 저하되기 때문에 압연공정의 조건 제어를 엄밀히 하여 미세조직을 제어하는 것이 필요하다. 그러나 니오븀(Nb), 몰리브덴(Mo) 등의 합금원소는 가격이 높은 원소로, 미량 첨가시에도 제품의 가격을 상승시킨다. 최근 원자재 가격이 상승하고 있고 열연강판의 가격은 하락함에 따라 합금철 원가의 상승은 열연강판의 경쟁력을 저하시키기 때문에 재고가 필요한 상황이다.The microstructure control mentioned above is very important to secure the toughness of steel at cryogenic temperatures below 0°C. As the hot-rolled steel sheet thickens, the low-temperature toughness property deteriorates during production under the same conditions. It is necessary to control the organization. However, alloying elements such as niobium (Nb) and molybdenum (Mo) are expensive elements, and even when a small amount is added, the price of the product increases. As raw material prices are rising recently and hot-rolled steel sheet prices are falling, an increase in ferroalloy costs lowers the competitiveness of hot-rolled steel sheets, so inventory is needed.

이에 관련된 기술로는 대한민국 특허공개공보 제22014-0098903호(2014.08.11 공개, 고강도 강판 및 그 제조 방법)가 있다.As a technology related thereto, there is Korean Patent Application Laid-Open No. 22014-0098903 (published on Aug. 11, 2014, high-strength steel sheet and its manufacturing method).

본 발명이 해결하고자 하는 과제는, 고가의 합금원소를 다량 사용하지 않고도 저온인성을 확보할 수 있어 가격 경쟁력을 확보할 수 있는 원가절감형의 고강도 강판 및 그 제조방법을 제공하는 데 있다.The problem to be solved by the present invention is to provide a cost-saving high-strength steel sheet capable of securing price competitiveness by securing low-temperature toughness without using a large amount of expensive alloying elements and a method for manufacturing the same.

본 발명의 일 관점에 따른 고강도 극후물 강판은, 중량%로, 탄소(C): 0.05% ~ 0.08%, 실리콘(Si): 0.15% ~ 0.25%, 망간(Mn): 1.5% ~ 1.7%, 인(P): 0 초과 0.018% 이하, 황(S): 0 초과 0.003% 이하, 알루미늄(Al): 0.01% ~ 0.05%, 니오븀(Nb): 0.045% ~ 0.055%, 바나듐(V): 0.035%~0.045%, 티타늄(Ti): 0.015% ~ 0.025%, 크롬(Cr): 0.2%~0.3%, 몰리브덴(Mo): 0.03%~0.10%, 질소(N): 0.006% 이하를 함유하고, 나머지 철(Fe)과 기타 불가피한 불순물을 포함하고, 두께 20t 이상의 극후물 강판으로서, 항복강도(YP): 485~605MPa, 인장강도(TS): 570~760MPa, 연신율(EL): 25% 이상, 항복비(YR): 0.9 이하의 물성을 가지는 것을 특징으로 한다.High-strength ultra-thick steel sheet according to an aspect of the present invention, by weight, carbon (C): 0.05% to 0.08%, silicon (Si): 0.15% to 0.25%, manganese (Mn): 1.5% to 1.7%, Phosphorus (P): greater than 0 and less than or equal to 0.018%, sulfur (S): greater than zero and less than or equal to 0.003%, aluminum (Al): 0.01% to 0.05%, niobium (Nb): 0.045% to 0.055%, vanadium (V): 0.035 % to 0.045%, titanium (Ti): 0.015% to 0.025%, chromium (Cr): 0.2% to 0.3%, molybdenum (Mo): 0.03% to 0.10%, nitrogen (N): 0.006% or less, It contains the remaining iron (Fe) and other unavoidable impurities, and is an ultra-thick steel sheet with a thickness of 20t or more, yield strength (YP): 485 to 605 MPa, tensile strength (TS): 570 to 760 MPa, elongation (EL): 25% or more, Yield ratio (YR): Characterized in that it has properties of 0.9 or less.

본 발명에 있어서, 상기 강판은 침상형 및 다각형 페라이트 조직을 가지고, -20℃의 극저온에서 실시한 DWTT에서 85% 이상의 값을 나타낸다.In the present invention, the steel sheet has a needle-shaped and polygonal ferrite structure, and exhibits a value of 85% or more in DWTT performed at a cryogenic temperature of -20°C.

본 발명의 다른 관점에 따른 고강도 극후물 강판의 제조방법은, 중량%로, 탄소(C): 0.05% ~ 0.08%, 실리콘(Si): 0.15% ~ 0.25%, 망간(Mn): 1.5% ~ 1.7%, 인(P): 0 초과 0.018% 이하, 황(S): 0 초과 0.003% 이하, 알루미늄(Al): 0.01% ~ 0.05%, 니오븀(Nb): 0.045% ~ 0.055%, 바나듐(V): 0.035%~0.045%, 티타늄(Ti): 0.015% ~ 0.025%, 크롬(Cr): 0.2%~0.3%, 몰리브덴(Mo): 0.03%~0.10%, 질소(N): 0.006% 이하를 함유하고, 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 슬라브를 1,180~1,250℃에서 재가열하는 단계; 가열된 상기 슬라브를 RDT: 850~980℃에서 조압연하는 단계; 상기 조압연된 강판을 FDT: 760~800℃에서 사상압연하여 열연강판을 얻는 단계; 및 상기 열연강판을 냉각 및 권취하는 단계를 포함하는 것을 특징으로 한다.The method of manufacturing a high-strength ultra-thick steel sheet according to another aspect of the present invention is, by weight, carbon (C): 0.05% to 0.08%, silicon (Si): 0.15% to 0.25%, manganese (Mn): 1.5% to 1.7%, phosphorus (P): more than 0 and less than 0.018%, sulfur (S): more than 0 and less than or equal to 0.003%, aluminum (Al): 0.01% to 0.05%, niobium (Nb): 0.045% to 0.055%, vanadium (V) ): 0.035% to 0.045%, titanium (Ti): 0.015% to 0.025%, chromium (Cr): 0.2% to 0.3%, molybdenum (Mo): 0.03% to 0.10%, nitrogen (N): 0.006% or less Reheating the slab containing the remaining iron (Fe) and other unavoidable impurities at 1,180 ~ 1,250 ℃; RDT of the heated slab: rough rolling at 850 ~ 980 ℃; obtaining a hot-rolled steel sheet by finishing rolling the rough-rolled steel sheet at FDT: 760 to 800°C; and cooling and winding the hot-rolled steel sheet.

본 발명에 있어서, 상기 냉각 및 권취하는 단계는에서, 10~20℃/s의 평균 냉각속도로, 권취온도: 450~500℃까지 냉각하는 것이 바람직하다.In the present invention, in the step of cooling and winding, it is preferable to cool to an average cooling rate of 10 to 20 °C/s, and a coiling temperature: 450 to 500 °C.

상기 권취하는 단계 후 상기 강판은, 침상형 및 다각형 페라이트 조직을 가지고, 항복강도(YP): 485~605MPa, 인장강도(TS): 570~760MPa, 연신율(EL): 25% 이상, 항복비(YR): 90% 이하이고, -20℃의 극저온에서 실시한 DWTT에서 85% 이상의 값을 나타낼 수 있다.After the winding step, the steel sheet has a needle-shaped and polygonal ferrite structure, yield strength (YP): 485 to 605 MPa, tensile strength (TS): 570 to 760 MPa, elongation (EL): 25% or more, yield ratio ( YR): 90% or less, and may represent a value of 85% or more in DWTT performed at a cryogenic temperature of -20°C.

본 발명에 따르면, 고가의 금속의 첨가량을 제한하여 원가를 절감하고, 고강도를 유지하면서 -20℃의 극저온에서 우수한 인성을 갖는 고강도 강판을 확보할 수 있다.According to the present invention, a high-strength steel sheet having excellent toughness can be secured at a cryogenic temperature of -20°C while reducing costs by limiting the amount of expensive metal added and maintaining high strength.

도 1 및 도 2는 실시예 및 비교예의 시편들에 대해 -20℃에서 DWTT 후의 연성파면율 및 상온 인장시험 결과를 각각 나타낸 그래프들이다.
도 3 내지 도 5는 실시예 및 비교예의 시편들에 대해 -20℃에서 DWTT 후의 파면을 나타낸 사진들이다.
도 6 내지 도 8은 실시예와 비교예 1, 및 2의 미세조직을 관찰한 현미경 사진들이다.
1 and 2 are graphs showing the ductile fracture factor and room temperature tensile test results after DWTT at -20°C for specimens of Examples and Comparative Examples, respectively.
3 to 5 are photographs showing the fracture surface after DWTT at -20 ℃ for the specimens of Examples and Comparative Examples.
6 to 8 are microscopic photographs of observing the microstructures of Examples and Comparative Examples 1 and 2.

이하, 첨부한 도면을 참고하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명을 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 본 명세서에서 설명하는 실시예들에 한정되지 않는다. 본 명세서 전체를 통하여 동일 또는 유사한 구성 요소에 대해서는 동일한 도면 부호를 붙였다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings so that those of ordinary skill in the art to which the present invention pertains can easily practice it. The present invention may be embodied in several different forms, and is not limited to the embodiments described herein. The same reference numerals are assigned to the same or similar components throughout this specification. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the gist of the present invention will be omitted.

종래의 송유관용 열연강판의 경우 Nb, Mo 등의 합금 원소를 첨가하여 결정립 미세화와 침상형 페라이트 생성 촉진을 통해 0℃ 이하 극저온인성을 확보하고 있다. 그러나 합금 첨가량이 니오븀(Nb)의 경우 0.075중량% 이하, 몰리브덴(Mo)의 경우 0.25중량% 이하 등으로 높아, 합금철의 원가가 높은 상황이다. 최근 원자재값이 급격히 상승하고 열연강판의 가격은 하락하고 있는 추세에서 고원가의 열연강판은 경쟁력이 떨어지고 있는 현실이다. 본 발명에서는 니오븀(Nb)의 첨가량은 0.045% ~ 0.055%로 고정하고, 몰리브덴(Mo)의 첨가량을 0.10중량% 이하로 줄여 -20℃의 극저온에서도 인성을 확보할 수 있는 저원가 신규 성분계를 제시한다. 또한, 본 발명은 신규 성분계에서 극저온 인성을 확보하기 위해서는 미세조직의 제어가 필수적이므로 최적화된 열간압연 조건을 제시한다. 즉, 본 발명은 고가의 금속의 첨가량을 제한하여 원가를 절감하고, 고강도를 유지하면서 -20℃의 극저온에서 우수한 인성을 갖는 후물 강판 및 그 제조방법을 제시한다.In the case of conventional hot-rolled steel sheets for oil pipelines, alloying elements such as Nb and Mo are added to secure the cryogenic toughness below 0°C by refining grains and promoting the formation of needle-shaped ferrite. However, in the case of niobium (Nb), 0.075% by weight or less, and in the case of molybdenum (Mo), the alloy is high, such as 0.25% by weight or less, so the cost of ferroalloy is high. In recent years, with raw material prices rising rapidly and the price of hot-rolled steel sheets falling, the competitiveness of high-priced hot-rolled steel sheets is declining. In the present invention, the addition amount of niobium (Nb) is fixed at 0.045% to 0.055%, and the addition amount of molybdenum (Mo) is reduced to 0.10% by weight or less, thereby providing a low-cost novel component system that can secure toughness even at a cryogenic temperature of -20°C. . In addition, the present invention proposes an optimized hot rolling condition because it is essential to control the microstructure in order to secure the cryogenic toughness in the novel component system. That is, the present invention provides a thick steel sheet having excellent toughness at a cryogenic temperature of -20°C and a method for manufacturing the same while reducing the cost by limiting the amount of expensive metal added and maintaining high strength.

극저온 인성이 우수한 고강도 강판High-strength steel sheet with excellent cryogenic toughness

본 발명의 일 측면에 따른 극저온 인성이 우수한 고강도 강판은, 중량%로, 탄소(C): 0.05% ~ 0.08%, 실리콘(Si): 0.15% ~ 0.25%, 망간(Mn): 1.5% ~ 1.7%, 인(P): 0 초과 0.018% 이하, 황(S): 0 초과 0.003% 이하, 알루미늄(Al): 0.01% ~ 0.05%, 니오븀(Nb): 0.045% ~ 0.055%, 바나듐(V): 0.035%~0.045%, 티타늄(Ti): 0.015% ~ 0.025%, 크롬(Cr): 0.2%~0.3%, 몰리브덴(Mo): 0.03%~0.10%, 질소(N): 0.006% 이하를 포함한다.High-strength steel sheet excellent in cryogenic toughness according to an aspect of the present invention, by weight, carbon (C): 0.05% to 0.08%, silicon (Si): 0.15% to 0.25%, manganese (Mn): 1.5% to 1.7 %, phosphorus (P): more than 0 and less than 0.018%, sulfur (S): more than 0 and less than or equal to 0.003%, aluminum (Al): 0.01% to 0.05%, niobium (Nb): 0.045% to 0.055%, vanadium (V) : 0.035% to 0.045%, titanium (Ti): 0.015% to 0.025%, chromium (Cr): 0.2% to 0.3%, molybdenum (Mo): 0.03% to 0.10%, nitrogen (N): 0.006% or less do.

상기 성분들 외 나머지는 철(Fe)과 제강 공정 등에서 불가피하게 함유되는 불순물로 이루어진다.The rest other than the above components consists of iron (Fe) and impurities inevitably contained in the steelmaking process.

이하, 본 발명에 따른 고강도 강판에 포함되는 각 성분의 역할 및 그 함량에 대하여 설명하면 다음과 같다.Hereinafter, the role and content of each component included in the high-strength steel sheet according to the present invention will be described as follows.

탄소(C): 0.05~0.08중량%Carbon (C): 0.05 to 0.08 wt%

탄소(C)는 강재의 강도를 확보하는데 가장 경제적이며 효과적인 합금성분이다. 본 발명에서는 탄소(C)의 함량을 0.05 ~ 0.08중량%로 제어하여 펄라이트 생성을 억제하고 침상 페라이트를 생성시켜 저온인성을 확보하고자 하였다. 탄소(C)가 0.05중량% 이하로 첨가되는 경우 인성 측면에서는 좋을 수 있으나, Nb, V 또는 Ti와 결합하여 강재를 강화시키는 효과가 매우 적으므로 강도의 확보를 위하여 0.05중량% 이상 첨가할 필요가 있다. 반면, 탄소(C)의 함량이 0.08중량%를 초과하면 DWTT 인성을 저하시키는 중심 편석이 증대되는 문제가 있다. Carbon (C) is the most economical and effective alloying component to secure the strength of steel. In the present invention, by controlling the content of carbon (C) to 0.05 ~ 0.08% by weight to suppress the pearlite generation and to generate needle-shaped ferrite to secure low-temperature toughness. When carbon (C) is added in an amount of 0.05% by weight or less, it may be good in terms of toughness, but since the effect of strengthening the steel by combining with Nb, V or Ti is very small, it is necessary to add more than 0.05% by weight to secure strength have. On the other hand, when the content of carbon (C) exceeds 0.08% by weight, there is a problem in that the center segregation that reduces the DWTT toughness increases.

실리콘(Si): 0.15~0.25중량%Silicon (Si): 0.15 to 0.25 wt%

실리콘(Si)은 페라이트 안정화 원소로서, 페라이트 변태시 과냉도를 증가시켜 결정립을 미세하게 하고 탄화물 형성을 억제한다. 그러나 첨가량이 증가하게 되면 용접성 저하, 도금품질 저하 및 표면품질 문제를 일으킬 수 있다. 반면 1.2중량% 이상의 망간(Mn)이 첨가되는 강의 경우, 강관 제조를 위한 ERW 용접시 Mn/Si 비가 5~10 범위에 들어야 한다. 이는 용접시 발생하는 Mn-Si-O 산화물(Mn2SiO4 또는 MnSiO3)이 그 영역에서 형성되며 이들의 용융온도가 가장 낮기 때문이며 이로 인해 용접시 산화물 배출을 용이하게 한다. 상기 효과를 얻기 위해서는 실리콘(Si)을 0.15중량% 이상 첨가하는 것이 바람직하다. 그러나, 실리콘(Si)의 함량이 0.25중량%를 초과하는 경우, 강판 표면에 산화물을 다량 형성하여 강판의 도금특성을 저해하고 용접성을 저하시키는 문제가 있다.Silicon (Si) as a ferrite stabilizing element increases the degree of supercooling during ferrite transformation to make crystal grains finer and suppress carbide formation. However, if the amount of addition is increased, it may cause deterioration of weldability, deterioration of plating quality, and problems of surface quality. On the other hand, in the case of steel to which 1.2 wt% or more of manganese (Mn) is added, the Mn/Si ratio should be in the range of 5 to 10 during ERW welding for steel pipe production. This is because Mn-Si-O oxides (Mn2SiO4 or MnSiO3) generated during welding are formed in that region and have the lowest melting temperature, which facilitates the discharge of oxides during welding. In order to obtain the above effect, it is preferable to add 0.15 wt% or more of silicon (Si). However, when the content of silicon (Si) exceeds 0.25% by weight, there is a problem in that a large amount of oxide is formed on the surface of the steel sheet, thereby impairing the plating characteristics of the steel sheet and reducing weldability.

망간(Mn): 1.5~1.7중량% Manganese (Mn): 1.5 to 1.7 wt%

망간(Mn)은 오스테나이트 안정화 원소로서 고용강화에 매우 효과적이고 강의 경화능 증가에 큰 영향을 미친다. 망간(Mn)의 함량에 따라 강의 강도와 인성 및 항복비를 제어할 수 있으나, 다량 첨가시 MnS 개재물 형성 및 주조시 중심편석을 유발하여 강의 인성을 떨어뜨리게 된다. 이상의 효과를 고려할 때 적정 망간(Mn) 함량은 1.5 ~ 1.7중량%이다. Manganese (Mn) as an austenite stabilizing element is very effective in solid solution strengthening and has a great influence on the increase in hardenability of steel. The strength, toughness, and yield ratio of steel can be controlled according to the content of manganese (Mn), but when a large amount is added, MnS inclusions are formed and center segregation occurs during casting, thereby reducing the toughness of the steel. Considering the above effects, the appropriate manganese (Mn) content is 1.5 to 1.7 wt%.

인(P): 0 초과 0.018중량% 이하Phosphorus (P): greater than 0 0.018% by weight or less

인(P)은 용접성이 악화되고 슬라브 중심 편석에 의해 내부식성을 저하시키는 문제가 있다. 또한 오스테나이트 결정립계에 편석하여 인성을 열화시키므로 0.018중량% 이하로 함량을 제한하는 것이 바람직하다.Phosphorus (P) has a problem in that weldability is deteriorated and corrosion resistance is lowered by segregation of the center of the slab. In addition, since segregation at the austenite grain boundary deteriorates toughness, it is preferable to limit the content to 0.018% by weight or less.

황(S): 0 초과 0.003중량% 이하Sulfur (S): greater than 0 0.003% by weight or less

(S)은 강 중에서 Mn과 반응하여 MnS를 형성함으로써 취성을 크게 저하시키는 성분으로서, 0.003중량%를 초과하는 경우 저온 DWTT 저항성을 크게 감소시킨다. 따라서, 상기 S의 함량은 0.003중량% 이하로 제어하는 것이 바람직하다.(S) is a component that greatly reduces brittleness by reacting with Mn in steel to form MnS, and when it exceeds 0.003% by weight, it greatly reduces low-temperature DWTT resistance. Therefore, the content of S is preferably controlled to 0.003% by weight or less.

알루미늄(Al): 0.01~0.05중량%Aluminum (Al): 0.01 to 0.05 wt%

알루미늄(Al)은 실리콘(Si)과 함께 탈산작용을 하는 성분으로서, 0.01 ~ 0.05중량%의 함량으로 첨가되는 것이 바람직하다. 알루미늄(Al)의 함량이 0.01중량% 미만일 경우 충분한 탈산 효과를 얻을 수 없다. 반대로, 알루미늄(Al)의 함량이 0.05중량%를 초과하면 용접성을 저해하는 문제점이 있다.Aluminum (Al) is a component that deoxidizes together with silicon (Si), and is preferably added in an amount of 0.01 to 0.05 wt%. When the content of aluminum (Al) is less than 0.01% by weight, sufficient deoxidation effect cannot be obtained. Conversely, when the content of aluminum (Al) exceeds 0.05 wt %, there is a problem of inhibiting weldability.

니오븀(Nb): 0.045~0.055중량%, Niobium (Nb): 0.045 to 0.055 wt%,

니오븀(Nb)은 열간 압연시 재결정을 지연시켜 결정립 미세화를 도모할 수 있다. 열간 압연 중 고용 니오븀(Nb)은 재결정의 핵생성 및 성장을 지연시키는 것으로 알려져 있으며, 이러한 재결정 지연은 전위 등의 결함 자리를 소모하지 않기 때문에 상변태시 핵생성을 촉진하여 결정립을 미세하게 한다. 또한 변형 유기 석출된 탄화물은 상변태시 페라이트의 핵생성 자리 역할을 하므로 상변태를 촉진하여 결정립을 미세화 할 수 있다. 종래에는 0.075중량% 이하까지 Nb를 첨가하였으나, 본 발명에서는 원가를 절감하면서도 동시에 결정립 미세화 효과는 유지하기 위해 니오븀(Nb)의 함량을 0.045 ~ 0.055중량%로 제한하였다.Niobium (Nb) can promote grain refinement by delaying recrystallization during hot rolling. Solid solution niobium (Nb) during hot rolling is known to delay nucleation and growth of recrystallization, and since such recrystallization delay does not consume defect sites such as dislocations, it promotes nucleation during phase transformation to make grains finer. In addition, since the deformed organic precipitated carbide serves as a nucleation site for ferrite during phase transformation, it can promote phase transformation and refine crystal grains. Conventionally, Nb was added up to 0.075% by weight or less, but in the present invention, the content of niobium (Nb) was limited to 0.045 to 0.055% by weight in order to reduce the cost and maintain the effect of refining the grains at the same time.

바나듐(V): 0.035~0.045중량%Vanadium (V): 0.035 to 0.045 wt%

바나듐(V)은 니오븀(Nb)과 마찬가지로 소량 첨가에 의해 석출강화효과를 나타내는 성분으로서, 본 발명의 탄소(C) 범위에서는 0.035중량% 초과시 다량의 석출물에 의한 저온 인성 및 용접성 저하를 가져올 수 있으므로 바나듐(V)의 함량을 0.035 ~ 0.045중량% 제어것이 바람직하다.Vanadium (V) is a component that exhibits a precipitation strengthening effect by adding a small amount like niobium (Nb). In the carbon (C) range of the present invention, when it exceeds 0.035 wt %, low-temperature toughness and weldability may be reduced due to a large amount of precipitates. It is preferable to control the content of vanadium (V) from 0.035 to 0.045% by weight.

티타늄(Ti): 0.015~0.025중량%Titanium (Ti): 0.015 to 0.025 wt%

티타늄(Ti)은 고온안정성이 높은 Ti(C,N) 석출물을 생성시킴으로써 용접 시 오스테나이트 결정립 성장을 방해하여 용접부 조직을 미세화 시킴으로써 열연 제품의 인성 및 강도를 향상시키는 효과를 가지고 있다. 그러나 다량 첨가 시에는 고온에서 형성된 조대한 TiN 석출물을 생성시킴으로써 강의 내부식성을 저하시킬 수 있으므로 상기 티타늄(Ti)의 함량은 고용 질소를 충분히 제거 가능한 0.015 ~ 0.025중량%로 제한한다.Titanium (Ti) has the effect of improving the toughness and strength of hot-rolled products by producing Ti(C,N) precipitates with high high-temperature stability, thereby preventing austenite grain growth during welding and refining the weld structure. However, when a large amount is added, the corrosion resistance of steel can be reduced by generating coarse TiN precipitates formed at high temperature, so the content of titanium (Ti) is limited to 0.015 to 0.025 wt%, which can sufficiently remove dissolved nitrogen.

크롬(Cr): 0.2~0.3중량%Chromium (Cr): 0.2 to 0.3 wt%

크롬(Cr)은 망간(Mn)과 마찬가지로 평형온도를 저하시키므로 강의 강도와 항복비에 영향을 줄 수 있다. 크롬(Cr)은 다량 첨가시 탄소(C)와 결합하여 조대한 탄화물을 형성할 수 있으며 이는 강도를 미약하게 상승시키나, 인성에는 취약하므로 다량 첨가는 지양하여야 한다. 따라서 강의 상변태, 고용강화 및 미세한 석출물 생성 효과를 얻기 위해 본 발명에서는 크롬(Cr) 함량을 0.2~0.3중량%로 제한하였다.Chromium (Cr), like manganese (Mn), lowers the equilibrium temperature, so it can affect the strength and yield ratio of steel. When a large amount of chromium (Cr) is added, it may combine with carbon (C) to form coarse carbide, which slightly increases strength, but is weak in toughness, so adding a large amount should be avoided. Therefore, in order to obtain the effect of phase transformation of steel, solid solution strengthening and fine precipitate formation, the chromium (Cr) content is limited to 0.2 to 0.3 wt% in the present invention.

몰리브덴(Mo): 0.03~0.10중량%Molybdenum (Mo): 0.03 to 0.10 wt%

몰리브덴(Mo)은 망간(Mn)과 마찬가지로 평형온도를 저하시키므로 강의 강도와 항복비에 영향을 줄 수 있다. 또한 몰리브덴(Mo)은 탄화물로 석출하지 않을 경우 경화능을 향상시키기 때문에 강의 상변태시 페라이트 변태 이후의 2차상을 적절히 제어할 수 있다. 펄라이트 생성 억제와 침상형 페라이트 생성 촉진을 위해 종래에는 0.15~0.25중량%로 다량 첨가하였으나, 본 발명에서는 원가를 절감하면서도 미세조직 제어가 가능한 함량을 실험을 통해 구하여 몰리브덴(Mo)의 함량을 0.03~0.10중량%로 제한하였다.Molybdenum (Mo), like manganese (Mn), lowers the equilibrium temperature, so it can affect the strength and yield ratio of steel. In addition, since molybdenum (Mo) improves hardenability when not precipitated as carbide, it is possible to appropriately control the secondary phase after ferrite transformation during phase transformation of steel. In order to suppress pearlite production and promote needle-shaped ferrite production, it was conventionally added in a large amount at 0.15 to 0.25 wt%, but in the present invention, the content of molybdenum (Mo) was obtained through an experiment to reduce the cost and control the microstructure, and the content of molybdenum (Mo) was 0.03~ It was limited to 0.10% by weight.

질소(N): 0 초과 0.0006중량% 이하Nitrogen (N): greater than 0 0.0006% by weight or less

질소(N)는 Nb, Ti, V 등과 결합하여 탄질화물을 형성함으로써 결정립을 미세화하지만 다량 첨가 시 고용 질소가 증가하여 강의 충격특성 및 연신율을 떨어뜨리고 용접부 인성을 크게 저해하기 때문에, 그 상한치를 0.006중량% 이하로 제한하는 것이 바람직하다.Nitrogen (N) combines with Nb, Ti, V, etc. to form carbonitrides to refine crystal grains, but when added in a large amount, dissolved nitrogen increases, lowering the impact properties and elongation of steel, and greatly impairing weld toughness, so its upper limit is 0.006 It is preferable to limit it to weight % or less.

본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배재할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 언급하지는 않는다.The remaining component of the present invention is iron (Fe). However, since unintended impurities from raw materials or the surrounding environment may inevitably be mixed in the normal manufacturing process, they cannot be excluded. Since these impurities are known to anyone skilled in the ordinary manufacturing process, all details are not specifically mentioned.

본 발명에 따른 강판은, 두께 20t 이상의 극후물 강판으로서, 침상형 및 다각형 페라이트 조직을 가지고, 항복강도(YP): 485~605MPa, 인장강도(TS): 570~760MPa, 연신율(EL): 25% 이상, 항복비(YR): 90% 이하의 물성을 가지며, -20℃의 극저온에서 실시한 DWTT에서 85% 이상의 값을 나타내는 극저온 인성이 우수한 고강도 강판이다.The steel sheet according to the present invention is an ultra-thick steel sheet having a thickness of 20t or more, having a needle-shaped and polygonal ferrite structure, yield strength (YP): 485 to 605 MPa, tensile strength (TS): 570 to 760 MPa, elongation (EL): 25 % or more, yield ratio (YR): It has physical properties of 90% or less, and exhibits a value of 85% or more in DWTT performed at a cryogenic temperature of -20°C, and is a high strength steel sheet excellent in cryogenic toughness.

상기한 본 발명의 극저온 인성이 우수한 고강도 강판은 하기의 제조과정으로 제조될 수 있다. 이하, 본 발명의 바람직한 다른 측면에 따른 극저온 인성이 우수한 고강도 강판의 제조방법에 대하여 설명한다.The high-strength steel sheet excellent in cryogenic toughness of the present invention may be manufactured by the following manufacturing process. Hereinafter, a method for manufacturing a high-strength steel sheet having excellent cryogenic toughness according to another preferred aspect of the present invention will be described.

본 발명의 바람직한 다른 측면에 따른 DWTT 연성파면율이 우수한 고강도 강재의 제조방법은 중량%로, 탄소(C): 0.05% ~ 0.08%, 실리콘(Si): 0.15% ~ 0.25%, 망간(Mn): 1.5% ~ 1.7%, 인(P): 0 초과 0.018% 이하, 황(S): 0 초과 0.003% 이하, 알루미늄(Al): 0.01% ~ 0.05%, 니오븀(Nb): 0.045% ~ 0.055%, 바나듐(V): 0.035%~0.045%, 티타늄(Ti): 0.015% ~ 0.025%, 크롬(Cr): 0.2%~0.3%, 몰리브덴(Mo): 0.03%~0.10%, 질소(N): 0.006% 이하를 함유하고, 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 슬라브를 재가열하는 단계, 가열된 슬라브를 열간압연하여 열연강판을 얻는 단계, 상기 열연강판을 냉각 및 권취하는 단계를 포함한다.According to another preferred aspect of the present invention, the manufacturing method of high-strength steel having excellent DWTT ductile fracture ratio is by weight, carbon (C): 0.05% to 0.08%, silicon (Si): 0.15% to 0.25%, manganese (Mn) : 1.5% to 1.7%, phosphorus (P): more than 0 and less than 0.018%, sulfur (S): more than 0 and less than 0.003%, aluminum (Al): 0.01% to 0.05%, niobium (Nb): 0.045% to 0.055% , Vanadium (V): 0.035% to 0.045%, Titanium (Ti): 0.015% to 0.025%, Chromium (Cr): 0.2% to 0.3%, Molybdenum (Mo): 0.03% to 0.10%, Nitrogen (N): Reheating the slab containing 0.006% or less and containing the remaining iron (Fe) and other unavoidable impurities, hot rolling the heated slab to obtain a hot-rolled steel sheet, and cooling and winding the hot-rolled steel sheet. .

슬라브 재가열 단계Slab reheating stage

상기와 같이 조성되는 강 슬라브를 1,180~1,250℃에서 2시간 이상 가열한다. 상기 가열온도는 Nb계 석출물의 고용온도에 의해 결정되며, 본 발명의 성분범위에서는 1,180℃ 이상에서 Nb 전체 고용이 가능하다. 재가열 온도가 1,180℃ 미만이면 니오븀 탄화물의 고용이 충분하지 않으며, 주조시 편석된 성분들이 충분히 고르게 분포되지 않는 문제점이 있다. 재가열 온도가 1,250℃ 이상이면 매우 조대한 오스테나이트 결정립이 형성되어 강도 확보가 어렵게 된다. 또한 재가열 온도가 올라갈수록 가열 비용 및 압연 온도를 맞추기 위한 추기 시간 소요 등으로 제조 비용 상승 및 생산성 저하를 야기하므로 바람직하지 않다. The steel slab composed as described above is heated at 1,180 to 1,250° C. for 2 hours or more. The heating temperature is determined by the solid solution temperature of the Nb-based precipitate, and the total solid solution of Nb is possible at 1,180° C. or higher in the component range of the present invention. If the reheating temperature is less than 1,180° C., there is a problem in that the solid solution of niobium carbide is not sufficient, and the components segregated during casting are not sufficiently evenly distributed. If the reheating temperature is 1,250° C. or higher, very coarse austenite grains are formed, making it difficult to secure strength. In addition, as the reheating temperature increases, it is not preferable because it causes an increase in manufacturing cost and a decrease in productivity due to additional extraction time required to match the heating cost and the rolling temperature.

열간압연 단계hot rolling step

상기와 같이 가열된 슬라브에 대해 열간압연을 실시하여 열연강판을 얻는다. 상기 열간압연은 조압연과 사상압연으로 진행될 수 있다.A hot-rolled steel sheet is obtained by performing hot rolling on the heated slab as described above. The hot rolling may be performed by rough rolling and finishing rolling.

조압연의 온도는 결정립 미세화를 위해 제어가 필요하다. 니오븀(Nb) 등 미세 탄화물 형성 원소 외에 몰리브덴(Mo)이 첨가될 경우 압연 중 재결정이 지연되어 결정립을 미세화할 수 있다. 재결정이 정지되는 온도를 Tnr이라 하는데, 이 온도 이하에서 압연이 이루어져야 결정립 미세화 효과가 있게 된다. 오스테나이트 결정립을 미세화하면 페라이트의 핵생성 속도를 증가시켜 최종 미세조직의 미세화를 가져오게 되므로 저온인성이 향상된다. 미재결정역에서 80% 이상의 압하율을 가질 때 위의 효과가 커지므로 조압연 종료 온도(RDT, Rough mill Delivery Temperature)를 통해 이를 제어하여야 한다. 따라서 본 발명 성분계의 적정 RDT는 850 ~ 890℃가 적절하다.The temperature of rough rolling needs to be controlled for grain refinement. When molybdenum (Mo) is added in addition to the fine carbide forming elements such as niobium (Nb), recrystallization during rolling is delayed, so that the grains can be refined. The temperature at which recrystallization is stopped is called Tnr, and rolling must be performed below this temperature to have the effect of grain refinement. Refining the austenite grains increases the nucleation rate of ferrite, which leads to the refinement of the final microstructure, thereby improving low-temperature toughness. Since the above effect increases when the rolling reduction ratio is greater than 80% in the non-recrystallized region, it must be controlled through the Rough Mill Delivery Temperature (RDT). Therefore, the proper RDT of the component system of the present invention is 850 ~ 890 ℃.

침상형 페라이트를 얻기 위해서는 적정한 온도에서 사상 압연을 종료한다. 마무리압연온도(Finishing Delivery Temperature; FDT)가 760℃ 미만이면 미세한 오스테나이트 결정립을 확보할 수 있지만, 냉각중 빠른 상변태가 발생하여 베이나이트와 같은 저온 변태상이 형성되고 이로 인해 강의 인성이 저하될 수 있다. 또한 FDT 온도가 너무 낮으면 열연 코일의 전장 재질의 편차를 야기할 수 있다. FDT가 800℃ 이상으로 너무 높으면 오스테나이트 결정립이 조대화되어 강도 확보가 어려울 수 있으며, 냉각 중 느린 상변태로 인해 다각형 페라이트가 형성되어 인성이 저하될 수 있다.In order to obtain acicular ferrite, finishing rolling is completed at an appropriate temperature. If the Finishing Delivery Temperature (FDT) is less than 760°C, fine austenite grains can be secured, but rapid phase transformation occurs during cooling to form a low-temperature transformation phase such as bainite, which may reduce the toughness of the steel. . In addition, if the FDT temperature is too low, it may cause deviation of the electric field material of the hot rolled coil. If the FDT is too high (over 800°C), the austenite grains become coarse and it may be difficult to secure strength, and polygonal ferrite is formed due to slow phase transformation during cooling, which may reduce toughness.

냉각 및 권취 단계Cooling and winding stage

상기 열연공정을 통해 얻어진 열연강판을 냉각 및 권취한다. The hot-rolled steel sheet obtained through the hot-rolling process is cooled and wound.

강의 인성 확보를 위해서는 미세한 침상형 페라이트를 얻고 펄라이트 생성을 억제하여야 하므로, 냉각 공정의 제어가 중요하다. 연속냉각곡선을 통해 다각형 페라이트/ 펄라이트가 생성될 수 있는 냉각속도는 15℃/s 이하이다. 다각형 페라이트/ 펄라이트 생성을 억제하고 권취중 상변태를 집중적으로 발생시켜야 하므로, 압연 후 냉각은 가능한 빠를수록 좋으나, 너무 빠른 경우에는 베이나이트가 다량 생성될 수 있기 때문에, 냉각속도는 10 ~ 20℃/s가 적절하다. 따라서 권취 온도는 550 ~ 590℃가 적절하다.In order to secure the toughness of steel, it is necessary to obtain fine needle-shaped ferrite and suppress the formation of pearlite, so control of the cooling process is important. The cooling rate at which polygonal ferrite/perlite can be produced through the continuous cooling curve is 15°C/s or less. Since the formation of polygonal ferrite/pearlite should be suppressed and phase transformation should occur intensively during winding, the faster cooling after rolling is better, but if it is too fast, a large amount of bainite may be generated, so the cooling rate is 10 ~ 20℃/s is appropriate Therefore, the coiling temperature is appropriate 550 ~ 590 ℃.

본 발명의 바람직한 다른 측면에 따르는 극저온 인성이 우수한 고강도 후물 강판의 제조방법에 의하면, 두께 20t 이상의 극후물 강판으로서, 침상형 및 다각형 페라이트 조직을 가지고, 항복강도(YP): 485~605MPa, 인장강도(TS): 570~760MPa, 연신율(EL): 25% 이상, 항복비(YR): 90% 이하의 물성을 가지며, -20℃의 극저온에서 실시한 DWTT에서 85% 이상의 값을 나타내는 극저온 인성이 우수한 고강도 강판의 제조방법을 제공한다.According to the method for manufacturing a high-strength thick steel sheet having excellent cryogenic toughness according to another preferred aspect of the present invention, an ultra-thick steel sheet having a thickness of 20t or more, having needle-shaped and polygonal ferrite structures, yield strength (YP): 485 to 605 MPa, tensile strength (TS): 570 to 760 MPa, elongation (EL): 25% or more, yield ratio (YR): 90% or less A method for manufacturing a high-strength steel sheet is provided.

이하, 실시예를 통해 본 발명을 보다 상세하게 설명한다. 다만, 하기 실시예는 본 발명을 보다 상세히 설명하기 위한 예시일 뿐, 본 발명의 권리범위를 한정하지 않는다.Hereinafter, the present invention will be described in more detail through examples. However, the following examples are only examples for explaining the present invention in more detail, and do not limit the scope of the present invention.

실시예Example

하기 표 1과 같은 합금 조성을 갖는 슬라브를, 하기 표 2의 제조 조건을 통해 열연강판을 제조하였다. 그리고, 이와 같이 제조된 강판에 대하여 항복강도(YP), 인장강도(TS), 연신율(EL), 항복비(YR), 저온 DWTT 물성을 각각 측정 및 평가하고, 그 결과를 하기 표 2, 도 1 및 도 2에 함께 나타내었다. A slab having an alloy composition as shown in Table 1 below, a hot-rolled steel sheet was manufactured through the manufacturing conditions of Table 2 below. In addition, the yield strength (YP), tensile strength (TS), elongation (EL), yield ratio (YR), and low-temperature DWTT physical properties were measured and evaluated for the steel sheet prepared in this way, and the results are shown in Table 2, FIG. 1 and 2 are shown together.

항복강도는 상온인장시험을 통해 측정하였으며, 저온 DWTT 물성은 액체질소를 이용하여 온도를 낮추면서, DWTT 시험기를 이용하여 -20℃에서 시편을 파단시킨 후 연성 파면율을 측정하고, 단면 사진을 도 3 내지 도 5에 나타내었다.Yield strength was measured through a room temperature tensile test, and the low-temperature DWTT physical properties were measured using a DWTT tester at -20°C to break the specimen while lowering the temperature using liquid nitrogen, then the ductile fracture factor was measured, and a cross-sectional photograph was shown. 3 to 5 are shown.

또한, 실시예와 비교예 1, 및 2의 미세조직을 관찰한 현미경 사진들을 도 6 내지 도 8에 나타내었다.In addition, micrographs of the microstructures of Examples and Comparative Examples 1 and 2 were shown in FIGS. 6 to 8 .

구분division 성분(중량%)Ingredients (wt%) CC SiSi MnMn PP SS AlAl NbNb VV TiTi CrCr MoMo NN 실시예Example 0.0670.067 0.180.18 1.551.55 0.00850.0085 0.00130.0013 0.0340.034 0.0550.055 0.0380.038 0.0190.019 0.2300.230 0.040.04 0.00470.0047 비교예1Comparative Example 1 0.0600.060 0.170.17 1.571.57 0.00500.0050 0.00110.0011 0.0340.034 0.0700.070 0.0380.038 0.0200.020 0.0300.030 0.060.06 0.00450.0045 비교예2Comparative Example 2 0.0660.066 0.210.21 1.601.60 0.00540.0054 0.00120.0012 0.0370.037 0.0710.071 0.0410.041 0.0170.017 0.0170.017 0.190.19 0.00400.0040

구분division 사이즈size 열간압연조건(℃)Hot rolling condition (℃) 물성Properties 두께(nm)Thickness (nm) FDTFDT CTCT YPYP TSts ELEL YRYR DWTT(-20℃)DWTT(-20℃) 실시예Example 17.817.8 780780 570570 519519 613613 4444 0.850.85 100%100% 비교예1Comparative Example 1 17.817.8 780780 570570 531531 620620 4343 0.860.86 95%95% 비교예2Comparative Example 2 19.119.1 780780 570570 550550 660660 4040 0.830.83 95%95%

표 1을 참고하면, 비교예1은 니오븀(Nb) 함량의 영향을 알아보기 위하여 실시예와 다르게 하였고, 비교예1과 비교예2를 통해 몰리브덴(Mo) 함량의 영향을 알아보았다. 비교예2의 경우 종래의 기술로 생산된 강종과 유사한 조건이며, 다량의 니오븀(Nb)과 몰리브덴(Mo)을 첨가하였다.Referring to Table 1, Comparative Example 1 was different from the Example in order to examine the effect of the niobium (Nb) content, and the effect of the molybdenum (Mo) content was investigated through Comparative Example 1 and Comparative Example 2. In the case of Comparative Example 2, the conditions were similar to those of steels produced by the prior art, and a large amount of niobium (Nb) and molybdenum (Mo) were added.

표 2, 도 1 및 도 2를 참조하면, 비교예2의 경우, 다량의 니오븀(Nb)과 몰리브덴(Mo)을 첨가하여 결정립 미세화가 충분히 이루어졌고 침상형 페라이트도 대다수 확보되어 고강도를 가지며 우수한 극저온인성을 나타내었다. 비교예1의 경우 비교예2에 비해 몰리브덴(Mo)의 함량을 1/3로 줄여, 동일한 열간압연 조건으로 생산되었다. YS/TS 가 비교예2에 비해 일부 감소하였으나, 목표하였던 규격 내 강도는 확보되었으며(API-X70 규격; 항복강도: 485~635 MPa, 인장강도 570 MPa 이상), -20℃에서 DWTT 후 연성파면율 95%로 우수하였다.Referring to Table 2, FIGS. 1 and 2 , in Comparative Example 2, crystal grain refinement was sufficiently achieved by adding a large amount of niobium (Nb) and molybdenum (Mo), and the majority of needle-shaped ferrite was secured to have high strength and excellent cryogenic temperature showed patience. In the case of Comparative Example 1, the content of molybdenum (Mo) was reduced by 1/3 compared to Comparative Example 2, and it was produced under the same hot rolling conditions. Although YS/TS was partially decreased compared to Comparative Example 2, the strength within the target specification was secured (API-X70 specification; yield strength: 485-635 MPa, tensile strength 570 MPa or more), and the ductile fracture surface after DWTT at -20℃ It was excellent at a rate of 95%.

실시예의 경우는 비교예1에 비해 니오븀(Nb)의 함량을 0.02중량% 더 저감하고, 몰리브덴(Mo)의 함량 또한 0.15중량% 저감하여 동일한 열간압연 조건으로 생산되었다. 줄어든 Nb/Mo 함량으로 인해 YS/TS가 비교예1에 비해 일부 감소하였고, 또한 비교예들에 비해 결정립 크기가 다소 크게 측정되었다. 그러나 강도는 목표 규격을 만족하였다.In the case of Example, the content of niobium (Nb) was further reduced by 0.02% by weight compared to Comparative Example 1, and the content of molybdenum (Mo) was also reduced by 0.15% by weight, so that it was produced under the same hot rolling conditions. Due to the reduced Nb/Mo content, the YS/TS was partially reduced compared to Comparative Example 1, and the grain size was slightly larger than that of Comparative Example. However, the strength met the target specification.

니오븀(Nb) 및 몰리브덴(Mo)의 함량을 다르게 하여 제작한 실시예 및 비교예 1, 2의 시편에 대해 -20℃에서 DWTT 후 실제 파면 모습을 관찰한 도 3 내지 도5의 사진을 보면, 비교예1(도 4) 및 비교예2(도 5)의 시편에 비해 실시예(도 3)의 시편의 파면이 깨끗함을 확인할 수 있다.Looking at the photos of FIGS. 3 to 5 observing the actual fracture state after DWTT at -20 ° C for the specimens of Examples and Comparative Examples 1 and 2 prepared with different contents of niobium (Nb) and molybdenum (Mo), It can be seen that the fracture surface of the specimen of Example (FIG. 3) is clean compared to the specimens of Comparative Example 1 (FIG. 4) and Comparative Example 2 (FIG. 5).

또한, 실시예와 비교예1 및 2의 미세조직을 관찰한 도 6 내지 도 8을 참조하면, 비교예 1 및 2의 경우 몰리브덴(Mo)의 함량이 높을수록 침상형 페라이트 조직이 많이 형성되었으며, 실시예의 경우 고가의 합금원소인 몰리브덴(Mo)을 저감하였음에도 유사하게 다수의 침상형 페라이트와 일부 다각형 페라이트가 형성되었음을 알 수 있다.In addition, referring to FIGS. 6 to 8 observing the microstructures of Examples and Comparative Examples 1 and 2, in Comparative Examples 1 and 2, the higher the content of molybdenum (Mo), the more needle-shaped ferrite structures were formed, In the case of the embodiment, it can be seen that a number of needle-shaped ferrites and some polygonal ferrites were formed similarly even though molybdenum (Mo), an expensive alloying element, was reduced.

이러한 결과를 통해, 종래의 열간압연 조건으로 생산되고 있는 강종의 니오븀(Nb)과 몰리브덴(Mo)의 함량을 상당히 많이 줄였음에도 불구하고 극후물 송유관용 열연강판의 고강도를 유지하며 극저온인성을 확보할 수 있음을 확인하였다. 비교예2 대비 실시예의 합금철 원가는 대략 5~6만원 정도 절감될 것으로 예상되며 이는 합금철의 가격에 따라 변동이 있을 수 있다. Through these results, it is possible to maintain the high strength of the hot-rolled steel sheet for ultra-thick oil pipelines and secure cryogenic toughness despite significantly reducing the content of niobium (Nb) and molybdenum (Mo) in steels produced under conventional hot rolling conditions. It was confirmed that it is possible. Compared to Comparative Example 2, the cost of the ferroalloy of the embodiment is expected to be reduced by about 50,000 to 60,000 won, which may vary depending on the price of the ferroalloy.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.Although the above description has been focused on the embodiments of the present invention, various changes or modifications may be made at the level of those skilled in the art. Such changes and modifications can be said to belong to the present invention without departing from the scope of the present invention. Therefore, the scope of the present invention should be determined by the claims set forth below.

Claims (5)

중량%로, 탄소(C): 0.05% ~ 0.08%, 실리콘(Si): 0.15% ~ 0.25%, 망간(Mn): 1.5% ~ 1.7%, 인(P): 0 초과 0.018% 이하, 황(S): 0 초과 0.003% 이하, 알루미늄(Al): 0.01% ~ 0.05%, 니오븀(Nb): 0.045% ~ 0.055%, 바나듐(V): 0.035%~0.045%, 티타늄(Ti): 0.015% ~ 0.025%, 크롬(Cr): 0.2%~0.3%, 몰리브덴(Mo): 0.03%~0.10%, 질소(N): 0.006% 이하를 함유하고, 나머지 철(Fe)과 기타 불가피한 불순물을 포함하고,
두께 20t 이상의 극후물 강판으로서,
항복강도(YP): 485~605MPa, 인장강도(TS): 570~760MPa, 연신율(EL): 25% 이상, 항복비(YR): 90% 이하의 물성을 가지는,
극저온 인성이 우수한 강판.
In wt%, carbon (C): 0.05% to 0.08%, silicon (Si): 0.15% to 0.25%, manganese (Mn): 1.5% to 1.7%, phosphorus (P): greater than 0 and less than or equal to 0.018%, sulfur ( S): greater than 0 0.003% or less, aluminum (Al): 0.01% to 0.05%, niobium (Nb): 0.045% to 0.055%, vanadium (V): 0.035% to 0.045%, titanium (Ti): 0.015% to 0.025%, chromium (Cr): 0.2% to 0.3%, molybdenum (Mo): 0.03% to 0.10%, nitrogen (N): contains less than 0.006%, and contains the remaining iron (Fe) and other unavoidable impurities,
As an ultra-thick steel sheet with a thickness of 20t or more,
Yield strength (YP): 485 to 605 MPa, tensile strength (TS): 570 to 760 MPa, elongation (EL): 25% or more, yield ratio (YR): 90% or less
Steel plate with excellent cryogenic toughness.
제1항에 있어서,
상기 강판은 침상형 및 다각형 페라이트 조직을 가지고,
-20℃의 극저온에서 실시한 DWTT에서 85% 이상의 값을 나타내는,
극저온 인성이 우수한 강판.
The method of claim 1,
The steel sheet has a needle-shaped and polygonal ferrite structure,
Representing a value of 85% or more in DWTT conducted at a cryogenic temperature of -20 °C,
Steel plate with excellent cryogenic toughness.
중량%로, 탄소(C): 0.05% ~ 0.08%, 실리콘(Si): 0.15% ~ 0.25%, 망간(Mn): 1.5% ~ 1.7%, 인(P): 0 초과 0.018% 이하, 황(S): 0 초과 0.003% 이하, 알루미늄(Al): 0.01% ~ 0.05%, 니오븀(Nb): 0.045% ~ 0.055%, 바나듐(V): 0.035%~0.045%, 티타늄(Ti): 0.015% ~ 0.025%, 크롬(Cr): 0.2%~0.3%, 몰리브덴(Mo): 0.03%~0.10%, 질소(N): 0.006% 이하를 함유하고, 나머지 철(Fe)과 기타 불가피한 불순물을 포함하는 슬라브를 1,180~1,250℃에서 재가열하는 단계;
가열된 상기 슬라브를 RDT: 850~980℃에서 조압연하는 단계;
상기 조압연된 강판을 FDT: 760~800℃에서 사상압연하여 열연강판을 얻는 단계; 및
상기 열연강판을 냉각 및 권취하는 단계를 포함하는,
극저온 인성이 우수한 강판의 제조방법.
In wt%, carbon (C): 0.05% to 0.08%, silicon (Si): 0.15% to 0.25%, manganese (Mn): 1.5% to 1.7%, phosphorus (P): greater than 0 and less than or equal to 0.018%, sulfur ( S): greater than 0 0.003% or less, aluminum (Al): 0.01% to 0.05%, niobium (Nb): 0.045% to 0.055%, vanadium (V): 0.035% to 0.045%, titanium (Ti): 0.015% to Slab containing 0.025%, chromium (Cr): 0.2% to 0.3%, molybdenum (Mo): 0.03% to 0.10%, nitrogen (N): 0.006% or less, and remaining iron (Fe) and other unavoidable impurities Reheating at 1,180 ~ 1,250 ℃;
RDT of the heated slab: rough rolling at 850 ~ 980 ℃;
obtaining a hot-rolled steel sheet by finishing rolling the rough-rolled steel sheet at FDT: 760 to 800°C; and
Including the step of cooling and winding the hot-rolled steel sheet,
A method for manufacturing a steel sheet with excellent cryogenic toughness.
제3항에 있어서,
상기 냉각 및 권취하는 단계는,
10~20℃/s의 평균 냉각속도로, 권취온도: 450~500℃까지 냉각하는,
극저온 인성이 우수한 강판의 제조방법.
The method of claim 3,
The cooling and winding step,
Average cooling rate of 10~20℃/s, winding temperature: cooled to 450~500℃,
A method for manufacturing a steel sheet with excellent cryogenic toughness.
제3항에 있어서,
상기 권취하는 단계 후 상기 강판은,
침상형 및 다각형 페라이트 조직을 가지고,
항복강도(YP): 485~605MPa, 인장강도(TS): 570~760MPa, 연신율(EL): 25% 이상, 항복비(YR): 90% 이하이고,
-20℃의 극저온에서 실시한 DWTT에서 85% 이상의 값을 나타내는,
극저온 인성이 우수한 강판의 제조방법.


The method of claim 3,
After the winding step, the steel plate,
It has needle-shaped and polygonal ferrite structures,
Yield strength (YP): 485 to 605 MPa, tensile strength (TS): 570 to 760 MPa, elongation (EL): 25% or more, yield ratio (YR): 90% or less,
Representing a value of 85% or more in DWTT conducted at a cryogenic temperature of -20 °C,
A method for manufacturing a steel sheet with excellent cryogenic toughness.


KR1020190151095A 2019-11-22 2019-11-22 Steel sheet with excellent low temperature toughness and its manufacturing method KR20210062892A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190151095A KR20210062892A (en) 2019-11-22 2019-11-22 Steel sheet with excellent low temperature toughness and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190151095A KR20210062892A (en) 2019-11-22 2019-11-22 Steel sheet with excellent low temperature toughness and its manufacturing method

Publications (1)

Publication Number Publication Date
KR20210062892A true KR20210062892A (en) 2021-06-01

Family

ID=76376170

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190151095A KR20210062892A (en) 2019-11-22 2019-11-22 Steel sheet with excellent low temperature toughness and its manufacturing method

Country Status (1)

Country Link
KR (1) KR20210062892A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480960A (en) * 2021-12-24 2022-05-13 安阳钢铁集团有限责任公司 Low-yield-ratio low-temperature-toughness 800 MPa-grade high-strength steel and production process thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114480960A (en) * 2021-12-24 2022-05-13 安阳钢铁集团有限责任公司 Low-yield-ratio low-temperature-toughness 800 MPa-grade high-strength steel and production process thereof

Similar Documents

Publication Publication Date Title
KR100868423B1 (en) High strength api-x80 grade steels for spiral pipes with less strength changes and method for manufacturing the same
KR101917453B1 (en) Steel plate having excellent ultra low-temperature toughness and method for manufacturing same
KR20120075274A (en) High strength steel sheet having ultra low temperature toughness and method for manufacturing the same
JP2006336065A (en) Low yield-ratio high tensile-strength steel, and method for producing low yield-ratio high tensile-strength steel
KR102119975B1 (en) High strength thick steel plate for linepipe having excellent low temperature toughness and ductility as well as low yield ratio
US20230357907A1 (en) Steel sheet having excellent hydrogen induced cracking resistance and longitudinal strength uniformity, and manufacturing method therefor
JP2022510214A (en) Ultra-high-strength steel with excellent cold workability and SSC resistance and its manufacturing method
KR102031451B1 (en) High strength and low yield ratio steel for steel pipe having excellent low temperature toughness and manufacturing method for the same
JP6691967B2 (en) High hardness and wear resistant steel excellent in toughness and cutting crack resistance, and method for producing the same
KR20210062892A (en) Steel sheet with excellent low temperature toughness and its manufacturing method
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
KR101505279B1 (en) Hot-rolled steel sheet and method of manufacturing the same
KR101786262B1 (en) Hot-rolled thick steel plate having excellent strength and dwtt toughness at low temperature, and method for manufacturing the same
KR102349426B1 (en) Steel having excellent low-temperature fracture toughness and method of manufacturing the same
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
KR102352647B1 (en) Hot rolled steel having excellent low-temperature toughness and low yield ratio and method of manufacturing the same
KR102321269B1 (en) High strength steel sheet and manufacturing method thereof
KR102153170B1 (en) Ultra heavy gauge hot rolled steel plate having excellent strength and high DWTT toughness at low temperature and method for manufacturing thereof
KR101505299B1 (en) Steel and method of manufacturing the same
CN113166896A (en) Steel material for pressure vessel having excellent hydrogen-induced cracking resistance and method for producing same
KR101889186B1 (en) High-strength hot-rolled steel plate having excellent hydrogen induced cracking resistance and dwtt toughness at low temperature, and method for manufacturing the same
KR101808440B1 (en) Steel for inverted angle and method of manufacturing the same
KR102366990B1 (en) Hot rolled steel having excellent low-temperature toughness and low yield ratio and method of manufacturing the same
KR102407420B1 (en) High strength hot rolled steel sheet for steel pipe and method of manufacturing the same
KR102475606B1 (en) Steel having excellent low-temperature fracture toughness and method of manufacturing the same

Legal Events

Date Code Title Description
E601 Decision to refuse application