JP2703548B2 - Air preheater performance diagnostic device - Google Patents

Air preheater performance diagnostic device

Info

Publication number
JP2703548B2
JP2703548B2 JP63003791A JP379188A JP2703548B2 JP 2703548 B2 JP2703548 B2 JP 2703548B2 JP 63003791 A JP63003791 A JP 63003791A JP 379188 A JP379188 A JP 379188A JP 2703548 B2 JP2703548 B2 JP 2703548B2
Authority
JP
Japan
Prior art keywords
air
air preheater
exhaust gas
combustion
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63003791A
Other languages
Japanese (ja)
Other versions
JPH01181013A (en
Inventor
政勝 前田
太郎 坂田
Original Assignee
バブコツク日立株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バブコツク日立株式会社 filed Critical バブコツク日立株式会社
Priority to JP63003791A priority Critical patent/JP2703548B2/en
Publication of JPH01181013A publication Critical patent/JPH01181013A/en
Application granted granted Critical
Publication of JP2703548B2 publication Critical patent/JP2703548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Incineration Of Waste (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は発電所用大型ボイラ等の燃焼装置に供給する
燃焼用空気を予熱する空気予熱器の性能診断装置に係
り、特に装置の修理時期や性能診断を適切に行うように
した診断装置に関する。
The present invention relates to a performance diagnosis device for an air preheater for preheating combustion air to be supplied to a combustion device such as a large boiler for a power plant, and more particularly to a repair time of the device. The present invention relates to a diagnostic device that appropriately performs performance diagnosis.

〔従来の技術〕[Conventional technology]

火力発電所用大型ボイラやその他の事業所用の大型燃
焼装置においては燃焼効率を向上させるために、燃焼用
空気を予め加熱する方法が採用されている。加熱用の熱
源として最も一般的に使用されるのは自己が排出する高
温の燃焼排ガスであり、この排ガスと燃焼用空気とを熱
交換することにより燃焼用空気を加熱している。
2. Description of the Related Art In a large-sized boiler for a thermal power plant and a large-sized combustion device for other business establishments, a method of pre-heating combustion air is employed in order to improve combustion efficiency. The most commonly used heat source for heating is high-temperature combustion exhaust gas discharged by itself, and the combustion air is heated by exchanging heat between the exhaust gas and combustion air.

第2図は大型ボイラに対する燃焼用空気の加熱方法を
示している。
FIG. 2 shows a method of heating combustion air for a large boiler.

ボイラ6から排出された高温の燃焼排ガスはダクト7
を経て排煙脱硝装置8に至り、さらにこの下流に配置さ
れた空気予熱器4を通過し、集塵器9に於いてダスト分
を除去された後煙突10を経て大気中に放出される。一方
押し込み送風機(FDF)1から供給された燃焼用空気は
ダクト2から蒸気式空気予熱器3に流入し、ボイラ6か
ら供給される蒸気によりある程度加熱される。更に蒸気
により加熱された空気は前記空気予熱器4に至り排ガス
と熱交換して昇温しボイラ6のバーナ5に供給される。
The high-temperature flue gas discharged from the boiler 6 is
After that, the dust reaches the flue gas denitration device 8, further passes through the air preheater 4 disposed downstream of the device, and after the dust is removed in the dust collector 9, is discharged to the atmosphere through the chimney 10. On the other hand, the combustion air supplied from the forced air blower (FDF) 1 flows into the steam type air preheater 3 from the duct 2 and is heated to some extent by the steam supplied from the boiler 6. Further, the air heated by the steam reaches the air preheater 4 and exchanges heat with exhaust gas to raise the temperature and is supplied to the burner 5 of the boiler 6.

ここで、排ガスによる燃焼用空気の予熱方法には種々
あるが、第3図に示す構成の空気予熱方式が、大量の空
気を効果的に予熱できるため一般的に用いられている。
即ち、この空気予熱器は、全体がドラム状に構成されて
おり、このドラム状の本体内に鋼板を波状に成形した
り、ハニカム状に成形することにより表面積を大きく取
った伝熱エレメントが多数形成配置してある。このドラ
ムは一方が排ガス流中に位置し他方が空気流中に位置す
るように構成してあり、全体を回転させることにより高
温の排ガス中で加熱された伝熱エレメントの熱を空気流
中に放出し、もって排ガスGの熱を空気Aに伝達するよ
う構成してある。
Here, there are various methods for preheating the combustion air with the exhaust gas, and the air preheating method having the configuration shown in FIG. 3 is generally used because a large amount of air can be effectively preheated.
That is, this air preheater is configured in a drum shape as a whole, and a large number of heat transfer elements having a large surface area are formed by forming a steel plate into a wavy shape or a honeycomb shape in the drum-shaped main body. It is formed and arranged. This drum is configured so that one is located in the exhaust gas stream and the other is located in the air stream, and the entire drum rotates to transfer the heat of the heat transfer element heated in the hot exhaust gas into the air stream. It is configured to release the heat of the exhaust gas G to the air A.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

以上の空気予熱方式においては次の問題があり、その
解決が望まれている。
The above-mentioned air preheating method has the following problems, and it is desired to solve them.

排ガス中には硫黄酸化物やダストを含んでいるが、空
気予熱器は直接この排ガス流中に曝されるため、腐食が
生じたり、ダストの付着成長により空気や排ガスの流動
抵抗が増大して送風機の動力費が増加することになる。
またシール部の腐食により例えば燃焼用空気が排ガス中
に漏出する等の問題もある。
Although the exhaust gas contains sulfur oxides and dust, the air preheater is directly exposed to this exhaust gas stream, causing corrosion and increasing the flow resistance of air and exhaust gas due to the adhesion and growth of dust. The power cost of the blower will increase.
There is also a problem that, for example, combustion air leaks into exhaust gas due to corrosion of the seal portion.

このため、火力発電所等では毎年の定期点検時に空気
予熱器部品の検査、損傷部品の取り替えや手入れをして
いる。しかしこの方式では点検時にしか装置の状態を確
認できないため、装置の性能が低下している状態で運転
を継続したり、また点検時に急遽修理部品を作成手配す
る等、期間や経費の点で問題がある。
For this reason, thermal power plants and the like perform inspections of air preheater parts, replacement and maintenance of damaged parts during annual periodic inspections. However, with this method, the status of the equipment can be checked only at the time of inspection.Therefore, there is a problem in terms of time and cost, such as continuing operation with the performance of the equipment being degraded, and promptly preparing repair parts during inspection. There is.

更に装置の運転中は閉塞を防止するため毎日数回のス
ートブローを実施している。この場合、装置に対するダ
ストの付着状態は測定されていないため、スートブロー
は必ずしもダストの付着状態に対応して行われているわ
けではない。通常は閉塞防止のため多めにスートブロー
しており、蒸気等のスートブロー用流体を必要量以上に
消費することになる。
Further, during operation of the apparatus, soot blowing is performed several times a day to prevent blockage. In this case, since the state of dust adhesion to the apparatus has not been measured, soot blowing is not always performed in accordance with the state of dust adhesion. Usually, a large amount of soot blow is performed to prevent clogging, and a soot blow fluid such as steam is consumed more than necessary.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明は上述の問題点に鑑み構成したものであり、燃
焼用空気と燃焼排ガスの間で熱交換を行なう回転式空気
予熱器の性能診断装置を対象とするものである。
The present invention has been made in view of the above-described problems, and is directed to a performance diagnostic device for a rotary air preheater that performs heat exchange between combustion air and combustion exhaust gas.

そして第1の本発明は、前記空気予熱器の排ガス入口
側に設置されて、燃焼排ガス中の酸素濃度ならびに二酸
化炭素濃度を測定する入口側ガス性状分析手段と、 前記空気予熱器の排ガス出口側に設置されて、燃焼排
ガス中の酸素濃度ならびに二酸化炭素濃度を測定する出
口側ガス性状分析手段と、 前記入口側と出口側のガス性状分析手段の測定値によ
り、空気予熱器内で燃焼用空気が燃焼排ガス側へ漏洩し
た漏洩空気率を算出する算出手段と、 その算出手段により算出された算出漏洩空気率と、予
め設定された基準値とを比較演算して、その比較結果か
ら回転式空気予熱器の損傷状況を推定する推定手段と、 その推定手段によって推定された結果を表示する表示
手段とを備えたことを特徴とするものである。
A first aspect of the present invention is an inlet-side gas property analyzer that is installed on an exhaust gas inlet side of the air preheater and measures oxygen concentration and carbon dioxide concentration in combustion exhaust gas, and an exhaust gas outlet side of the air preheater. Installed at the outlet side gas property analysis means for measuring the oxygen concentration and carbon dioxide concentration in the combustion exhaust gas, the measured value of the gas property analysis means on the inlet side and the outlet side, the combustion air in the air preheater Calculating means for calculating a leaked air rate leaked to the combustion exhaust gas side, a calculated leaked air rate calculated by the calculating means is compared with a preset reference value, and rotary air is calculated from the comparison result. An estimating means for estimating a damage state of the preheater, and a display means for displaying a result estimated by the estimating means are provided.

第2の本発明は、前記空気予熱器の近傍に配置した各
種センサと、 その各種センサからのデータに基づいて、空気予熱器
内での燃焼排ガス側への漏洩空気率と、空気予熱器の熱
貫流率とを算出する算出手段と、 その算出手段により算出された算出漏洩空気率ならび
に算出熱貫流率と、予め設定された基準値とをそれぞれ
比較演算して、その比較結果から前記空気予熱器の状況
を推定する推定手段と、 その推定手段によって推定された結果に対応した補修
を指示する表示手段とを備えたことを特徴とするもので
ある。
According to a second aspect of the present invention, there are provided various sensors disposed in the vicinity of the air preheater, based on data from the various sensors, a leak air rate to a combustion exhaust gas side in the air preheater, Calculating means for calculating the heat transmission coefficient; calculating and comparing the calculated leak air rate and the calculated heat transmission rate calculated by the calculating means with a predetermined reference value; An estimating means for estimating the condition of the vessel, and a display means for instructing a repair corresponding to the result estimated by the estimating means are provided.

第3の本発明は、前記空気予熱器の燃焼空気および燃
焼排ガスの入口側と出口側の差圧をそれぞれ測定する差
圧測定手段と、 その差圧測定手段からの測定差圧値と予め設定された
基準値との比較結果から、前記空気予熱器内のダスト付
着状況と清掃の必要時期を推定する推定手段と、 その推定手段によって推定された結果を表示する表示
手段とを備えたことを特徴とするものである。
According to a third aspect of the present invention, there is provided a differential pressure measuring means for measuring a differential pressure between the inlet side and the outlet side of the combustion air and the combustion exhaust gas of the air preheater, respectively. Estimating means for estimating the dust adhesion state in the air preheater and the time required for cleaning from the comparison result with the reference value, and display means for displaying the result estimated by the estimating means. It is a feature.

〔作用〕[Action]

回転式空気予熱器では、回転部分においてどうしても
燃焼用空気が燃焼排ガス中へ漏洩するが、例えばシール
プレートの損傷などにより燃焼用空気が予定量以上漏洩
すると、排ガス中の酸素濃度が急上昇する。一方、空気
予熱器の出口側における排ガス中の酸素濃度は、例えば
窒素酸化物の発生を抑制する燃焼制御に使用される基礎
的なデータであるから、前述のように燃焼用空気の漏洩
という他の原因で排ガス中の酸素濃度が上昇すると前述
の燃焼制御系が大きく変動して、適切な燃焼制御ができ
なくなる。
In the rotary air preheater, combustion air inevitably leaks into the combustion exhaust gas at the rotating portion. However, if the combustion air leaks beyond a predetermined amount due to, for example, damage to a seal plate, the oxygen concentration in the exhaust gas rapidly rises. On the other hand, the oxygen concentration in the exhaust gas at the outlet side of the air preheater is basic data used for combustion control for suppressing the generation of nitrogen oxides, for example. If the oxygen concentration in the exhaust gas rises due to the above, the above-mentioned combustion control system fluctuates greatly, making it impossible to perform appropriate combustion control.

そこで第1の本発明は前述のように、空気予熱器の排
ガス入口側と排ガス出口側にガス性状分析手段を設置し
て、空気予熱器の入口側と出口側の酸素濃度ならびに二
酸化炭素濃度の変化から、空気予熱器内での漏洩空気率
を正確に算出することができる。
Therefore, as described above, the first present invention installs gas property analysis means on the exhaust gas inlet side and the exhaust gas outlet side of the air preheater, and measures the oxygen concentration and carbon dioxide concentration on the inlet side and the outlet side of the air preheater. From the change, the leak air rate in the air preheater can be accurately calculated.

そしてその算出漏洩空気率に基づいて回転式空気予熱
器の損傷(例えばシールプレートの損傷)状況を推定
し、それに基づいて空気予熱器の補修の必要性などを予
め表示(指示)することができる。従って、漏洩空気の
異常な増大を防止し、窒素酸化物の発生を抑制する燃焼
制御方法を採用しても、安定した燃焼制御が可能とな
る。
Based on the calculated leak air rate, the condition of damage to the rotary air preheater (for example, damage to the seal plate) is estimated, and based on the result, the necessity of repair of the air preheater can be displayed (instructed) in advance. . Therefore, stable combustion control is possible even if a combustion control method for preventing an abnormal increase in leaked air and suppressing generation of nitrogen oxides is employed.

第2の本発明は前述のように、漏洩空気率に加えて空
気予熱器の熱貫流率も算出して、空気予熱器を構成する
エレメントの腐食状況も把握でき、より広範の空気予熱
器の性能診断がなされる。
As described above, the second aspect of the present invention calculates the heat transmission rate of the air preheater in addition to the leaked air rate, and can grasp the corrosion state of the elements constituting the air preheater. Performance diagnosis is performed.

第3の本発明は前述のような構成になっており、空気
予熱器内の圧力損失を算出することにより、伝熱エレメ
ントの閉塞状況を予測判断することができ、スートブロ
ーを効率的に行なうことができるとともに、燃焼空気側
の圧力損失と燃焼排ガス側の圧力損失とから漏洩空気の
状況を把握することができる。
The third aspect of the present invention is configured as described above. By calculating the pressure loss in the air preheater, it is possible to predict and determine the state of blockage of the heat transfer element, and to efficiently perform soot blowing. As well as the pressure loss on the combustion air side and the pressure loss on the combustion exhaust gas side, the situation of the leaked air can be grasped.

〔発明を構成する技術的背景〕[Technical background constituting the invention]

次に本発明の実施例を説明する前に、本発明の技術的
背景をやや詳しく説明する。
Next, before describing embodiments of the present invention, the technical background of the present invention will be described in some detail.

空気予熱器部品の損傷は、伝熱エレメントの腐食減
肉、空気の排ガス側への漏洩を防止するためのシールプ
レートの腐食減肉や変形等が主なものである。これらの
損傷は熱貫流率、温度効率(空気予熱器出入口の空気・
排ガス温度と空気予熱器通過空気・排ガス量等に基づき
計算される)と、空気予熱器出入口排ガス中のO2濃度、
CO2濃度等により計算される漏洩空気率により、その損
傷程度や進行状況が予測できる。即ち、熱貫流率の低下
はエレメント腐食減量(伝熱面積の減少)に比例し、ま
た漏洩空気率の増加はシールプレート損傷長さに比例す
るので、これらのデータの継続的な解析により空気予熱
器部品の損傷状況が予測判断できることになる。
Damage to the air preheater parts is mainly caused by corrosion loss of the heat transfer element, corrosion loss or deformation of the seal plate for preventing air from leaking to the exhaust gas side, and the like. These damages are caused by the heat transmission rate, temperature efficiency (air
It is calculated based on the exhaust gas temperature and the amount of air and exhaust gas passing through the air preheater), the O 2 concentration in the exhaust gas at the entrance and exit of the air preheater,
The degree of damage and the progress can be predicted from the air leak rate calculated from the CO 2 concentration and the like. That is, since the decrease in the heat transfer rate is proportional to the loss of the element corrosion (reduction of the heat transfer area), and the increase in the leak air rate is proportional to the damage length of the seal plate, the air preheating is continuously analyzed by these data. This makes it possible to predict and judge the state of damage to the equipment parts.

また伝熱エレメントに対するダクト付着による空気及
びガス通路の閉塞は圧力損失の増加となるため、空気予
熱器出入口ドラフトを計測して圧力損失を算出すること
により伝熱エレメントの閉塞状況を予測判断することが
できる。
In addition, since the blockage of the air and gas passages due to the duct adhering to the heat transfer element increases the pressure loss, it is necessary to measure the draft of the air preheater inlet / outlet and calculate the pressure loss to predict and judge the blockage of the heat transfer element. Can be.

〔実施例〕〔Example〕

以下本発明の実施例を図面を参考に具体的に説明す
る。
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.

先ず第1図は本発明方法を実施する為に配置した各種
センサの配置状態の一例を示す。
First, FIG. 1 shows an example of the arrangement of various sensors arranged to carry out the method of the present invention.

先ず符号11aは排ガスGの空気予熱器入口側の温度を
測定する温度計、11bは出口側の温度を測定する温度
計、11cは燃焼用空気の蒸気式空気予熱器入口温度を測
定する温度計、11dは蒸気式空気予熱器出口温度を測定
する温度計、11eは空気予熱器4の出口温度を測定する
温度計である。また12aは空気予熱器4入口部の排ガス
中の性状(O2濃度、CO2濃度等)を測定分析するガス性
状分析器、12bは同様に出口部の排ガス中の性状を測定
分析するガス性状分析器である。また13aは排ガス側の
空気予熱器圧力損失を測定するドラフト差圧計、同様に
13bは燃焼用空気A側の空気予熱器圧力損失を測定する
ドラフト差圧計である。
First, reference numeral 11a denotes a thermometer for measuring the temperature of the exhaust gas G on the inlet side of the air preheater, 11b denotes a thermometer for measuring the temperature on the outlet side, and 11c denotes a thermometer for measuring the inlet temperature of the steam-type air preheater of the combustion air. , 11d is a thermometer for measuring the outlet temperature of the steam type air preheater, and 11e is a thermometer for measuring the outlet temperature of the air preheater 4. 12a is a gas property analyzer for measuring and analyzing the properties (O 2 concentration, CO 2 concentration, etc.) in the exhaust gas at the inlet of the air preheater 4, and 12b is a gas property analyzer for measuring and analyzing the properties in the exhaust gas at the outlet. It is an analyzer. 13a is a draft differential pressure gauge that measures the air preheater pressure loss on the exhaust gas side,
13b is a draft differential pressure gauge for measuring the pressure loss of the air preheater on the combustion air A side.

以上の各センサにより収集したデータと予め設定して
おいた基準値とを比較判断することにより空気予熱器の
性能を予測判断する。
The performance of the air preheater is predicted and determined by comparing and judging the data collected by each of the above sensors with a preset reference value.

先ず基準値はボイラ建設時等空気予熱器を設置した際
に運転状態が最適となるよう調整した時の空気予熱器性
能を基準にして熱貫流率、漏洩空気率、圧力損失等を算
出して設定する。この基準値と、上述の各センサで収集
したデータに基づき算出した熱貫流率、漏洩空気率、圧
力損失等を比較し、その比較結果が予め設定しておいた
値と比較することにより空気予熱器の性能を判断すると
共に、その値が所定の範囲から逸脱している場合には補
充等の指示を出す。
First, the reference value is calculated based on the air preheater performance when the operating condition is adjusted to be optimal when the air preheater is installed, such as when constructing a boiler, and the heat transfer rate, leak air rate, pressure loss, etc. are calculated. Set. This reference value is compared with the heat transmission coefficient, the leak air rate, the pressure loss, etc. calculated based on the data collected by each of the above-mentioned sensors, and the air preheating is performed by comparing the comparison result with a preset value. In addition to judging the performance of the vessel, if the value deviates from a predetermined range, an instruction such as replenishment is issued.

次に判断の基礎となる熱貫流率、漏洩空気率、圧力損
失の求めかたについて説明する。
Next, a description will be given of how to determine the heat transmission rate, the leak air rate, and the pressure loss, which are the basis of the determination.

なお、以下に示す各符号は次の意味を有する。 In addition, each code shown below has the following meaning.

W:流量 (kg/h) C:比熱 (kcal/kg℃) T:温度 (℃) A:伝熱面積 (m2) NTU:伝熱ユニット数 (−) α:熱伝達率 (kcal/m2h℃) M:空気比 (−) CO2:ガス中CO2濃度 (%) O2:ガス中O2濃度 (%) また各符号の接尾字は次の意味を有する。W: Flow rate (kg / h) C: Specific heat (kcal / kg ° C) T: Temperature (° C) A: Heat transfer area (m 2 ) NTU: Number of heat transfer units (−) α: Heat transfer coefficient (kcal / m 2 h ° C) M: Air ratio (−) CO 2 : CO 2 concentration in gas (%) O 2 : O 2 concentration in gas (%) The suffix of each symbol has the following meaning.

g:加熱流体(ガス) a:受熱流体(空気) s:蓄熱体 (空気予熱器エレメント) 1:各流体の入口の状態 2:各流体の出口の状態 (1)熱貫流率R:((kcal/m2h℃) (2)温度効率η: (%) (3)漏洩空気率L:(%) 次に第4図に基づき空気予熱器の診断アゴリズムを示
す。
g: Heated fluid (gas) a: Heat receiving fluid (air) s: Heat storage element (air preheater element) 1: State of each fluid inlet 2: State of each fluid outlet (1) Heat transfer rate R: (( kcal / m 2 h ℃) (2) Temperature efficiency η: (%) (3) Leakage air rate L: (%) Next, a diagnosis algorithm of the air preheater will be described with reference to FIG.

先ず前記した各センサにより計測20したデータにより
熱貫流率、温度効率、空気漏洩率等を算出し、これらを
予め入力しておいた基準値と比較演算21する。これによ
り後述するように、各値の基準値からの変位に基づき空
気予熱器の性能を把握し、性能低下があると判断した場
合、各値の変位状態から部品の損傷、エレメントの閉塞
等具体的な性能低下原因を推定22し、その推定22に対応
する対策案の検討及び運転指針の検討23を行い、その結
果を表示24する。
First, the heat transmission coefficient, the temperature efficiency, the air leakage rate, and the like are calculated from the data measured 20 by each of the above-described sensors, and these are compared with a previously inputted reference value 21 for comparison. Accordingly, as described later, the performance of the air preheater is grasped based on the displacement of each value from the reference value, and when it is determined that the performance is degraded, the damage of the component, blockage of the element, etc. The cause 22 of the potential performance degradation is estimated, the countermeasure corresponding to the estimated 22 is examined, and the operation guideline 23 is examined, and the result is displayed 24.

第5図は診断結果の表示例を示す。 FIG. 5 shows a display example of a diagnosis result.

例えば温度効率ηは時間の経過と共に低下し、それが
補修基準に達したならばその旨の表示や警報を発する。
同様に熱貫流率Rも前記温度効率と同様時間の経過と共
に低下し、それが補修基準に達したならばその旨の表示
や警報を発するようにし、伝熱エレメント等の損傷が軽
微のうちに補修するようにする。
For example, the temperature efficiency η decreases with the passage of time, and when it reaches the repair standard, an indication or an alarm is issued to that effect.
Similarly, the heat transmission rate R decreases with the passage of time similarly to the temperature efficiency, and when it reaches the repair standard, an indication or an alarm is issued to that effect, and damage to the heat transfer element and the like is minimized. Make repairs.

また漏洩空気率Lは時間の経過と共に増大するが、こ
れも所定の補修基準に達したならばその旨の表示や警報
を発するようにし、シールプレートの補修を行うように
する。
The leak air rate L increases with the passage of time. If the predetermined air leak rate reaches a predetermined repair standard, an indication or an alarm is issued to that effect, and the seal plate is repaired.

更に圧力損失ΔPはダストの付着により時間の経過と
共にやはり増大するが、この場合はスートブロワに作動
信号を発する等して適宜スートブローを行い圧力損失の
低減を行うようにする。
Further, the pressure loss ΔP also increases with the passage of time due to the adhesion of dust. In this case, a soot blower is appropriately operated to emit a soot blower to reduce the pressure loss.

〔効果〕〔effect〕

第1の本発明は前述のように、空気予熱器の排ガス入
口側と排ガス出口側にガス性状分析手段を設置して、空
気予熱器の入口側と出口側の酸素濃度ならびに二酸化炭
素濃度の変化から、空気予熱器内での漏洩空気率を正確
に算出することができる。
As described above, the first aspect of the present invention is to install gas property analysis means on the exhaust gas inlet side and the exhaust gas outlet side of the air preheater to change the oxygen concentration and carbon dioxide concentration on the inlet side and the outlet side of the air preheater. Accordingly, the leak air rate in the air preheater can be accurately calculated.

そして算出漏洩空気率に基づいて回転式空気予熱器の
損傷状況を推定し、それに基づいて空気予熱器の補修の
必要性などを予め表示(指示)することができるから、
漏洩空気の異常な増大を防止し、窒素酸化物の発生を抑
制する燃焼制御方法を採用しても、安定した信頼性の高
い燃焼制御が可能となる。
Since the damage situation of the rotary air preheater can be estimated based on the calculated leak air rate and the necessity of repairing the air preheater can be displayed (instructed) in advance based on the estimated condition.
Even if a combustion control method for preventing an abnormal increase in leaked air and suppressing generation of nitrogen oxides is employed, stable and reliable combustion control can be achieved.

第2の本発明は前述のように、漏洩空気率に加えて空
気予熱器の熱貫流率も算出して、空気予熱器を構成する
エレメントの腐食状況も把握でき、より広範の空気予熱
器の性能診断がなされる。
As described above, the second aspect of the present invention calculates the heat transmission rate of the air preheater in addition to the leaked air rate, and can grasp the corrosion state of the elements constituting the air preheater. Performance diagnosis is performed.

第3の本発明は前述のような構成になっており、空気
予熱器内の圧力損失を算出することにより、伝熱エレメ
ントの閉塞状況を予測判断することができ、スートブロ
ーを効率的に行なうことができるとともに、燃焼空気側
の圧力損失と燃焼排ガス側の圧力損失とから漏洩空気の
状況を把握することができる。
The third aspect of the present invention is configured as described above. By calculating the pressure loss in the air preheater, it is possible to predict and determine the state of blockage of the heat transfer element, and to efficiently perform soot blowing. As well as the pressure loss on the combustion air side and the pressure loss on the combustion exhaust gas side, the situation of the leaked air can be grasped.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法に使用するセンサの配置状態の一例
を示す概念図、第2図はボイラ排ガスと燃焼用空気の流
動系統を示す図、第3図は回転再生式空気予熱器の概念
図、第4図は空気予熱器性能診断の一例を示すフロー
図、第5図は各判断対象の表示方法の一例を示す線図で
ある。 4……空気予熱器、6……ボイラ 11a、11b、11c、11d、11e……温度計 12a、12b……ガス性情分析器 13a、13b……差圧計 A……燃焼用空気、G……燃焼排ガス η……温度効率、L……漏洩空気率 R……熱貫流率、ΔP……圧力損失
FIG. 1 is a conceptual diagram showing an example of an arrangement state of sensors used in the method of the present invention, FIG. 2 is a diagram showing a flow system of boiler exhaust gas and combustion air, and FIG. 3 is a conceptual diagram of a rotary regeneration type air preheater. FIG. 4 is a flowchart showing an example of an air preheater performance diagnosis, and FIG. 5 is a diagram showing an example of a display method of each judgment target. 4 ... air preheater, 6 ... boiler 11a, 11b, 11c, 11d, 11e ... thermometer 12a, 12b ... gas analyzer 13a, 13b ... differential pressure gauge A ... combustion air, G ... Combustion exhaust gas η: Temperature efficiency, L: Leakage air rate R: Heat transmission rate, ΔP: Pressure loss

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】燃焼用空気と燃焼排ガスの間で熱交換を行
なう回転式空気予熱器の性能診断装置において、 前記空気予熱器の排ガス入口側に設置されて、燃焼排ガ
ス中の酸素濃度ならびに二酸化炭素濃度を測定する入口
側ガス性状分析手段と、 前記空気予熱器の排ガス出口側に設置されて、燃焼排ガ
ス中の酸素濃度ならびに二酸化炭素濃度を測定する出口
側ガス性状分析手段と、 前記入口側と出口側のガス性状分析手段の測定値によ
り、空気予熱器内で燃焼用空気が燃焼排ガス側へ漏洩し
た漏洩空気率を算出する算出手段と、 その算出手段により算出された算出漏洩空気率と、予め
設定された基準値とを比較演算して、その比較結果から
回転式空気予熱器の損傷状況を推定する推定手段と、 その推定手段によって推定された結果を表示する表示手
段とを備えたことを特徴とする空気予熱器性能診断装
置。
An apparatus for diagnosing the performance of a rotary air preheater for exchanging heat between combustion air and combustion exhaust gas, the apparatus being provided on the exhaust gas inlet side of the air preheater and having the oxygen concentration and the carbon dioxide in the combustion exhaust gas. An inlet-side gas property analyzer that measures carbon concentration; an outlet-side gas property analyzer that is installed on an exhaust gas outlet side of the air preheater and measures oxygen concentration and carbon dioxide concentration in flue gas; Calculating means for calculating a leak air rate at which combustion air leaks to the combustion exhaust gas side in the air preheater based on the measured values of the gas property analyzing means on the outlet side, and a calculated leak air rate calculated by the calculating means. And estimating means for estimating the damage condition of the rotary air preheater from the comparison result by comparing and calculating with a preset reference value, and displaying the result estimated by the estimating means. Air preheater performance diagnostic apparatus characterized by comprising a shown means.
【請求項2】燃焼用空気と燃焼排ガスの間で熱交換を行
なう回転式空気予熱器の性能診断装置において、 前記空気予熱器の近傍に配置した各種センサと、 その各種センサからのデータに基づいて、空気予熱器内
での燃焼排ガス側への漏洩空気率と、空気予熱器の熱貫
流率とを算出する算出手段と、 その算出手段により算出された算出漏洩空気率ならびに
算出熱貫流率と、予め設定された基準値とをそれぞれ比
較演算して、その比較結果から前記空気予熱器の状況を
推定する推定手段と、 その推定手段によって推定された結果に対応した補修を
指示する表示手段とを備えたことを特徴とする空気予熱
器性能診断装置。
2. A performance diagnostic apparatus for a rotary air preheater for exchanging heat between combustion air and combustion exhaust gas, comprising: various sensors arranged in the vicinity of the air preheater; and data based on the data from the various sensors. Calculating means for calculating the air leak rate to the flue gas side in the air preheater and the heat flow rate of the air preheater; the calculated leak air rate and the calculated heat flow rate calculated by the calculating means; Estimating means for comparing and calculating a reference value set in advance, and estimating the condition of the air preheater from the comparison result, and display means for instructing repair corresponding to the result estimated by the estimating means. An air preheater performance diagnostic device comprising:
【請求項3】燃焼用空気と燃焼排ガスの間で熱交換を行
なう回転式空気予熱器の性能診断装置において、 前記空気予熱器の燃焼空気および燃焼排ガスの入口側と
出口側の差圧をそれぞれ測定する差圧測定手段と、 その差圧測定手段からの測定差圧値と予め設定された基
準値との比較結果から、前記空気予熱器内のダスト付着
状況と清掃の必要時期を推定する推定手段と、 その推定手段によって推定された結果を表示する表示手
段とを備えたことを特徴とする空気予熱器性能診断装
置。
3. A performance diagnostic device for a rotary air preheater for exchanging heat between combustion air and combustion exhaust gas, wherein differential pressures of the air preheater on the inlet side and the outlet side of combustion air and combustion exhaust gas are respectively determined. A differential pressure measuring means for measuring, and an estimation for estimating a dust adhesion state in the air preheater and a time required for cleaning based on a comparison result between a measured differential pressure value from the differential pressure measuring means and a preset reference value. Means, and a display means for displaying a result estimated by the estimating means.
JP63003791A 1988-01-13 1988-01-13 Air preheater performance diagnostic device Expired - Lifetime JP2703548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63003791A JP2703548B2 (en) 1988-01-13 1988-01-13 Air preheater performance diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63003791A JP2703548B2 (en) 1988-01-13 1988-01-13 Air preheater performance diagnostic device

Publications (2)

Publication Number Publication Date
JPH01181013A JPH01181013A (en) 1989-07-19
JP2703548B2 true JP2703548B2 (en) 1998-01-26

Family

ID=11567009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63003791A Expired - Lifetime JP2703548B2 (en) 1988-01-13 1988-01-13 Air preheater performance diagnostic device

Country Status (1)

Country Link
JP (1) JP2703548B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631075A (en) * 2019-01-31 2019-04-16 南京博沃科技发展有限公司 A kind of anti-blocking grey air quantity adjusting method of air preheater and device for monitoring running

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281506A (en) * 2009-06-04 2010-12-16 Jfe Steel Corp Method of deciding maintenance and repair time of heat exchanger for preheating combustion air
JP5428593B2 (en) * 2009-07-03 2014-02-26 新日鐵住金株式会社 Combustion abnormality diagnosis method for combustion furnace
JP5614074B2 (en) * 2010-03-30 2014-10-29 Jfeスチール株式会社 Recuperator repair and renewal timing determination method
CN102213708B (en) * 2011-04-09 2014-03-12 山东电力研究院 Method for testing air leak rate of air preheater
JP6597144B2 (en) * 2015-10-01 2019-10-30 中国電力株式会社 Air preheater abnormality determination device and air preheater abnormality determination method
JP6761558B1 (en) * 2020-06-03 2020-09-23 三菱重工環境・化学エンジニアリング株式会社 Boiler tube group adhering ash removal system
CN114414163B (en) * 2022-01-05 2024-02-02 华北电力科学研究院有限责任公司 Method and device for determining air leakage rate of air preheater with three bins

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294722A (en) * 1985-10-19 1987-05-01 Babcock Hitachi Kk Soot blower control device
JPS6298939U (en) * 1985-12-10 1987-06-24
JPH0248807B2 (en) * 1987-04-24 1990-10-26 Babcock Hitachi Kk SUUTOBUROWANOSEIGYOHOHO

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631075A (en) * 2019-01-31 2019-04-16 南京博沃科技发展有限公司 A kind of anti-blocking grey air quantity adjusting method of air preheater and device for monitoring running

Also Published As

Publication number Publication date
JPH01181013A (en) 1989-07-19

Similar Documents

Publication Publication Date Title
TWI407058B (en) Heat transfer tube monitoring apparatus
EP2126649B1 (en) Method and apparatus for generalized performance evaluation of equipment using achievable performance derived from statistics and real-time data
KR101135168B1 (en) Method and system for inspecting creep and thinned damage in heat exchanger steam tube
US8140296B2 (en) Method and apparatus for generalized performance evaluation of equipment using achievable performance derived from statistics and real-time data
CN103075739B (en) Utilize statistical Process Control to control the method and apparatus of soot blowing
JP4466232B2 (en) Boiler deterioration diagnosis method, apparatus, system, and recording medium recording program
JP2703548B2 (en) Air preheater performance diagnostic device
JPS60108611A (en) Soot blowing work system by decision of model parameter
JP5773708B2 (en) Heat exchanger and method for estimating remaining life of heat exchanger
JP2007315696A (en) Diagnosis device and diagnosis method for air preheater
JP2012215335A5 (en)
JP5652194B2 (en) Diagnostic method for furnace air preheater
JPH11142298A (en) Life-cycle management type system for plant maintenance-assistance
JP3690992B2 (en) Abnormality diagnosis method and apparatus for thermal power plant
CN106382842A (en) Pipe explosion monitoring method and system for cement plant waste heat recovery multi-loop heat exchanger
JP7142545B2 (en) Boiler tube leak diagnostic system and boiler tube leak diagnostic method
JP2008039224A (en) Structure of constant pressure once-through boiler and operating method therefor
JPH08338697A (en) Repair time determining method of heat exchanger for heating furnace
JP2020063851A (en) Heat-exchanger abnormality diagnostic device
JP7392687B2 (en) Boiler fuel preheating device and preheating method
JP7305378B2 (en) Machine learning method, heating furnace abnormality cause identification model, heating furnace abnormality cause identification method, and heating furnace abnormality cause identification device
KR102112549B1 (en) Apparatus for detecting hole of tube of the channel type recuperator
JP6822435B2 (en) Elucidation device and elucidation method of the cause of deterioration of fuel intensity in the heating furnace
JP7000255B2 (en) Boiler equipment and power generation equipment
KR100544237B1 (en) Apparatus for measuring fouling of boiler for power station

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11