JPH05280703A - Boiller scale estimating device - Google Patents

Boiller scale estimating device

Info

Publication number
JPH05280703A
JPH05280703A JP4073993A JP7399392A JPH05280703A JP H05280703 A JPH05280703 A JP H05280703A JP 4073993 A JP4073993 A JP 4073993A JP 7399392 A JP7399392 A JP 7399392A JP H05280703 A JPH05280703 A JP H05280703A
Authority
JP
Japan
Prior art keywords
boiler
dirt
heat
state
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4073993A
Other languages
Japanese (ja)
Inventor
Makio Masuda
真喜夫 桝田
Toshikatsu Fujiwara
敏勝 藤原
Shoji Naito
昭二 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP4073993A priority Critical patent/JPH05280703A/en
Publication of JPH05280703A publication Critical patent/JPH05280703A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To indicate the present scale of the heat transfer surfaces of a boiler and predict and indicate the scale at an optional succeeding step. CONSTITUTION:From information of sensors 21, a state judging device 23 judges how a boiler is operated on what loading level at present. A fuel property decision device 24 decides the fuel property from fuel information 22. A gas temperature cumulative arithmetic device 25 performs cumulative arithmetic according to information from the state judging device 23 and the fuel property decision device 24, and estimates the gas temperatures on the heat transfer surfaces to obtain the heat transmission coefficient. A static scale state arithmetic device 27 compares the heat transmission coefficient with that obtained from actual observations to obtain a static scale state factor. A dynamic characteristic scale arithmetic device 28 obtains a dynamic characteristic scale factor from the static scale state factor, and the estimation device 29 obtains the scale state at an optional succeeding step and indicate it on the scale indicator 30.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】事業用、産業用ボイラ等におい
て、各伝熱面の汚れ状態を推定するボイラ汚れ推定装置
に関する。
[Field of Industrial Application] The present invention relates to a boiler contamination estimating device for estimating the contamination state of each heat transfer surface in a commercial or industrial boiler.

【0002】[0002]

【従来の技術】従来の火力プラントにおいては、供給す
る電力は基低負荷であったのに対し、最近ではDSS
(ディリー・スタート・ストップ)化が進み、不足負荷
を補うものとなっている。従来のように供給する電力が
基低負荷であれば、負荷変動がなく、伝熱面の汚れは経
過時間に比例している。また、石炭だきのボイラプラン
トで使用する石炭の種類も1〜2種類であったため、炭
種による汚れ方も一様であり、特にボイラ伝熱面の汚れ
を推定する必要もなく、一定時間ごとにスートブロア装
置を起動させていた。このスートブロア装置は、起動指
令が与えられると、ボイラ内または外部の蒸気を伝熱面
に吹き付けて掃除を行なうものである。
2. Description of the Related Art In a conventional thermal power plant, the electric power supplied is a low load, but recently, DSS has been used.
(Daily start / stop) is progressing, and it is compensating for the insufficient load. If the electric power supplied as in the conventional case is a low load, there is no load fluctuation, and the contamination of the heat transfer surface is proportional to the elapsed time. Moreover, since the types of coal used in the coal-fired boiler plant were 1 to 2 types, the manner of fouling by the coal type was uniform, and it was not necessary to estimate the fouling of the heat transfer surface of the boiler, and it was not necessary to estimate the fouling of the boiler heat transfer surface at regular intervals. I was activating the sootblower device. When a start command is given, the soot blower device blows steam inside or outside the boiler onto the heat transfer surface for cleaning.

【0003】[0003]

【発明が解決しようとする課題】しかし、最近では、D
SS化による急負荷変動や多炭種燃料により、ボイラ各
伝熱面の汚れは、従来に比べてかなり多様となってい
る。また、ボイラは時定数が大きなプラントであるた
め、負荷変動が多くなると、その変動分をすぐ観測する
ことができず、この結果、プラント過渡時のデータを取
扱うことになり、信頼度が低下するという問題があっ
た。また、汚れの状態を判断するのは、プラント運転員
の主観に任されており、装置の自動化は未だなされてい
ない。
However, recently, D
Due to rapid load fluctuations due to SS and multi-carbon type fuel, stains on each heat transfer surface of the boiler are much more diverse than in the past. In addition, since the boiler is a plant with a large time constant, when the load fluctuations increase, it is not possible to immediately observe the fluctuations, which results in the handling of data during plant transients, resulting in a decrease in reliability. There was a problem. Further, it is up to the plant operator's subjectivity to judge the state of dirt, and automation of the apparatus has not yet been made.

【0004】本発明は上記実情に鑑みてなされたもの
で、通常運転時や、負荷変動によるボイラの過渡状態
や、燃料の種類の違いによらず、ボイラ伝熱面の汚れ状
態を監視でき、数ステップ先のボイラ伝熱面の汚れを予
測し得るボイラ汚れ推定装置を提供することを目的とす
る。
The present invention has been made in view of the above-mentioned circumstances, and can monitor the fouling state of the boiler heat transfer surface regardless of the transient state of the boiler due to load fluctuations and the difference in fuel type during normal operation. It is an object of the present invention to provide a boiler fouling estimation device that can predict fouling of a boiler heat transfer surface several steps away.

【0005】[0005]

【課題を解決するための装置】本発明に係るボイラ汚れ
推定装置は、各種センサから得られる観測値からボイラ
の運転状況を把握する状態判定装置と、燃料情報からボ
イラが使用している燃料性状を決定する燃料性状決定装
置と、ボイラ各伝熱面のガス温度を積み上げ方式により
求めるガス温度積み上げ演算装置と、この演算装置によ
り得られたガス温度からボイラ熱貫流率を計算する熱貫
流率演算装置と、この熱貫流率演算装置により得られた
熱貫流率と実観測値により得られた熱貫流率との比から
ボイラ内の汚れ指数を求める静的状態汚れ演算装置と、
この演算装置により求めた静的状態汚れ指数と動特性対
応モデルにより配管のメタル温度補正処理及び時間平均
処理を行なって動的汚れ指数を求める動特性汚れ演算装
置と、この動特性汚れ演算装置により求めた汚れ指数及
び過去数点のデータから任意ステップ先の汚れを予測す
る汚れ予測装置とを備えたことを特徴とする。
A boiler fouling estimation apparatus according to the present invention is a state determination apparatus for grasping the operating status of a boiler from observation values obtained from various sensors, and a fuel property used by the boiler from fuel information. A fuel property determination device that determines the gas temperature, a gas temperature stacking calculation device that determines the gas temperature of each boiler heat transfer surface by a stacking method, and a heat transfer coefficient calculation that calculates the boiler heat transfer coefficient from the gas temperature obtained by this calculation device. The device, a static state fouling computing device for obtaining a fouling index in the boiler from the ratio of the fouling factor obtained by this heat fusing factor calculation device and the actual observation value,
A dynamic characteristic dirt calculator for calculating a dynamic dirt index by performing a metal temperature correction process and a time averaging process for pipes based on a static state dirt index and a dynamic characteristic correspondence model obtained by this calculator, and this dynamic characteristic dirt calculator A stain prediction device for predicting stain at an arbitrary step destination from the obtained stain index and data of the past several points is provided.

【0006】[0006]

【作用】各種センサによりプラントの各状態を観測し、
現在ボイラがどの負荷レベルが運転されているかを状態
判定装置で判定し、ボイラが低負荷帯の例えば30%以
上の状態であると判定した場合に演算開始の指示及び検
出情報をガス温度積み上げ演算装置に入力する。
[Operation] Observe each state of the plant by various sensors,
The state determination device determines which load level the boiler is currently operating, and when it is determined that the boiler is in a state of, for example, 30% or more in the low load zone, a calculation start instruction and detection information are added to the gas temperature accumulation calculation. Input to the device.

【0007】ガス温度積み上げ演算装置は、演算開始の
指示により動作し、節炭器入口ガス温度の観測値からボ
イラの上流側の各伝熱面のガス温度を推定する。すなわ
ち、各伝熱面のガス温度は直接計測できないが、ボイラ
最下流の節炭器出口ガス温度については観測できるた
め、その温度から上流側の各伝熱面のガス温度を推定す
る。この推定したガス温度をボイラ熱貫流率演算装置に
入力して熱貫流率を求め、動特性汚れ演算装置に入力す
る。
The gas temperature accumulation computing device operates according to an instruction to start computation, and estimates the gas temperature of each heat transfer surface on the upstream side of the boiler from the observed value of the gas temperature at the inlet of the economizer. That is, although the gas temperature of each heat transfer surface cannot be directly measured, the gas temperature of the outlet of the economizer at the most downstream side of the boiler can be observed. Therefore, the gas temperature of each heat transfer surface on the upstream side is estimated from that temperature. The estimated gas temperature is input to the boiler heat transmission coefficient calculation device to obtain the heat transmission coefficient, and is input to the dynamic characteristic contamination calculation device.

【0008】この静的状態汚れ演算装置は、ボイラ熱貫
流率演算装置から入力される理論的な熱貫流率と、実観
測値から得られる水及び蒸気側の熱貫流率との比をとる
ことでボイラの静的汚れ指数を求める。更に動特性汚れ
演算装置において、上記静的状態汚れ指数と動特性対応
モデルにより配管のメタル温度補正処理及び時間平均処
理を行なって動的汚れ指数を求め、更に、この動的汚れ
指数及び過去数点のデータから任意ステップ先の汚れを
予測する。上記汚れがどのように変化するかにより、運
転員はスートブロアの起動タイミングを知ることがで
き、ボイラ状態の理解が容易となる。
This static-state fouling calculator calculates the ratio between the theoretical heat transfer coefficient input from the boiler heat transfer coefficient calculator and the water and steam side heat transfer coefficient obtained from the actual observed values. Calculate the static dirt index of the boiler with. Further, in the dynamic characteristic dirt calculator, a dynamic dirt index is obtained by performing a metal temperature correction process and a time averaging process of the pipe by the static state dirt index and the dynamic characteristics correspondence model, and further, the dynamic dirt index and the past number. Predict the stain at any step ahead from the point data. Depending on how the dirt changes, the operator can know the start timing of the soot blower, and the boiler state can be easily understood.

【0009】[0009]

【実施例】以下、図面を参照して本発明の一実施例を説
明する。図1は本発明の対象となるボイラの系統図を示
すものである。図1において、1は給炭機、2は微粉炭
機、3は火炉、4はガス再循環通風機、5は空気予熱
器、6は押込通風機、7はつり下げ過熱器、8は横置過
熱器、9は主蒸気管、10は高温再熱蒸気管、11は低
温再熱器、12は再熱器管、13は1次過熱器管、14
は2次過熱器管、15は節炭器である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows a system diagram of a boiler to which the present invention is applied. In FIG. 1, 1 is a coal feeder, 2 is a pulverized coal machine, 3 is a furnace, 4 is a gas recirculation aerator, 5 is an air preheater, 6 is a forced draft fan, 7 is a suspension superheater, and 8 is horizontal. Superheater, 9 main steam pipe, 10 high temperature reheat steam pipe, 11 low temperature reheater, 12 reheater pipe, 13 primary superheater pipe, 14
Is a secondary superheater tube, and 15 is a economizer.

【0010】ボイラは、燃料を燃焼させて蒸気を発生さ
せる装置であり、まず、空気ファンにより外部の空気を
吸い込み、火炉3においてバーナから吹き込まれた燃料
を空気と良く混合して燃焼させる。そこで発生した高温
の燃焼ガスから熱を吸収し、ガスをある温度まで冷却す
る。火炉壁には細いチューブが張り巡らされ、その中に
は給水ポンプにより引き上げられた水が循環しており、
水とガスとで熱交換を行なう。これを蒸発管という。火
炉3では、冷却効果を上げて放射熱を吸収する。
The boiler is a device for combusting fuel to generate steam. First, the air fan sucks the outside air, and the fuel blown from the burner in the furnace 3 is mixed well with the air and burned. Heat is absorbed from the high temperature combustion gas generated there, and the gas is cooled to a certain temperature. A thin tube is stretched around the furnace wall, and the water drawn up by the water supply pump circulates in it.
Heat exchange between water and gas. This is called an evaporation tube. In the furnace 3, the cooling effect is enhanced and radiant heat is absorbed.

【0011】過熱器7,8は、蒸発管で発生した蒸気を
過熱するもので、伝熱方式の違いから放射形、接触形、
放射接触形に分けられる。放射形過熱器は、燃焼ガスの
高温域すなわち火炉3の上部または火炉壁に配置し、放
射熱により熱交換を行なう。接触形過熱器は、ボイラ本
体の低温ガス通路に配置し放射熱を吸収する。放射接触
形過熱器は、火炉出口付近に配置し、放射と接触の両方
により熱を吸収する。
The superheaters 7 and 8 superheat the steam generated in the evaporation pipes, and depending on the difference in the heat transfer system, the radiation type, the contact type,
Radial contact type. The radiant superheater is arranged in the high temperature region of the combustion gas, that is, in the upper part of the furnace 3 or in the furnace wall, and performs heat exchange by radiant heat. The contact type superheater is arranged in the cold gas passage of the boiler body and absorbs radiant heat. The radiant contact superheater is located near the furnace outlet and absorbs heat by both radiation and contact.

【0012】再熱器11は、過熱器7,8と同様に放射
形、接触形、放射接触形がある。再熱器11は、タービ
ン高圧部より蒸気を取り出し、ボイラ内で再熱し、中、
低圧タービンに戻す。また、再熱器11の出口部は、ガ
スの比較的高温部に置かれる。再熱器11は、ボイラ内
の燃焼ガスや再循環ガスにより熱交換を行なう。節炭器
15は、煙突から排出されるガスの保有熱を有効利用す
るもので、熱効率の向上を図る。
The reheater 11 is of a radial type, a contact type, or a radial contact type, like the superheaters 7 and 8. The reheater 11 takes out steam from the high pressure part of the turbine and reheats it in the boiler.
Return to low pressure turbine. Also, the outlet of the reheater 11 is placed in a relatively hot part of the gas. The reheater 11 exchanges heat with the combustion gas and recirculation gas in the boiler. The economizer 15 makes effective use of the retained heat of the gas discharged from the chimney, and improves the thermal efficiency.

【0013】空気予熱器5は、節炭器15から出た燃焼
ガスの熱を回収してボイラへの供給空気を予熱し、ボイ
ラの効率を高める。つまり、排ガス温度をできるだけ下
げるようにするが、下げ過ぎるとガス中の無水硫酸によ
り酸化物を生成するので、注意が必要である。
The air preheater 5 recovers the heat of the combustion gas emitted from the economizer 15 and preheats the air supplied to the boiler to improve the efficiency of the boiler. In other words, the exhaust gas temperature should be lowered as much as possible, but care must be taken as oxides are generated by the anhydrous sulfuric acid in the gas if it is lowered too much.

【0014】図2は、上記ボイラの汚れを推定する汚れ
推定装置の構成図である。同図において、21はボイラ
の各部分に取り付けられた各種センサで、例えば主給水
流量、再熱蒸気流量、給水圧力/温度、主蒸気/再熱蒸
気出入口圧力及び温度等を検出し、状態判定装置23に
入力する。また、この状態判定装置23には、ボイラが
使用している燃料に関する燃料情報22、例えば石炭を
使用している場合には、その石炭に関する情報を入力す
る。状態判定装置23は、上記入力情報から現在ボイラ
がどの負荷レベルでどのように運転されているかを判定
し、例えばボイラが低負荷帯の30%以上の状態である
と判定した場合に演算開始の指示及び各種検出情報をガ
ス温度積み上げ演算装置25に入力する。
FIG. 2 is a block diagram of a dirt estimating device for estimating the dirt of the boiler. In the figure, 21 is various sensors attached to each part of the boiler, for example, the main feed water flow rate, reheat steam flow rate, feed water pressure / temperature, main steam / reheat steam inlet / outlet pressure and temperature, etc. are detected to determine the state. Input to the device 23. In addition, fuel information 22 regarding the fuel used by the boiler, for example, when coal is used, is input to the state determination device 23. The state determination device 23 determines how and at what load level the boiler is currently operating from the above input information. For example, when it is determined that the boiler is in a state of 30% or more of the low load zone, the calculation is started. The instruction and various detection information are input to the gas temperature accumulation computing device 25.

【0015】また、上記燃料情報22は、燃料性状決定
装置24に入力される。この燃料性状決定装置24は、
燃料情報22からミル内にある石炭が混炭か単一炭種で
あるかどうか等の現状の燃料性状を決定し、その情報を
ガス温度積み上げ演算装置25へ入力する。
Further, the fuel information 22 is input to the fuel property determination device 24. This fuel property determination device 24 is
The current fuel properties such as whether the coal in the mill is a mixed coal or a single coal type is determined from the fuel information 22, and the information is input to the gas temperature accumulation calculation device 25.

【0016】ガス温度積み上げ演算装置25は、状態判
定装置23からの指示及び入力情報により積み上げ演算
を行ない、節炭器入口ガス温度の観測値からボイラの上
流側の各伝熱面(1次過熱器入口)までガス温度を推定
し、ボイラ熱貫流率演算装置26に入力する。この熱貫
流率演算装置26は、ガス温度積み上げ演算装置25に
より推定したガス温度を基に熱貫流率を求め、静的状態
汚れ演算装置27に入力する。
The gas temperature stacking computing device 25 carries out a stacking computation based on the instruction and input information from the state determining device 23. From the observed value of the gas temperature at the economizer inlet, each heat transfer surface (primary overheating) of the boiler is detected. The gas temperature is estimated up to the equipment inlet) and is input to the boiler heat transmission coefficient calculation device 26. The heat transmission coefficient calculation device 26 obtains the heat transmission coefficient based on the gas temperature estimated by the gas temperature accumulation calculation device 25, and inputs it to the static state contamination calculation device 27.

【0017】この静的状態汚れ演算装置27は、ボイラ
熱貫流率演算装置26から入力される熱貫流率と、実観
測値から得られる水及び蒸気側の熱貫流率とを比較して
静的汚れ指数を求め、動特性汚れ演算装置28に入力す
る。この動特性汚れ演算装置28は、上記静的汚れ指数
から動特性汚れ指数を求め、汚れ予測装置29及び汚れ
表示装置30に出力する。この汚れ表示装置30は、動
特性汚れ演算装置28で求めた現在の汚れと、汚れ予測
装置29で求めた任意ステップ先の汚れの両方を表示す
る。
The static-state fouling calculator 27 compares the heat-penetration factor input from the boiler heat-penetration factor calculator 26 with the heat-penetration factors on the water and steam sides obtained from actual observation values, and compares them with each other. The dirt index is obtained and input to the dynamic characteristic dirt calculator 28. The dynamic characteristic stain computing device 28 obtains a dynamic characteristic stain index from the static stain index and outputs it to the stain predicting device 29 and the stain display device 30. The stain display device 30 displays both the current stain obtained by the dynamic characteristic stain computing device 28 and the stain at an arbitrary step destination obtained by the stain prediction device 29.

【0018】次に上記実施例の動作を図3に示すフロー
チャートを参照して説明する。各種センサ21からのプ
ラント観測値及び燃料情報22は、状態判定装置23に
入力される。状態判定装置23は、プラントの各観測値
により、例えば、現在の負荷レベルにおける燃料量や蒸
気量や蒸気温度や圧力から、ボイラが静定もしくは過渡
状態の始まりか又は、過渡状態が終りに近づいているか
を判断する。即ち、状態判定装置23は、上記入力情報
から現在ボイラがどの負荷レベルでどのように運転され
ているかを判定し、ボイラが低負荷帯の30%以上の状
態であると判定した場合に演算開始の指示及び検出情報
をガス温度積み上げ演算装置25に入力する。
Next, the operation of the above embodiment will be described with reference to the flow chart shown in FIG. Plant observation values and fuel information 22 from various sensors 21 are input to the state determination device 23. The state determination device 23 determines whether the boiler is at the beginning of a static state or a transient state or the end of the transient state, for example, from the fuel amount, the steam amount, the steam temperature, and the pressure at the current load level, based on each observed value of the plant. To determine if That is, the state determination device 23 determines how and at what load level the boiler is currently operating from the above input information, and when it determines that the boiler is in a state of 30% or more of the low load zone, the calculation start And the detection information are input to the gas temperature accumulation arithmetic unit 25.

【0019】ここで対象としている臨界圧力ボイラは、
低負荷域(30%未満)になると、亜臨界圧力状態とな
り、蒸気の状態が湿り気のない状態から、湿り気を帯び
た水と蒸気が分離し始める状態となる。この状態では蒸
気圧力が変化しても温度は飽和温度以上にはならないた
め、火炉の出口温度がある程度以上には上昇しない。ま
た、エンタルピも飽和状態になる。熱交換は、蒸気とガ
スによって行なわれるため、蒸気温度が飽和状態で上昇
しない場合では、実運用にならないのでガス温度積み上
げ演算装置25での計算は行なわない。
The critical pressure boiler targeted here is
In the low load region (less than 30%), the state becomes a subcritical pressure state, and the state of steam becomes a state where there is no moisture, and the state where the moisture-laden water and the steam begin to separate. In this state, the temperature does not rise above the saturation temperature even if the steam pressure changes, so the outlet temperature of the furnace does not rise above a certain level. Also, the enthalpy becomes saturated. Since the heat exchange is performed by the steam and the gas, when the steam temperature does not rise in a saturated state, the gas temperature accumulation calculation device 25 does not perform the calculation because the actual operation is not performed.

【0020】また、燃料性状決定装置24は、プラント
観測値のうち、石炭の燃料性状、例えば、炭素成分や硬
度などのデータと、ボイラが現在使用している燃料性状
を決定する燃料情報22からミル内にある石炭が混炭か
単一炭種であるかどうか等の現状の燃料性状を決定し、
その情報をガス温度積み上げ演算装置25へ入力する。
Further, the fuel property determination device 24 uses the data of the fuel properties of coal, such as the carbon content and hardness, among the plant observation values, and the fuel information 22 for determining the fuel properties currently used by the boiler. Determine the current fuel properties such as whether the coal in the mill is mixed coal or single coal type,
The information is input to the gas temperature accumulation computing device 25.

【0021】ガス温度積み上げ演算装置25は、状態判
定装置23からの指示により動作し、節炭器入口ガス温
度の観測値からボイラの上流側の各伝熱面(1次過熱器
入口)までガス温度を推定する。すなわち、各伝熱面の
ガス温度は直接計測できないが、ボイラ最下流の節炭器
出口ガス温度は観測できるため、その温度から直ぐ上流
の節炭器入口ガス温度を求める。求め方は、その伝熱面
でどれだけ熱交換するかは予め設計されているので、現
状の温度から熱交換分だけ積み上げていく。求める順序
は、節炭器、煙道蒸発器、横置再熱器、横置過熱器、つ
り下げ再熱器、3次過熱器、2次過熱器、1次過熱器の
順である。
The gas temperature stacking calculation device 25 operates according to an instruction from the state determination device 23, and the gas from the observed value of the gas temperature at the inlet of the economizer to each heat transfer surface on the upstream side of the boiler (primary superheater inlet) Estimate the temperature. That is, although the gas temperature of each heat transfer surface cannot be directly measured, the temperature of the outlet gas of the economizer at the most downstream side of the boiler can be observed. Therefore, the temperature of the gas of the economizer inlet immediately upstream of the temperature can be obtained. As for how to obtain it, how much heat is exchanged at the heat transfer surface is designed in advance, so the heat exchange will be accumulated from the current temperature. The order to be obtained is the economizer, the flue vaporizer, the horizontal reheater, the horizontal superheater, the suspension reheater, the tertiary superheater, the secondary superheater, and the primary superheater.

【0022】また、ボイラ熱貫流率演算装置26は、ガ
ス温度積み上げ演算装置25より送られてくるガス温度
から熱貫流率を演算により求め、静的状態汚れ演算装置
27に出力する。
Further, the boiler heat transfer coefficient calculating device 26 calculates the heat transfer coefficient from the gas temperature sent from the gas temperature accumulation calculating device 25, and outputs it to the static state contamination calculating device 27.

【0023】この静的状態汚れ演算装置27は、上記熱
貫流率演算装置26から入力される理論的な熱貫流率
と、実観測値から得られる水及び蒸気側の熱貫流率との
比をとることでボイラの静的汚れ指数を求め、動特性汚
れ演算装置28に入力する。
The static-state fouling calculator 27 calculates the ratio between the theoretical coefficient of heat transfer inputted from the coefficient of heat transfer coefficient calculation device 26 and the coefficient of heat transfer on the water and steam sides obtained from the actual observation value. By taking the static dirt index of the boiler, it is input to the dynamic characteristics dirt calculator 28.

【0024】上記ガス温度積み上げ演算装置25により
求められたガス温度から各伝熱面を通じてボイラ内部の
水又は蒸気が加熱され、エネルギを吸収する。つまり、
ガス側の持つエネルギが全て水又は蒸気側に伝われば、
その伝熱面の汚れはないと考えられ、伝熱面が汚れてい
ればエネルギは全て伝わらないことになる。ここでは、
この伝熱面の汚れを求めるため、ガス温度積み上げによ
り求めた理論的熱貫流率と実観測値から得られる(水及
び蒸気側)熱貫流率との比をとり、それを汚れ指数とし
ている。具体的には次の手順で汚れ指数を求める。ガス
放出熱量と給水蒸気受熱量及びガスから給水への伝熱量
が等しいとすると、次の関係が成り立つ。 Qg =Cpg(Tg1−Tg2)Wg Qs =Cps(Ts2−Ts1)Ws Qk =K・Hs ・ΔTm ここで、Qg :ガス放出熱量、Qs :給水蒸気受熱量、
Qk :ガスから給水への伝熱量であり、各記号は、 Cpg:ガス比熱 Cps:給水又は蒸気比熱 Hs :伝熱面積 ΔTm :対数平均温度 K:熱貫流率 Tg1:入口ガス温度 Tg2:出口ガス温度 Ts1:入口給水又は蒸気温度 Ts2:出口給水又は蒸気温度 Wg :ガス流量 Ws :給水又は蒸気流量 である。
Water or steam inside the boiler is heated through the heat transfer surfaces from the gas temperature obtained by the gas temperature accumulation calculator 25, and absorbs energy. That is,
If all the energy on the gas side is transferred to the water or steam side,
It is considered that the heat transfer surface is not contaminated, and if the heat transfer surface is contaminated, all energy will not be transferred. here,
In order to determine the fouling of the heat transfer surface, the ratio of the theoretical heat transfer coefficient obtained by stacking the gas temperatures and the heat transfer coefficient obtained on the actual observation value (on the water and steam sides) is taken as the fouling index. Specifically, the dirt index is obtained by the following procedure. If the amount of heat released from the gas, the amount of heat received from the steam supply, and the amount of heat transferred from the gas to the water supply are equal, the following relationship holds. Qg = Cpg (Tg1-Tg2) Wg Qs = Cps (Ts2-Ts1) Ws Qk = KHsΔTm where Qg is the amount of heat released from gas, Qs is the amount of heat received from steam supply,
Qk: Heat transfer amount from gas to water supply, each symbol is Cpg: Gas specific heat Cps: Water supply or steam specific heat Hs: Heat transfer area ΔTm: Logarithmic mean temperature K: Heat transfer coefficient Tg1: Inlet gas temperature Tg2: Outlet gas Temperature Ts1: Inlet water supply or steam temperature Ts2: Outlet water supply or steam temperature Wg: Gas flow rate Ws: Water supply or steam flow rate

【0025】汚れ指数は、理論的な熱貫流率に対する観
測データから逆算される熱貫流率との比であり、ガスか
ら給水への伝熱量Qk とガス放出熱量とが等しいとする
と、汚れは「α=K・Hs ・Tm /Qk 」という形で求
められることになる。このとき、ガス温度積み上げ演算
装置25より得られるガス温度推定値を使用する。
The fouling index is the ratio of the theoretical heat transfer coefficient to the heat transfer coefficient calculated back from the observed data, and if the heat transfer amount Qk from the gas to the water supply and the gas release heat amount are equal, the fouling is " .alpha. = K.Hs.Tm / Qk ". At this time, the gas temperature estimated value obtained from the gas temperature accumulation arithmetic unit 25 is used.

【0026】図3は、各伝熱面の演算順序を示したもの
である。ガス温度を推定するためには、ボイラの下流側
である節炭器出口ガス温度の観測値からボイラ上流側に
向かって計算をしていく。主給水流量A1 、再熱蒸気流
量A2 、給水圧力/温度A3、主蒸気/再熱蒸気出入り
圧力及び温度4 からボイラ熱出力A5 を求める。また、
燃料性状決定装置24により決定された燃料性状A6 及
び排ガス温度/酸素量A7 からボイラ効率理論ガス量A
8 を求める。更にガス再循環ファン(GRF)、ダンパ
開度A9 等からガス再循環(GR:GAS RECURCURATION
)量A10を求める。そして、上記ボイラ熱出力A5 、
ボイラ効率理論ガス量A8 、GR量A10から火炉出口全
ガス量A11を求める。更にこの火炉出口全ガス量A11
と、再熱器パス節炭器出口ガス温度、煙道蒸発器入口ガ
ス温度A12からパスガス量(過熱/再熱器)A13を求め
る。
FIG. 3 shows the calculation sequence of each heat transfer surface. In order to estimate the gas temperature, calculation is performed from the observed gas temperature at the outlet of the economizer, which is the downstream side of the boiler, toward the upstream side of the boiler. The boiler heat output A5 is calculated from the main feed water flow rate A1, the reheat steam flow rate A2, the feed water pressure / temperature A3, the main steam / reheat steam inlet / outlet pressure and the temperature 4. Also,
From the fuel property A6 and the exhaust gas temperature / oxygen amount A7 determined by the fuel property determination device 24, the boiler efficiency theoretical gas amount A
Ask for 8. Furthermore, gas recirculation fan (GRF), damper opening A9, etc. are used for gas recirculation (GR: GAS RECURCURATION).
) Obtain the quantity A10. And the boiler heat output A5,
The total gas amount A11 at the furnace outlet is calculated from the theoretical gas amount A8 and the GR amount A10 of the boiler efficiency. Furthermore, this furnace outlet total gas amount A11
Then, the pass gas amount (superheat / reheater) A13 is obtained from the reheater pass economizer outlet gas temperature and the flue evaporator inlet gas temperature A12.

【0027】一方、節炭器バイパス温度、節炭器出口ガ
ス温度、脱硝ガス温度、GR量A14から節炭器バイパス
ガス量A15を求める。そして、この節炭器バイパスガス
量A15と上記パスガス量(過熱/再熱器)A13がボイラ
熱貫流率演算装置26に送られ、各部伝熱面の熱吸収
量、つまり、ボイラ熱貫流率が求められる。このボイラ
熱貫流率演算装置26で求めたボイラ熱貫流率が静的状
態汚れ演算装置27に送られる。
On the other hand, the economizer bypass gas amount A15 is obtained from the economizer bypass temperature, the economizer outlet gas temperature, the denitration gas temperature, and the GR amount A14. Then, the amount A15 of bypass gas for the economizer and the amount A13 of pass gas (superheater / reheater) are sent to the boiler heat transmission coefficient calculation device 26, and the heat absorption amount of each part heat transfer surface, that is, the boiler heat transmission coefficient is obtained. Be done. The boiler heat transmission coefficient calculated by the boiler heat transmission coefficient calculation device 26 is sent to the static state contamination calculation device 27.

【0028】静的状態汚れ演算装置27は、上記したよ
うにボイラ熱貫流率演算装置26からの熱貫流率と、実
観測値から得られる水及び蒸気側の熱貫流率B1 とを比
較して静的汚れ指数を求める。
The static-state fouling calculator 27 compares the heat-penetration factor from the boiler heat-penetration factor calculator 26 with the heat-penetration factor B1 on the water and steam sides obtained from the actual observation value, as described above. Determine the static dirt index.

【0029】しかし、負荷変動や燃料である石炭の種類
が異なったりして過渡的な状態が生じる場合が多い。そ
のような場合、ボイラは時定数の大きなプロセスである
ため、時間遅れなどにより任意の状態を正確に示すデー
タは得難く、補償されない。そのため動特性汚れ演算装
置28において、動特性モデルを用い、そこにメタル温
度の補正項を設け、かつ、時間平均処理を行ない汚れを
求める。
However, a transient state often occurs due to load fluctuations or different types of coal as fuel. In such a case, since the boiler is a process with a large time constant, it is difficult to obtain data that accurately indicates an arbitrary state due to a time delay or the like, and the data cannot be compensated. Therefore, in the dynamic characteristic dirt calculator 28, a dynamic characteristic model is used, a metal temperature correction term is provided therein, and time averaging processing is performed to find the dirt.

【0030】即ち、ボイラ負荷の変動や多炭種の切換等
によって生じる過渡状態の計算に対応するため、以下に
示す動特性モデルにより、配管のメタル温度補正項を設
け、かつ時間平均処理を行なって汚れを求め、汚れ予測
装置29に出力すると共に汚れ表示装置30に出力して
表示する。以下に、動特性モデルについて述べる。動特
性モデルは、先ず、 Z=a1 X2 +a2 X1
That is, in order to correspond to the calculation of the transient state caused by the fluctuation of the boiler load or the switching of the multi-coal species, the metal temperature correction term of the pipe is provided and the time averaging process is performed by the following dynamic characteristic model. The dirt is obtained by outputting the dirt to the dirt prediction device 29 and the dirt display device 30 for display. The dynamic characteristic model will be described below. The dynamic characteristic model is as follows: Z = a1 X2 + a2 X1

【0031】の関係式を作り、式中のZ,X2 ,X1 を
プラントの観測値から算出する。次に現在から過去数点
のサンプリングデータを用いて求められるZ,X2 ,X
1 の値を使用し、係数a1 ,a2 を最小二乗法により求
める。得られた係数a1 の逆数を汚れの値とする。ここ
で動特性モデルの具体的な形を示す。 Z=ifa −ife X2 =^Rg /θf …輻射伝熱による熱交換器の場合、
又は X2 =Fg αg /Qf *(^θg −θm )…対流伝熱に
よる交換器の場合。 なお、(^θg −θm )は以下のように設定した。 X1 =(W/θf )×(1/Δt)×{θm (−1)−
θm } ここで、 a2 :修正係数 ifa :熱交換器管内出口エンタルピー ife :熱交換器管内入口エンタルピー ただし、エンタルピーは直接観測できないため、物性表
等を使用し、温度と圧力から求める。また、それ以外の
外の記号は以下に示す。 ^Rg :汚れがない場合の管外からの推定入熱 Qf :熱交換器管内流量 Fg :熱交換器管外伝熱面積 αg :熱交換器管外熱伝達率 ^θg :熱交換器管外流体の推定平均温度 θm :熱交換器間平均温度 W=Cf Wf +Cm Wm Cf :熱交換器管内流体の比熱量 Cm :熱交換器管の比熱量 Wf :熱交換器管内の流体の重量 Wm :熱交換器管の重量 Δt:サンプリング周期 θm (−1):Δt時間前の管の平均温度
The relational expression (1) is created, and Z, X2, and X1 in the expression are calculated from the observed values of the plant. Next, Z, X2, X obtained from the present several past sampling data
Using the value of 1, the coefficients a1 and a2 are obtained by the method of least squares. The reciprocal of the obtained coefficient a1 is taken as the stain value. Here, a concrete form of the dynamic characteristic model is shown. Z = ifa-ife X2 = ^ Rg / θf ... In the case of a heat exchanger using radiant heat transfer,
Or X2 = Fg αg / Qf * (^ θg-θm) ... In the case of an exchanger using convective heat transfer. In addition, (^ (theta) g- (theta) m) was set as follows. X1 = (W / [theta] f) * (1 / [Delta] t) * {[theta] m (-1)-
θm} where: a2: correction coefficient ifa: heat exchanger tube outlet enthalpy ife: heat exchanger tube inlet enthalpy However, since the enthalpy cannot be directly observed, it is calculated from the temperature and pressure using a physical property table. Other symbols other than the above are shown below. ^ Rg: Estimated heat input from outside the tube when there is no contamination Qf: Heat exchanger tube flow rate Fg: Heat exchanger tube heat transfer area αg: Heat exchanger tube heat transfer coefficient ^ θg: Heat exchanger tube fluid Estimated average temperature θm: Average temperature between heat exchangers W = Cf Wf + Cm Wm Cf: Specific heat capacity of fluid in heat exchanger tube Cm: Specific heat capacity of heat exchanger tube Wf: Weight of fluid in heat exchanger tube Wm: Heat Exchanger tube weight Δt: Sampling period θm (-1): Average temperature of the tube before Δt time

【0032】これは、過渡状態の変動分を、メタル温度
補正項が吸収するため、時間遅れを持つプロセスに対し
て有効となるからである。具体的には、約2〜5分間隔
でサンプリングを行ない、10点分のデータを用いて、
上記動特性モデルのパラメータa1 ,a2 を最小二乗法
を用いて推定するものである。
This is because the variation of the transient state is absorbed by the metal temperature correction term, which is effective for a process having a time delay. Specifically, sampling is performed at intervals of about 2 to 5 minutes, and data for 10 points is used to
The parameters a1 and a2 of the dynamic characteristic model are estimated by using the least square method.

【0033】例題結果を図4に示す。図4において、4
1(Z)は動特性モデル係数出入口エンタルピー差、4
2(x2 )は動特性モデル係数メタル温度補正項、43
(x1 )は動特性モデル静的状態数、44(a1 * )は
動特性モデルによる汚れ指数、45(a1 )は静的汚れ
指数、46は発電量である。発電量46の変化に対し、
静的状態汚れ演算装置27により求められた値44に比
べ、動特性汚れ演算装置28により求められた汚れ指数
45の変動は少なく、現状の汚れを的確に“1”と示し
ている。
An example result is shown in FIG. In FIG. 4, 4
1 (Z) is the dynamic characteristic model coefficient entrance / exit enthalpy difference, 4
2 (x2) is dynamic characteristic model coefficient metal temperature correction term, 43
(X1) is the number of static states of the dynamic model, 44 (a1 * ) Is the dirt index according to the dynamic characteristic model, 45 (a1) is the static dirt index, and 46 is the power generation amount. For changes in the amount of power generation 46,
Compared to the value 44 calculated by the static state dirt calculator 27, the fluctuation of the dirt index 45 calculated by the dynamic characteristic dirt calculator 28 is small, and the current dirt is accurately indicated as "1".

【0034】汚れ予測装置29では、上記動特性モデル
で求められる汚れ指数1/a1 を用いて、過去における
数点のデータ例えば過去10点のデータから次ステップ
の汚れを求める。汚れの予測は、過去数点の汚れ指数を
任意の過去の時点から現在まで使用し、 y=ax+b の形式を用いて次ステップの汚れを求める。ここで y:汚れ指数 x:時間データ a:傾き b:せっぺん 上式は、汚れの過去値を使用しており、バイアス要素を
持つ値が存在するので、この値をせっぺんbとして用い
ている。
The dirt estimating device 29 finds the dirt of the next step from the data of several points in the past, for example, the data of the past 10 points, using the dirt index 1 / a1 obtained by the dynamic characteristic model. For the stain prediction, the stain index of the past several points is used from an arbitrary past time to the present, and the stain of the next step is obtained using the format of y = ax + b. Here, y: stain index x: time data a: slope b: tip The above equation uses the past value of the tip, and since there is a value with a bias element, this value is used as tip b. There is.

【0035】また、汚れ予測装置29では、上記の計算
から任意ステップ先の汚れを求め、汚れ表示装置30に
表示する。この場合、1ステップは、サンプリング時間
を可変としているので、サンプリング時間*n倍の時間
となる。従って、サンプリング時間を2〜5分に設定し
た場合、「(2〜5分)*n倍」先の汚れの表示が可能
となる。
Further, the stain prediction device 29 obtains the stain at an arbitrary step destination from the above calculation and displays it on the stain display device 30. In this case, since the sampling time is variable in one step, the sampling time is multiplied by n times. Therefore, when the sampling time is set to 2 to 5 minutes, it is possible to display the stain "(2 to 5 minutes) * n times" ahead.

【0036】上記のように運転員に対して伝熱面の汚れ
の経過を示すことができ、スートブロアを自動運転でな
い状態で運転員が操作するときなど、スートブロアの起
動タイミングを知ることができる。これらは、状態監視
装置としても有効となる。
As described above, it is possible to indicate to the operator the progress of dirt on the heat transfer surface, and it is possible to know the start timing of the soot blower when the operator operates the soot blower in a state not in automatic operation. These are also effective as a state monitoring device.

【0037】また、ボイラ伝熱面の汚れを検出してスー
トブロアを起動する場合は、ボイラのプロセス各量と、
ユニット計算機(発電所の中央制御に使用する計算機)
からの各種の情報例えば、過熱器スートブロア作動中、
N段バーナ点火などを本発明装置の上位装置に取り込
み、予め設定しておいた作動要素と制約要素の条件を判
断し、スートブロア起動指令を出力する。例えば3次過
熱器入口流体温度または2次過熱器出口流体温度が高
く、かつ、3次過熱器伝熱面の汚れが大ならば、スート
ブロア起動指令を出力する。なお、スートブロアの突発
動作を避けるため、2時間周期で過去のボイラ状態値、
汚れ指数の推移、最長インターバルにより作動グループ
(各伝熱面)を選択し、グループ起動を開始する。スー
トブロア装置は、上記スートブロア起動指令により動作
し、ボイラの各伝熱面に、ボイラ内または外部の蒸気を
吹き付けて伝熱面の清掃を行なう。
Further, when the soot blower is started by detecting dirt on the heat transfer surface of the boiler, each process amount of the boiler and
Unit computer (computer used for central control of power plant)
Various information from, for example, superheater soot blower is operating,
The N-stage burner ignition or the like is taken into the upper device of the device of the present invention, the conditions of the preset operation element and constraint element are judged, and the soot blower start command is output. For example, if the tertiary superheater inlet fluid temperature or the secondary superheater outlet fluid temperature is high, and the tertiary superheater heat transfer surface is heavily contaminated, a soot blower start command is output. In addition, in order to avoid sudden operation of soot blower, the past boiler state value,
Select the operation group (each heat transfer surface) according to the change of the dirt index and the longest interval, and start the group activation. The sootblower device operates according to the sootblower activation command, and blows steam inside or outside the boiler to each heat transfer surface of the boiler to clean the heat transfer surface.

【0038】[0038]

【発明の効果】以上詳記したように本発明によれば、通
常運転(静的状態)時や、負荷変動によるボイラの過渡
状態や、燃料の種類の違いによらず、ボイラ伝熱面の汚
れ計算を行なって汚れ状態を監視でき、また、汚れに応
じて自動的にスートブロアを起動することができる。ま
た、動特性モデルを用いて汚れ指数を演算し、その値で
数ステップ先のボイラ伝熱面の汚れを予測し、それを表
示させることでボイラ状態の予測が可能となる。この予
測により起動のためのタイミングを把握でき、運転員の
ボイラ状態の理解の一助となる。
As described in detail above, according to the present invention, the boiler heat transfer surface is maintained regardless of the normal operation (static state), the transient state of the boiler due to load fluctuation, and the difference in fuel type. A dirt calculation can be performed to monitor the dirt condition, and the soot blower can be automatically activated according to the dirt. Further, the fouling index is calculated using the dynamic characteristic model, the fouling of the boiler heat transfer surface is predicted by several steps with the value, and the boiler state can be predicted by displaying the fouling index. By this prediction, the timing for starting can be grasped and it helps the operator to understand the boiler state.

【図面の簡単な説明】[Brief description of drawings]

【図1】ボイラの概略構成を示す図。FIG. 1 is a diagram showing a schematic configuration of a boiler.

【図2】本発明に係るボイラ汚れ推定装置の構成を示す
ブロック図。
FIG. 2 is a block diagram showing the configuration of a boiler dirt estimation device according to the present invention.

【図3】同実施例における各伝熱面の演算順序を示す
図。
FIG. 3 is a diagram showing a calculation sequence of each heat transfer surface in the embodiment.

【図4】同実施例における動特性モデルの例題結果を示
す図。
FIG. 4 is a diagram showing an example result of a dynamic characteristic model in the example.

【符号の説明】[Explanation of symbols]

1…給炭機、2…微粉炭機、3…火炉、4…ガス再循環
通風機、5…空気予熱器、6…押込通風機、7…つり下
げ過熱器、8…横置過熱器、9…主蒸気管、10…高温
再熱蒸気管、11…低温再熱器、12…再熱器管、13
…1次過熱器管、14…2次過熱器管、15…節炭器、
21…各種センサ、22…燃料情報、23…状態判定装
置、24…燃料性状決定装置、25…ガス温度積み上げ
演算装置、26…ボイラ熱貫流率演算装置、27…静的
状態汚れ演算装置、28…動特性汚れ演算装置、29…
汚れ予測装置、30…汚れ表示装置、41…動特性モデ
ル係数出入口エンタルピー差、42…動特性モデル係数
メタル温度補正項、43…動特性モデル静的状態数、4
4…動特性モデルによる汚れ指数、45…静的汚れ指
数、46…発電量。
1 ... Coal feeder, 2 ... Pulverized coal machine, 3 ... Furnace, 4 ... Gas recirculation ventilator, 5 ... Air preheater, 6 ... Pushing ventilator, 7 ... Suspended superheater, 8 ... Horizontal superheater, 9 ... Main steam pipe, 10 ... High temperature reheat steam pipe, 11 ... Low temperature reheater, 12 ... Reheater pipe, 13
… Primary superheater tube, 14… Secondary superheater tube, 15… Economizer,
21 ... Various sensors, 22 ... Fuel information, 23 ... State determination device, 24 ... Fuel property determination device, 25 ... Gas temperature stacking computing device, 26 ... Boiler heat transmission coefficient computing device, 27 ... Static state fouling computing device, 28 … Dynamic characteristic dirt calculator, 29…
Dirt prediction device, 30 ... Dirt display device, 41 ... Dynamic characteristic model coefficient entrance / exit enthalpy difference, 42 ... Dynamic characteristic model coefficient Metal temperature correction term, 43 ... Dynamic characteristic model static state number, 4
4 ... Fouling index by dynamic characteristic model, 45 ... Static fouling index, 46 ... Power generation amount.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 各種センサから得られる観測値からボイ
ラの運転状況を把握する状態判定装置と、燃料情報から
ボイラが使用している燃料性状を決定する燃料性状決定
装置と、ボイラ各伝熱面のガス温度を積み上げ方式によ
り求めるガス温度積み上げ演算装置と、この演算装置に
より得られたガス温度からボイラ熱貫流率を計算する熱
貫流率演算装置と、この熱貫流率演算装置により得られ
た熱貫流率と実観測値により得られた熱貫流率との比か
らボイラ内の汚れ指数を求める静的状態汚れ演算装置
と、この演算装置により求めた静的状態汚れ指数と動特
性対応モデルにより配管のメタル温度補正処理及び時間
平均処理を行なって動的汚れ指数を求める動特性汚れ演
算装置と、この動特性汚れ演算装置により求めた汚れ指
数及び過去数点のデータから任意ステップ先の汚れを予
測する汚れ予測装置とを具備したことを特徴とするボイ
ラ汚れ推定装置。
1. A state determination device for grasping an operating condition of a boiler from observation values obtained from various sensors, a fuel property determination device for determining a fuel property used by the boiler from fuel information, and a heat transfer surface of each boiler. Gas temperature stacking calculation device that obtains the gas temperature of the above by a stacking method, a heat transmission coefficient calculation device that calculates the boiler heat transmission coefficient from the gas temperature obtained by this calculation device, and the heat obtained by this heat transmission coefficient calculation device. A static state fouling calculator that finds the fouling index in the boiler from the ratio of the fusing rate and the thermal fusing factor obtained from the actual observation value, and a pipe with a static state fouling index and a dynamic characteristic correspondence model found by this computing device. The dynamic characteristic dirt calculator for determining the dynamic dirt index by performing the metal temperature correction processing and the time averaging processing of the above, the dirt index calculated by this dynamic dirt calculator and the data of the past several points. A soil contamination estimation device for estimating soil contamination at an arbitrary step destination from the data.
JP4073993A 1992-03-30 1992-03-30 Boiller scale estimating device Withdrawn JPH05280703A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4073993A JPH05280703A (en) 1992-03-30 1992-03-30 Boiller scale estimating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4073993A JPH05280703A (en) 1992-03-30 1992-03-30 Boiller scale estimating device

Publications (1)

Publication Number Publication Date
JPH05280703A true JPH05280703A (en) 1993-10-26

Family

ID=13534159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4073993A Withdrawn JPH05280703A (en) 1992-03-30 1992-03-30 Boiller scale estimating device

Country Status (1)

Country Link
JP (1) JPH05280703A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010229A (en) * 2004-06-28 2006-01-12 Hitachi Ltd Boiler deterioration diagnosing method, device, system and recording medium for recording program
JP2006194550A (en) * 2005-01-17 2006-07-27 Hitachi Ltd Method and apparatus for estimating generated steam of waste heat recovery boiler, and method and system for supporting maintenance plan of power generation facility
GB2406901B (en) * 2003-10-06 2007-12-27 Ec Power As Heat transfer system
GB2440281A (en) * 2003-10-06 2008-01-23 Ec Power As Prediction of thermal efficiency in a heat transfer system (e.g. CHP)
JP2010101587A (en) * 2008-10-27 2010-05-06 Hitachi Ltd Oxygen burning boiler and method of controlling the same
JPWO2021100760A1 (en) * 2019-11-20 2021-05-27
CN112923349A (en) * 2021-02-26 2021-06-08 华能洛阳热电有限责任公司 Dynamic dirt monitoring method and system for low-temperature economizer of coal-fired boiler

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2406901B (en) * 2003-10-06 2007-12-27 Ec Power As Heat transfer system
GB2440281A (en) * 2003-10-06 2008-01-23 Ec Power As Prediction of thermal efficiency in a heat transfer system (e.g. CHP)
GB2440281B (en) * 2003-10-06 2008-05-07 Ec Power As Heat transfer system
JP2006010229A (en) * 2004-06-28 2006-01-12 Hitachi Ltd Boiler deterioration diagnosing method, device, system and recording medium for recording program
US7260502B2 (en) 2004-06-28 2007-08-21 Hitachi, Ltd. Diagnosis method for boiler degradation, diagnosis apparatus for boiler degradation, diagnosis system for boiler degradation and recording medium that records operation program
US7464002B2 (en) 2004-06-28 2008-12-09 Hitachi, Ltd. Diagnosis method for boiler degradation, diagnosis apparatus for boiler degradation, diagnosis system for boiler degradation and recording medium that records operation program
JP2006194550A (en) * 2005-01-17 2006-07-27 Hitachi Ltd Method and apparatus for estimating generated steam of waste heat recovery boiler, and method and system for supporting maintenance plan of power generation facility
US7801711B2 (en) 2005-01-17 2010-09-21 Hitachi, Ltd. Generated steam estimation method and device for heat recovery steam generator, and maintenance planning support method and system for power generation facility
JP2010101587A (en) * 2008-10-27 2010-05-06 Hitachi Ltd Oxygen burning boiler and method of controlling the same
JPWO2021100760A1 (en) * 2019-11-20 2021-05-27
WO2021100760A1 (en) * 2019-11-20 2021-05-27 株式会社Ihi Information processing device
CN112923349A (en) * 2021-02-26 2021-06-08 华能洛阳热电有限责任公司 Dynamic dirt monitoring method and system for low-temperature economizer of coal-fired boiler

Similar Documents

Publication Publication Date Title
US7890214B2 (en) Method and apparatus for controlling soot blowing using statistical process control
JP4575176B2 (en) Method for estimating generated steam of exhaust heat recovery boiler and maintenance plan support method for power generation equipment
JP3062582B2 (en) Method and apparatus for predicting furnace state of pulverized coal combustion equipment
TW200420858A (en) Exhaust gas treating apparatus
JPS6038522A (en) Soot blower system
JPH0246845B2 (en)
JPH05280703A (en) Boiller scale estimating device
CN103728339B (en) A kind of real-time identification method for average heat resistance of heat-exchange equipment on thermal power boiler side
US6928937B2 (en) Sootblowing control based on boiler thermal efficiency optimization
CN110987211B (en) Method for monitoring metal wall temperature of high-temperature heating surface of boiler based on operation data
JPH05288303A (en) Boiler stained state estimation device
JP2588279B2 (en) Waste heat recovery heat exchanger
JP3809981B2 (en) Intelligent soot blower controller for coal fired boiler facilities
JP4827093B2 (en) Boiler equipment
WO2023085087A1 (en) Combustion gas temperature estimation device, heat transfer surface evaluation device, control device, combustion gas temperature estimation method, heat transfer surface evaluation method, and heat transfer surface management method
JP3264152B2 (en) Air blowing method in coke dry fire extinguishing equipment
CN115388415B (en) Soot blowing system and method for high-temperature area of boiler
JP2530427B2 (en) Boiler automatic management device
JPS5818005A (en) Control system of soot blower
JP7380309B2 (en) Boiler chemical cleaning method
JPS613916A (en) Soot blower controlling device
SU1765614A1 (en) Steam boiler baffle cleaners monitoring
JP2004124852A (en) Evaluation method and evaluation device for exhaust heat recovery equipment
JP2022153783A (en) Heat transfer performance monitoring device and heat transfer performance monitoring method
JPS63286609A (en) Control of soot blower

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608