JP2004124852A - Evaluation method and evaluation device for exhaust heat recovery equipment - Google Patents

Evaluation method and evaluation device for exhaust heat recovery equipment Download PDF

Info

Publication number
JP2004124852A
JP2004124852A JP2002291211A JP2002291211A JP2004124852A JP 2004124852 A JP2004124852 A JP 2004124852A JP 2002291211 A JP2002291211 A JP 2002291211A JP 2002291211 A JP2002291211 A JP 2002291211A JP 2004124852 A JP2004124852 A JP 2004124852A
Authority
JP
Japan
Prior art keywords
heat recovery
exhaust
exhaust heat
exhaust gas
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002291211A
Other languages
Japanese (ja)
Inventor
Yoshihiko Yoshida
吉田 義彦
Masaharu Watabe
渡部 正治
Yuichi Otani
大谷 雄一
Manabu Miyamoto
宮本 学
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002291211A priority Critical patent/JP2004124852A/en
Publication of JP2004124852A publication Critical patent/JP2004124852A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaluation method and an evaluation device for calculating exhaust heat recovering efficiency using heat exchanging amount actually injected into an exhaust heat recovery equipment obtained from exhaust gas temperatures and an exhaust gas flow amount, and accurately evaluating the exhaust heat recovery equipment. <P>SOLUTION: The evaluation method of the exhaust heat recovering equipment 2 for recovering heat from exhaust gas G1 of a generator 3 is characterized in calculating the exhaust heat recovering efficiency using temperature conditions and flow rate conditions of the exhaust gas G1 injected into the exhaust heat recovery equipment 2. The evaluation device 9 of the exhaust heat recovering equipment 2 for recovering heat from the exhaust gas G1 of the generator 2 is characterized in being equipped with a temperature detecting means 6 for measuring the temperatures of the exhaust gas G1, a flow rate detecting means 7 for measuring the flow rate of the exhaust gas G1, and a calculating means 8 for calculating the exhaust heat recovery efficiency using the values detected by the temperature detecting means 6 and the flow rate detecting means 7. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、発電機器、排熱回収機器、および冷暖房機器などから構成されるコージェネレーションシステムの排熱回収機器の評価方法、および評価装置に関する。
【0002】
【従来の技術】
一般に、コージェネレーションシステムとは、エンジンやタービンなどによる従来の発電システムにおいて50%以上捨てられていた一次エネルギを、排熱回収手段等により熱として回収し、冷暖房、給湯などの熱利用設備に再利用するシステムをいうものである。
たとえば、発電機器によって電力を得るだけでなく、発電機器から排出される排ガスの熱を排熱回収機器に投入される水によって回収し、排熱回収機器から排出される水蒸気を冷暖房機器の熱源とする熱回収システムなどが知られている。(例えば、特許文献1参照。)このような熱回収システムは、その設計段階において設定された排ガス温度および排ガス流量の定格値で、排熱回収機器の排熱回収効率が最適となるように排熱回収機器の伝熱性能が設計され、交換熱量の定格値が決定され、交換熱量から排熱回収効率が評価される。このように設計された排熱回収機器の排熱回収効率のカタログ値から、コージェネレーションシステムのエネルギの利用効率が評価されている。
【0003】
【特許文献1】
特開2002−89366号公報(第4項、第1図)
【0004】
【発明が解決しようとする課題】
ところで、上記排熱回収機器の交換熱量は、実際に排熱回収機器に投入される排ガス温度や排ガス流量によって変化し、排ガス温度や排ガス流量が定格値と異なった場合、実際の伝熱性能が設計段階と異なってしまい、実際の交換熱量が交換熱量の定格値より低下してしまうという問題があった。これにより、回収された熱を熱源とする冷暖房機器の能力を正確に見積もることができないという問題があった。たとえば、設計段階で設定に用いられた性能の発電機器と実際に使用される発電機器とが異なる場合や、発電機器が使用されているうちにその性能が低下した場合などに、このような問題が生じる。このように、カタログ値の交換熱量と実際の交換熱量とが異なり、正確な排熱回収機器の排熱回収効率が評価できない、つまり排熱回収機器のカタログ値と同等の排熱回収効率が得られないという問題より、正確な排熱回収機器の評価方法および評価装置が求められていた。
【0005】
本発明は、このような背景の下になされたものであって、実際に排熱回収機器に投入される排ガス温度や排ガス流量から得られる交換熱量を用いて排熱回収効率を求め、正確な排熱回収機器の評価を行う評価方法および評価装置を提供することを目的としている。
【0006】
【課題を解決するための手段】
そこで、本発明者らは、かかる課題を解決すべく研究を行い、排熱回収機器の伝熱性能は、投入される排ガスの熱伝達が支配的になることに着目し、管内乱流熱伝達の実験式の考え方を基に、排ガスの流量条件より排熱回収機器の伝熱性能を求め、この伝熱性能と排ガスの温度条件より交換熱量を求めることができるという知見を得た。このように求められた交換熱量を用いて実際の排熱回収効率を求めることができ、より正確な排熱回収機器の評価を得ることができる。これにより、回収された熱を熱源とする冷暖房機器の能力を正確に見積もることができる。
【0007】
この発明は、かかる知見に基づいてなされたものであって、本発明の排熱回収機器の評価方法は、発電機器の排ガスから熱を回収する排熱回収機器の評価方法であって、前記排熱回収機器に投入される排ガスの温度条件を用いて排熱回収効率を求めることを特徴とする。
この発明の排熱回収機器の評価方法において、排熱回収機器に投入される排ガスの温度条件を用いて排熱回収効率を求めるので、排熱回収効率の定格値より実用に即した排熱回収機器の評価が行われる。
【0008】
また、本発明の排熱回収機器の評価方法は、上記排熱回収機器の評価方法において、前記排熱回収機器に投入される排ガスの流量条件を用いて排熱回収効率を求めることを特徴とする。
この発明の排熱回収機器の評価方法において、排熱回収機器に投入される排ガスの温度条件および排ガスの流量条件を用いて排熱回収効率を求めるので、さらに実用に即した排熱回収機器の評価が行われる。
【0009】
また、本発明の排熱回収機器の評価方法は、上記排熱回収機器の評価方法において、排熱回収効率を求める過程で得られる前記排熱回収機器から排出される排ガス温度に基づいて該排熱回収機器の下流側に設置される熱交換器の材質を選定することを特徴とする。
この発明の排熱回収機器の評価方法において、排熱回収機器から排出される排ガス温度を、排熱回収機器に投入される排ガスの温度条件および排ガスの流量条件を用いて求め、求められた排ガス温度に基づいて排熱回収機器の下流側に設置される熱交換器の材質を選定するので、適正な材質が選定される。
【0010】
また、本発明の排熱回収機器の評価装置は、発電機器の排ガスから熱を回収する排熱回収機器の評価装置であって、前記排熱回収機器の排ガス流入部における排ガスの温度を測定する温度検知手段と、該排熱回収機器の内部を通過する排ガスの流量を測定する流量検知手段と、該温度検知手段および流量検知手段から得られた検出値を用いて排熱回収効率を求める計算手段とを備えていることを特徴とする。
この発明の排熱回収機器の評価装置において、排ガス温度を測定する温度検知手段と、排ガス流量を測定する流量検知手段と、温度知手段および流量知手段から得られた検出値を用いて排熱回収効率を求める計算手段とを備えているので、より正確な排熱回収機器の評価が行われる。
【0011】
【発明の実施の形態】
以下、図面を参照し、この発明の実施の形態について説明する。
図1に排熱回収機器を用いた熱回収システムのモデル図を示す。図において熱回収システム1は、排熱回収機器2(排熱回収ボイラ、排熱回収吸収冷凍機など)に排ガスG1を供給する発電機器3(ガスエンジン、ディーゼルエンジン、SOFCなど)と、排熱回収機器2から熱源としての蒸気Sが供給される冷暖房機器4(ターボ冷凍機、吸収冷凍機、ボイラなど)とを備えて構成されている。また、排熱回収機器2から排出される排ガスG2より熱を回収するため、排ガスG2が供給される熱交換器5が設けられている。
【0012】
このような構成の熱回収システム1において、排熱回収機器2に供給される水W(温度Twi,体積流量Gw)は、排ガスG1(温度Tgi,体積流量Gg)から熱を受け取って蒸気S(温度Tws,体積流量Gs)となり、排ガスG1は熱を放出してG2(温度Tgo,体積流量Gg)となり排熱回収機器2から排出される。このような排熱回収機器2の内部での水Wおよび蒸気Sと排ガスG1,G2との温度変化を示した関係図を図2に示す。
【0013】
図2において、縦軸は温度Tを示し、横軸は排熱回収機器2の内部での水Wおよび蒸気Sと排ガスG1,G2との移動距離Xを示している。横軸のX1は排ガスG1の入口および蒸気Sの出口の位置を示し、X2は排ガスG2の出口および水Wの入口の位置を示している。排ガス温度変化を示す曲線L1は、入口X1において温度Tgiであった排ガスG1が、排熱回収機器2の内部で熱交換をすることにより出口X2において温度Tgoの排ガスG2となることを示している。また、給水温度変化を示す線L2は、入口X2において温度Twiであった水Wが排熱回収機器2の内部で熱交換をすることにより出口X1において温度Twsの水蒸気Sとなることを示している。ここで、水Wの温度が上昇する範囲を昇温部lとし、水Wが水蒸気Sに相変化した範囲を相変化部sとし、相変化部sから昇温部lに入る境界における排ガスの温度を昇温部入口排ガス温度Tguとする。
【0014】
このような排熱回収機器2の伝熱性能を求め、投入される水Wと排ガスG1との交換熱量を求め、実際に投入される排ガス流量Ggおよび入口排ガス温度Tgiを用いて実際の排熱回収効率を求め、排熱回収機器2を評価する評価方法について説明する。
まず、排熱回収機器2の定格値(カタログ値)より昇温部定格伝熱性能(UA)lおよび相変化部定格伝熱性能(UA)sを求める。ここで、排熱回収機器2の定格値として、定格交換熱量Qt,定格排ガス流量Gg,定格入口排ガス温度Tgi,定格出口排ガス温度Tgo,定格給水流量Gw,定格入口給水温度Twi,定格出口蒸気温度Tws,が用いられる。
【0015】
つぎの式(1)〜式(3)より、昇温部定格伝熱性能(UA)lを求める。以下の式で、ρwが水の密度、cpwが水の比熱、ρgが排ガスの密度、cpgが排ガスの比熱である。
Q1=ρw・cpw・Gw・(Tws−Twi) … (1)
Tgu=Tgo+Q1/(ρg・cpg・Gg) … (2)
(UA)l=Q1/ΔTml … (3)
ΔTml=[(Tgu−Tws)−(Tgo−Twi)]/ln[(Tgu−Tws)/(Tgo−Twi)]
式(1)において、各定格値より昇温部の熱交換量である定格昇温部交換熱量Q1が求められる。式(2)において、定格昇温部交換熱量Q1より定格昇温部入口排ガス温度Tguが求められ、昇温部lの対数平均温度差ΔTmlを決定することができる。式(3)において、と定格昇温部交換熱量Q1および昇温部sの対数平均温度差ΔTmlより昇温部定格伝熱性能(UA)lが求められる。
【0016】
また、つぎの式(4)、および式(5)より、相変化部定格伝熱性能(UA)sを求める。
Q2=Qt−Q1 … (4)
(UA)s=Q2/ΔTms … (5)
ΔTms=[(Tgi−Tws)−(Tgu−Tws)]]/ln[(Tgi−Tws)/(Tgu−Tws)] 式(4)において、定格交換熱量Qtと式(1)で求められた定格昇温部交換熱量Q1とより定格相変化部交換熱量Q2を求め、式(5)において、相変化部定格伝熱性能(UA)sが求められる。
【0017】
つぎに、式(1)〜式(5)により求められた昇温部定格伝熱性能(UA)lおよび相変化部定格伝熱性能(UA)sから、実際の排ガス流量Ggと定格ガス流量Ggとを用いて昇温部伝熱性能(UA)lおよび相変化部伝熱性能(UA)sを求める。
(UA)s=(UA)s×(Gg/Gg … (6)
(UA)l=(UA)l×(Gg/Gg … (7)
【0018】
ここで、本発明者らは、排熱回収機器2の伝熱性能は、投入される排ガスの熱伝達が支配的になることに着目し、管内乱流熱伝達の実験式(Colburnの式)の熱伝達率hとレイノルズ数Reとの関係を基に、昇温部伝熱性能(UA)sおよび相変化部伝熱性能(UA)sとGg/Ggとの関係を導き出すこととした。以下の式で、Prはプラントル数、λは熱伝導率、dは管径である。
h=0.023Re0.8・Pr1/3・λ/d … (8)
式(8)は管内乱流熱伝達の実験式より得られる熱伝達率hの関係式で、熱伝達率hはレイノルズ数Reの0.8乗に比例することを示しており、レイノルズ数Reは流速を含む無次元数である。また、式(6)および式(7)のGg/Ggも流速を含む無次元数である。
これらの関係より、本発明者らは、式(6)および式(7)の乗数n=0.8として昇温部伝熱性能(UA)lおよび相変化部伝熱性能(UA)sを求めることとした。
【0019】
このように実際の排ガス流量Ggより求められた昇温部伝熱性能(UA)lおよび相変化部伝熱性能(UA)sと、実際の入口排ガス温度Tgiとを用いて、実際の昇温部熱交換量Q1、相変化部交換熱量Q2、昇温部入口排ガス温度Tgu、出口排ガス温度Tgo、および給水流量Gwを求める。以下の式で、入口給水温度Twiは常温における水の温度、出口蒸気温度Twsは排熱回収機器2の圧力差によって決定される。
Q1=(UA)l・ΔTml … (9)
ΔTml=[(Tgu−Tws)−(Tgo−Twi)]/ln[(Tgu−Tws)/(Tgo−Twi)]
Q1=ρw・cpw・Gw・(Tws−Twi) … (10)
Q1=ρg・cpg・Gg・(Tgu−Tgo) … (11)
Q2=(UA)s・ΔTms … (12)
ΔTms=[(Tgi−Tws)−(Tgu−Tws)]/ln[(Tgi−Tws)/(Tgu−Tws)]
Q2=ρg・cpg・Gg・(Tgi−Tgu) … (13)
式(9)〜(13)を連立して昇温部熱交換量Q1、相変化部交換熱量Q2、昇温部入口排ガス温度Tgu、出口排ガス温度Tgo、および給水流量Gwが求められる。
以上のように求められた昇温部熱交換量Q1、相変化部交換熱量Q2の和が交換熱量Qtとなる。
Qt=Q1+Q2 … (14)
【0020】
上述したように交換熱量Qtが求められ、排熱回収機器2に供給された全熱量に対する交換熱量Qtの比率より、排熱回収効率が求められる。このように求められた実際の排熱回収効率より、正確な排熱回収機器2の評価を得ることができ、排熱回収機器2によって回収された熱を熱源とする冷暖房機器4の能力を正確に見積もることができる。
【0021】
また、排熱回収機器2の評価方法において、排熱回収機器2から排出される排ガス温度(出口排ガス温度Tgo)が求められ、出口排ガス温度Tgoに基づいて排熱回収機器2の下流側に設置される熱交換器5の材質を選定することができる。これにより、適正な材質を選定することができるとともに、熱交換器5および排熱回収機器2と熱交換器5との間の配管(図示せず)の重量を評価することができる。また、適正な材質を選定することで、製作コストを削減することができる。
【0022】
また、図1に示すように、排熱回収機器2の排ガス流入部に設けられた温度センサ(温度検知手段)6および流量センサ(流量検知手段)7と、それぞれのデータ(検出値)が入力される計算装置(計算手段)8とを備えて、排熱回収機器2の評価装置9が構成されている。温度センサ6および流量センサ7より得られた温度データおよび流量データに基づいて、計算装置8によって上述したように排熱回収効率を計算し、逐次的に正確な排熱回収効率を得ることができる。このような評価装置9を用いることで、逐次的に冷暖房機器4の正確な能力を見積もることができる。
【0023】
なお、本実施の形態においては、排ガス流量Ggおよび入口排ガス温度Tgiの両方を用いて排熱回収効率を求めたが、排ガスの流量条件に定格排ガス流量Ggを用いて入口排ガス温度Tgiだけを用いて排熱回収効率を求める評価方法としてもよい。また、排熱回収機器2、発電機器3、冷暖房機器4、および熱交換器5の機器間を接続する配管(図示せず)の内部流体種類、外気温度、断熱条件など、および評価された排熱回収効率を用いて配管からの放熱量を評価することもできる。
【0024】
【発明の効果】
以上説明したように、本発明の排熱回収機器の評価方法によれば、管内乱流熱伝達の実験式の考え方を基に、排熱回収機器に投入される排ガスの温度条件を用いて排熱回収効率を求め、実用に即した排熱回収機器の評価を行うことができる。たとえば、排熱回収機器に投入される排ガスの温度条件が定格値と異なった場合においても、これを反映させ、排熱回収効率の定格値よりも正確な排熱回収効率を用いて、冷暖房機器の能力を正確に見積もることができる。また、排熱回収効率を求める際に、排熱回収機器に投入される排ガスの流量条件を用いることで、さらに実用に即した排熱回収機器の評価を行うことができる。
【0025】
また、排熱回収機器の評価を行う際に得られる排熱回収機器から排出される排ガス温度に基づいて、排熱回収機器の下流側に設置される熱交換器の材質を選定するので、適正な材質を選定することができる。これにより、熱交換器を最適な製作コストで製作することができる。
【0026】
また、本発明の排熱回収機器の評価装置によれば、温度検知手段、流量検知手段、および計算手段とを備えているので、各検知手段によって得られた検出値より逐次的に排熱回収効率の計算を行うことができ、より正確な排熱回収機器の評価を行うことができる。これにより、回収された熱を熱源とする冷暖房機器の正確な能力を逐次的に正確に見積もることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態における排熱回収機器を用いた熱回収システムのモデル図である。
【図2】排熱回収機器の内部での水および蒸気と排ガスとの温度変化を示した関係図である。
【符号の説明】
3 発電機器
G1、G2 排ガス
2 排熱回収機器
5 熱交換器
9 評価装置
6 温度検知手段(温度センサ)
7 流量検知手段(流量センサ)
8 計算手段(計算装置)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an evaluation method and an evaluation device for an exhaust heat recovery device of a cogeneration system including a power generation device, an exhaust heat recovery device, and a cooling and heating device.
[0002]
[Prior art]
In general, a cogeneration system collects primary energy, which has been discarded by 50% or more in a conventional power generation system using an engine or a turbine, as heat by means of a waste heat recovery means or the like, and recycles it to heat utilization equipment such as cooling, heating, and hot water supply. It refers to the system used.
For example, not only can electric power be obtained by a power generating device, but also heat of exhaust gas discharged from the power generating device can be recovered by water input to the exhaust heat recovery device, and steam discharged from the exhaust heat recovery device can be used as a heat source of a cooling and heating device. There are known heat recovery systems. (For example, refer to Patent Document 1.) Such a heat recovery system is configured such that the exhaust heat recovery efficiency of the exhaust heat recovery equipment is optimized at the rated value of the exhaust gas temperature and the exhaust gas flow rate set in the design stage. The heat transfer performance of the heat recovery equipment is designed, the rated value of the exchanged heat is determined, and the exhaust heat recovery efficiency is evaluated from the exchanged heat. From the catalog value of the exhaust heat recovery efficiency of the exhaust heat recovery device designed in this way, the energy use efficiency of the cogeneration system is evaluated.
[0003]
[Patent Document 1]
JP-A-2002-89366 (Section 4, FIG. 1)
[0004]
[Problems to be solved by the invention]
By the way, the amount of heat exchanged by the exhaust heat recovery device varies depending on the temperature of the exhaust gas and the flow rate of the exhaust gas actually supplied to the exhaust heat recovery device, and when the exhaust gas temperature and the flow rate of the exhaust gas are different from the rated values, the actual heat transfer performance is reduced. This is different from the design stage, and there is a problem that the actual exchanged heat becomes lower than the rated value of the exchanged heat. As a result, there is a problem that the ability of the cooling / heating device using the recovered heat as a heat source cannot be accurately estimated. For example, such a problem occurs when the generator used for the setting at the design stage differs from the generator actually used, or when the performance of the generator deteriorates while it is being used. Occurs. In this way, the exchanged heat quantity in the catalog value differs from the actual exchanged heat quantity, and the exhaust heat recovery efficiency of the exhaust heat recovery equipment cannot be evaluated accurately.In other words, the exhaust heat recovery efficiency equivalent to the catalog value of the exhaust heat recovery equipment is obtained. Because of the problem that it cannot be performed, an accurate method and apparatus for evaluating an exhaust heat recovery device have been required.
[0005]
The present invention has been made under such a background, the exhaust heat recovery efficiency is determined by using the exchanged heat amount obtained from the exhaust gas temperature and the exhaust gas flow rate actually input to the exhaust heat recovery device, and accurate. It is an object of the present invention to provide an evaluation method and an evaluation device for evaluating an exhaust heat recovery device.
[0006]
[Means for Solving the Problems]
Therefore, the present inventors conducted research to solve such a problem, and focused on the fact that the heat transfer performance of the exhaust heat recovery device is dominated by the heat transfer of the supplied exhaust gas. Based on the concept of the empirical formula, the heat transfer performance of the exhaust heat recovery equipment was determined from the exhaust gas flow rate conditions, and the exchange heat quantity could be determined from the heat transfer performance and the exhaust gas temperature conditions. The actual heat recovery efficiency can be obtained by using the heat exchange amount thus obtained, and more accurate evaluation of the heat recovery equipment can be obtained. This makes it possible to accurately estimate the capacity of the cooling / heating device that uses the recovered heat as a heat source.
[0007]
The present invention has been made based on such knowledge, and the method of evaluating an exhaust heat recovery device of the present invention is a method of evaluating an exhaust heat recovery device that recovers heat from exhaust gas of a power generation device. It is characterized in that the exhaust heat recovery efficiency is obtained by using the temperature condition of the exhaust gas supplied to the heat recovery equipment.
In the method for evaluating an exhaust heat recovery device of the present invention, the exhaust heat recovery efficiency is obtained using the temperature condition of the exhaust gas supplied to the exhaust heat recovery device. The equipment is evaluated.
[0008]
Further, the method for evaluating an exhaust heat recovery device of the present invention is characterized in that, in the method for evaluating an exhaust heat recovery device, the exhaust heat recovery efficiency is obtained using a flow rate condition of exhaust gas supplied to the exhaust heat recovery device. I do.
In the method for evaluating an exhaust heat recovery device of the present invention, the exhaust heat recovery efficiency is obtained using the temperature condition of the exhaust gas supplied to the exhaust heat recovery device and the flow rate condition of the exhaust gas. An evaluation is performed.
[0009]
Further, in the method for evaluating an exhaust heat recovery device of the present invention, the method for evaluating an exhaust heat recovery device described above is based on the temperature of the exhaust gas discharged from the exhaust heat recovery device obtained in the process of obtaining the exhaust heat recovery efficiency. The material of the heat exchanger installed downstream of the heat recovery equipment is selected.
In the method for evaluating an exhaust heat recovery device of the present invention, the temperature of the exhaust gas discharged from the exhaust heat recovery device is determined using the temperature condition of the exhaust gas and the flow condition of the exhaust gas supplied to the exhaust heat recovery device. Since the material of the heat exchanger installed downstream of the exhaust heat recovery equipment is selected based on the temperature, an appropriate material is selected.
[0010]
Further, the exhaust heat recovery device evaluation device of the present invention is an exhaust heat recovery device evaluation device that recovers heat from exhaust gas of a power generation device, and measures the temperature of exhaust gas at an exhaust gas inflow portion of the exhaust heat recovery device. Temperature detection means, flow rate detection means for measuring the flow rate of exhaust gas passing through the exhaust heat recovery equipment, and calculation for obtaining exhaust heat recovery efficiency using detection values obtained from the temperature detection means and the flow rate detection means Means.
In the evaluation apparatus for an exhaust heat recovery device of the present invention, the temperature detection means for measuring the exhaust gas temperature, the flow rate detection means for measuring the flow rate of the exhaust gas, and the exhaust heat using the temperature detection means and the detection values obtained from the flow rate detection means. Since a calculation means for obtaining the recovery efficiency is provided, more accurate evaluation of the exhaust heat recovery device is performed.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a model diagram of a heat recovery system using an exhaust heat recovery device. In the figure, a heat recovery system 1 includes a power generation device 3 (gas engine, diesel engine, SOFC, etc.) for supplying exhaust gas G1 to an exhaust heat recovery device 2 (exhaust heat recovery boiler, an exhaust heat recovery absorption refrigerator, etc.), and an exhaust heat recovery device. The air conditioner includes a cooling / heating device 4 (a turbo refrigerator, an absorption refrigerator, a boiler, etc.) to which steam S as a heat source is supplied from the recovery device 2. In order to recover heat from the exhaust gas G2 discharged from the exhaust heat recovery device 2, a heat exchanger 5 to which the exhaust gas G2 is supplied is provided.
[0012]
In the heat recovery system 1 having such a configuration, the water W (the temperature Twi and the volume flow rate Gw) supplied to the exhaust heat recovery device 2 receives heat from the exhaust gas G1 (the temperature Tgi and the volume flow rate Gg) and receives steam S ( The temperature becomes Tws, the volume flow rate Gs), and the exhaust gas G1 emits heat to become G2 (the temperature Tgo, volume flow rate Gg) and is discharged from the exhaust heat recovery device 2. FIG. 2 is a relationship diagram showing a temperature change between the water W and the steam S and the exhaust gas G1 and G2 inside the exhaust heat recovery device 2.
[0013]
In FIG. 2, the vertical axis indicates the temperature T, and the horizontal axis indicates the moving distance X between the water W and the steam S and the exhaust gases G1 and G2 inside the exhaust heat recovery device 2. X1 on the horizontal axis indicates the positions of the inlet of the exhaust gas G1 and the outlet of the steam S, and X2 indicates the positions of the outlet of the exhaust gas G2 and the inlet of the water W. The curve L1 indicating the change in the exhaust gas temperature indicates that the exhaust gas G1 having the temperature Tgi at the inlet X1 becomes the exhaust gas G2 having the temperature Tgo at the outlet X2 by performing heat exchange inside the exhaust heat recovery equipment 2. . A line L2 indicating a change in feedwater temperature indicates that the water W having the temperature Twi at the inlet X2 becomes steam S at the temperature Tws at the outlet X1 by performing heat exchange inside the exhaust heat recovery equipment 2. I have. Here, the range in which the temperature of the water W rises is referred to as a heating section l, the range in which the water W has changed into water vapor S is referred to as a phase changing section s, and the exhaust gas at the boundary entering the heating section l from the phase changing section s. The temperature is assumed to be the temperature Tgu of the exhaust gas at the inlet of the heating section.
[0014]
The heat transfer performance of such an exhaust heat recovery device 2 is obtained, the amount of heat exchanged between the input water W and the exhaust gas G1 is obtained, and the actual exhaust heat is obtained using the actually input exhaust gas flow rate Gg and the inlet exhaust gas temperature Tgi. An evaluation method for obtaining the recovery efficiency and evaluating the exhaust heat recovery device 2 will be described.
First, the rated heat transfer performance (UA) l * and the rated heat transfer performance (UA) s * of the phase change portion are determined from the rated value (catalog value) of the exhaust heat recovery device 2. Here, as the rated values of the exhaust heat recovery equipment 2, the rated exchange heat quantity Qt * , the rated exhaust gas flow rate Gg * , the rated inlet exhaust gas temperature Tgi * , the rated outlet exhaust gas temperature Tgo * , the rated feedwater flow rate Gw * , and the rated inlet feedwater temperature Twi * , The rated outlet steam temperature Tws * , is used.
[0015]
From the following formulas (1) to (3), the rated heat transfer performance (UA) l * of the temperature-raising section is obtained. In the following equation, ρw is the density of water, cpw is the specific heat of water, ρg is the density of exhaust gas, and cpg is the specific heat of exhaust gas.
Q1 * = ρw · cpw · Gw * · (Tws * −Twi * ) (1)
Tgu * = Tgo * + Q1 * / (ρg · cpg · Gg * ) (2)
(UA) l * = Q1 * / ΔTml * (3)
ΔTml * = [(Tgu * -Tws * )-(Tgo * -Twi * )] / ln [(Tgu * -Tws * ) / (Tgo * -Twi * )]
In equation (1), the rated heat-raising section exchange heat quantity Q1 *, which is the heat exchange amount of the temperature-raising section, is obtained from each rated value. In the equation (2), the rated heating section inlet exhaust gas temperature Tgu * is obtained from the rated heating section exchange heat quantity Q1 * , and the logarithmic average temperature difference ΔTml of the heating section l can be determined. In the equation (3), the rated heat transfer performance (UA) l * of the heated part is obtained from the rated heat-exchanged part exchange heat quantity Q1 * and the logarithmic average temperature difference ΔTml of the heated part s.
[0016]
Further, the rated heat transfer performance (UA) s * of the phase change portion is obtained from the following equations (4) and (5).
Q2 * = Qt * -Q1 * (4)
(UA) s * = Q2 * / ΔTms * (5)
ΔTms * = [(Tgi * −Tws * ) − (Tgu * −Tws * )]] / ln [(Tgi * −Tws * ) / (Tgu * −Tws * )] In equation (4), the rated exchange heat Qt The rated phase-change-portion exchange heat quantity Q2 * is obtained from * and the rated heat-exchange-portion exchange heat quantity Q1 * obtained by equation (1), and in equation (5), the phase-change-part rated heat transfer performance (UA) s * is Desired.
[0017]
Next, based on the rated heat transfer performance (UA) l * and the rated heat transfer performance (UA) s * of the temperature-raising section obtained from the equations (1) to (5), the actual exhaust gas flow rate Gg and the rated Using the gas flow rate Gg * , the heat transfer performance (UA) 1 and the phase change heat transfer performance (UA) s are obtained.
(UA) s = (UA) s * × (Gg / Gg * ) n (6)
(UA) l = (UA) l * x (Gg / Gg * ) n (7)
[0018]
Here, the present inventors have paid attention to the fact that the heat transfer performance of the exhaust heat recovery equipment 2 is dominated by the heat transfer of the exhaust gas to be injected, and have an experimental equation of turbulent pipe heat transfer (Colburn equation). Based on the relationship between the heat transfer coefficient h and the Reynolds number Re, the relationship between the heat transfer performance (UA) s and the phase change portion heat transfer performance (UA) s and Gg / Gg * was determined. . In the following equation, Pr is the Prandtl number, λ is the thermal conductivity, and d is the pipe diameter.
h = 0.023Re 0.8 · Pr 1/3 · λ / d (8)
Equation (8) is a relational expression of the heat transfer coefficient h obtained from an experimental equation of turbulent heat transfer in a pipe, and shows that the heat transfer coefficient h is proportional to the 0.8 power of the Reynolds number Re, and the Reynolds number Re Is a dimensionless number including flow velocity. Gg / Gg * in the equations (6) and (7) is also a dimensionless number including the flow velocity.
From these relationships, the present inventors set the heating part heat transfer performance (UA) 1 and the phase change part heat transfer performance (UA) s as the multiplier n = 0.8 in the equations (6) and (7). I decided to ask.
[0019]
As described above, the actual temperature rise is performed by using the heat transfer portion heat transfer performance (UA) 1 and the phase change portion heat transfer performance (UA) s determined from the actual exhaust gas flow rate Gg and the actual inlet exhaust gas temperature Tgi. The partial heat exchange amount Q1, the phase change portion exchange heat amount Q2, the temperature rise exhaust gas temperature Tgu, the exhaust gas temperature Tgo, and the feedwater flow rate Gw are obtained. In the following equation, the inlet feedwater temperature Twi is determined by the temperature of water at normal temperature, and the outlet steam temperature Tws is determined by the pressure difference of the exhaust heat recovery device 2.
Q1 = (UA) l · ΔTml (9)
ΔTml = [(Tgu-Tws)-(Tgo-Twi)] / ln [(Tgu-Tws) / (Tgo-Twi)]
Q1 = ρw · cpw · Gw · (Tws−Twi) (10)
Q1 = ρg · cpg · Gg · (Tgu−Tgo) (11)
Q2 = (UA) s ・ ΔTms (12)
ΔTms = [(Tgi−Tws) − (Tgu−Tws)] / ln [(Tgi−Tws) / (Tgu−Tws)]
Q2 = ρg · cpg · Gg · (Tgi−Tgu) (13)
The equations (9) to (13) are simultaneously used to determine the heat-exchange portion heat exchange amount Q1, the phase-change portion exchange heat amount Q2, the heat-exchange portion inlet exhaust gas temperature Tgu, the outlet exhaust gas temperature Tgo, and the feedwater flow rate Gw.
The sum of the heat-up portion heat exchange amount Q1 and the phase change portion exchange heat amount Q2 obtained as described above is the exchange heat amount Qt.
Qt = Q1 + Q2 (14)
[0020]
As described above, the exchanged heat amount Qt is obtained, and the exhaust heat recovery efficiency is obtained from the ratio of the exchanged heat amount Qt to the total heat amount supplied to the exhaust heat recovery device 2. Accurate evaluation of the exhaust heat recovery equipment 2 can be obtained from the actual exhaust heat recovery efficiency thus obtained, and the ability of the cooling and heating equipment 4 using the heat recovered by the exhaust heat recovery equipment 2 as a heat source can be accurately determined. Can be estimated.
[0021]
Further, in the method of evaluating the exhaust heat recovery device 2, the temperature of the exhaust gas discharged from the exhaust heat recovery device 2 (exit exhaust gas temperature Tgo) is obtained, and the exhaust gas is installed downstream of the exhaust heat recovery device 2 based on the exhaust gas temperature Tgo. The material of the heat exchanger 5 to be used can be selected. Thereby, an appropriate material can be selected, and the weight of the heat exchanger 5 and the piping (not shown) between the exhaust heat recovery device 2 and the heat exchanger 5 can be evaluated. Also, by selecting an appropriate material, the production cost can be reduced.
[0022]
As shown in FIG. 1, a temperature sensor (temperature detecting means) 6 and a flow rate sensor (flow rate detecting means) 7 provided at an exhaust gas inflow portion of the exhaust heat recovery device 2 and respective data (detected values) are inputted. The evaluation device 9 of the exhaust heat recovery equipment 2 is provided with a calculation device (calculation means) 8 to be performed. Based on the temperature data and the flow rate data obtained from the temperature sensor 6 and the flow rate sensor 7, the calculation unit 8 calculates the exhaust heat recovery efficiency as described above, so that the accurate exhaust heat recovery efficiency can be sequentially obtained. . By using such an evaluation device 9, it is possible to sequentially estimate the accurate performance of the cooling / heating device 4.
[0023]
In the present embodiment, the exhaust heat recovery efficiency is obtained using both the exhaust gas flow rate Gg and the inlet exhaust gas temperature Tgi. However, only the inlet exhaust gas temperature Tgi is used by using the rated exhaust gas flow rate Gg * as the exhaust gas flow condition. It may be used as an evaluation method for obtaining the exhaust heat recovery efficiency by using the method. In addition, the type of internal fluid, the outside air temperature, the heat insulation conditions, and the like of the piping (not shown) connecting the exhaust heat recovery device 2, the power generation device 3, the cooling / heating device 4, and the heat exchanger 5 are evaluated. The amount of heat released from the pipe can be evaluated using the heat recovery efficiency.
[0024]
【The invention's effect】
As described above, according to the method for evaluating an exhaust heat recovery device of the present invention, based on the concept of the empirical formula of turbulent heat transfer in a pipe, the exhaust gas is exhausted using the temperature condition of the exhaust gas supplied to the exhaust heat recovery device. The heat recovery efficiency can be determined, and the exhaust heat recovery equipment that is practical can be evaluated. For example, even if the temperature condition of the exhaust gas supplied to the exhaust heat recovery equipment is different from the rated value, this is reflected, and the exhaust heat recovery efficiency is more accurate than the rated value of the exhaust heat recovery efficiency. Ability can be accurately estimated. In addition, when the exhaust heat recovery efficiency is obtained, by using the flow rate condition of the exhaust gas supplied to the exhaust heat recovery device, it is possible to evaluate the exhaust heat recovery device more practically.
[0025]
In addition, the material of the heat exchanger installed downstream of the exhaust heat recovery equipment is selected based on the temperature of the exhaust gas discharged from the exhaust heat recovery equipment obtained when evaluating the exhaust heat recovery equipment. Material can be selected. Thus, the heat exchanger can be manufactured at an optimum manufacturing cost.
[0026]
Further, according to the apparatus for evaluating an exhaust heat recovery apparatus of the present invention, since the apparatus includes the temperature detecting means, the flow rate detecting means, and the calculating means, the exhaust heat collecting means sequentially detects the detected values obtained by the respective detecting means. Efficiency can be calculated, and more accurate evaluation of exhaust heat recovery equipment can be performed. Thereby, it is possible to sequentially and accurately estimate the accurate ability of the cooling / heating device that uses the recovered heat as a heat source.
[Brief description of the drawings]
FIG. 1 is a model diagram of a heat recovery system using an exhaust heat recovery device according to an embodiment of the present invention.
FIG. 2 is a relationship diagram showing a temperature change between water and steam and exhaust gas inside the exhaust heat recovery device.
[Explanation of symbols]
3 Power generation equipment G1, G2 Exhaust gas 2 Exhaust heat recovery equipment 5 Heat exchanger 9 Evaluation device 6 Temperature detection means (temperature sensor)
7 Flow rate detection means (flow rate sensor)
8 Calculation means (calculation device)

Claims (4)

発電機器の排ガスから熱を回収する排熱回収機器の評価方法であって、
前記排熱回収機器に投入される排ガスの温度条件を用いて排熱回収効率を求めることを特徴とする排熱回収機器の評価方法。
An evaluation method for an exhaust heat recovery device that recovers heat from exhaust gas of a power generation device,
A method for evaluating an exhaust heat recovery device, wherein an exhaust heat recovery efficiency is determined using a temperature condition of exhaust gas supplied to the exhaust heat recovery device.
請求項1に記載の排熱回収機器の評価方法において、
前記排熱回収機器に投入される排ガスの流量条件を用いて排熱回収効率を求めることを特徴とする排熱回収機器の評価方法。
The method for evaluating an exhaust heat recovery device according to claim 1,
A method for evaluating an exhaust heat recovery device, wherein an exhaust heat recovery efficiency is obtained using a flow rate condition of exhaust gas supplied to the exhaust heat recovery device.
請求項1または請求項2に記載の排熱回収機器の評価方法において、
排熱回収効率を求める過程で得られる前記排熱回収機器から排出される排ガス温度に基づいて該排熱回収機器の下流側に設置される熱交換器の材質を選定することを特徴とする排熱回収機器の評価方法。
In the method for evaluating an exhaust heat recovery device according to claim 1 or 2,
The material of the heat exchanger installed downstream of the exhaust heat recovery equipment is selected based on the temperature of exhaust gas discharged from the exhaust heat recovery equipment obtained in the process of obtaining the exhaust heat recovery efficiency. How to evaluate heat recovery equipment.
発電機器の排ガスから熱を回収する排熱回収機器の評価装置であって、
前記排熱回収機器の排ガス流入部における排ガスの温度を測定する温度検知手段と、該排熱回収機器の内部を通過する排ガスの流量を測定する流量検知手段と、該温度検知手段および流量検知手段から得られた検出値を用いて排熱回収効率を求める計算手段とを備えていることを特徴とする排熱回収機器の評価装置。
An evaluation device for an exhaust heat recovery device that recovers heat from exhaust gas of a power generation device,
Temperature detection means for measuring the temperature of the exhaust gas at the exhaust gas inflow section of the exhaust heat recovery equipment, flow rate detection means for measuring the flow rate of the exhaust gas passing through the exhaust heat recovery equipment, the temperature detection means and the flow rate detection means Calculating means for calculating the exhaust heat recovery efficiency using the detected values obtained from the apparatus.
JP2002291211A 2002-10-03 2002-10-03 Evaluation method and evaluation device for exhaust heat recovery equipment Pending JP2004124852A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002291211A JP2004124852A (en) 2002-10-03 2002-10-03 Evaluation method and evaluation device for exhaust heat recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002291211A JP2004124852A (en) 2002-10-03 2002-10-03 Evaluation method and evaluation device for exhaust heat recovery equipment

Publications (1)

Publication Number Publication Date
JP2004124852A true JP2004124852A (en) 2004-04-22

Family

ID=32282861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002291211A Pending JP2004124852A (en) 2002-10-03 2002-10-03 Evaluation method and evaluation device for exhaust heat recovery equipment

Country Status (1)

Country Link
JP (1) JP2004124852A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008267696A (en) * 2007-04-20 2008-11-06 Kawasaki Thermal Engineering Co Ltd Exhaust heat utilization type cooling and heating machine with flow sensor function
CN1896588B (en) * 2005-07-14 2010-06-09 韩国电力公社 Boiler combustion chamber exit burning gas temperature determination system and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1896588B (en) * 2005-07-14 2010-06-09 韩国电力公社 Boiler combustion chamber exit burning gas temperature determination system and method
JP2008267696A (en) * 2007-04-20 2008-11-06 Kawasaki Thermal Engineering Co Ltd Exhaust heat utilization type cooling and heating machine with flow sensor function

Similar Documents

Publication Publication Date Title
Hwang et al. Experimental study on titanium heat exchanger used in a gas fired water heater for latent heat recovery
US7890214B2 (en) Method and apparatus for controlling soot blowing using statistical process control
CA2639197C (en) Dual model approach for boiler section cleanliness calculation
JP4466232B2 (en) Boiler deterioration diagnosis method, apparatus, system, and recording medium recording program
JP2014047980A (en) Latent heat recovery type hot water supply device
JPS6038522A (en) Soot blower system
Gómez et al. Modelling and simulation of fluid flow and heat transfer in the convective zone of a power-generation boiler
CN106322412B (en) Coal unit convection heating surface intelligent ash blowing method based on two-dimentional optimizing
JP2016173227A (en) Method and system for increasing condensation of water and acid
CN103728339B (en) A kind of real-time identification method for average heat resistance of heat-exchange equipment on thermal power boiler side
Wang et al. Experimental study of flow and heat transfer in rotary air preheaters with honeycomb ceramics and metal corrugated plates
JP2004124852A (en) Evaluation method and evaluation device for exhaust heat recovery equipment
CN103994458A (en) Composite phase change heat exchanger suitable for thermal power generating unit
JP3923496B2 (en) Supply control device for working medium in heat exchanger
US6560965B1 (en) System and method of cleaning a recuperator in a microturbine power system
Rączka et al. Methods of thermal calculations for a condensing waste-heat exchanger
JP2002257667A (en) Method and device for abnormality diagnosis of heat transfer member, thermal power plant, and absorption type refrigerator
CN107525064A (en) The pulverized-coal fired boiler economizer soot blower system optimization operation method calculated based on temperature and pressure
CN106382842A (en) Pipe explosion monitoring method and system for cement plant waste heat recovery multi-loop heat exchanger
CN109187036B (en) Main steam flow calculation method of main pipe back pressure type steam turbine
CN105184043B (en) Condenser heat transfer coefficient computational methods based on single dimensionless number
CN104992066B (en) Condenser heat transfer coefficient computational methods based on two dimensionless numbers
JP6798249B2 (en) Boiler efficiency calculation method for latent heat recovery boiler
JP4827093B2 (en) Boiler equipment
Raczka A pilot-scale condensing waste heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070327