JP6798249B2 - Boiler efficiency calculation method for latent heat recovery boiler - Google Patents
Boiler efficiency calculation method for latent heat recovery boiler Download PDFInfo
- Publication number
- JP6798249B2 JP6798249B2 JP2016208861A JP2016208861A JP6798249B2 JP 6798249 B2 JP6798249 B2 JP 6798249B2 JP 2016208861 A JP2016208861 A JP 2016208861A JP 2016208861 A JP2016208861 A JP 2016208861A JP 6798249 B2 JP6798249 B2 JP 6798249B2
- Authority
- JP
- Japan
- Prior art keywords
- boiler
- amount
- heat
- heat recovery
- latent heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011084 recovery Methods 0.000 title claims description 80
- 238000004364 calculation method Methods 0.000 title claims description 23
- 238000000034 method Methods 0.000 claims description 61
- 239000000446 fuel Substances 0.000 claims description 22
- 230000017525 heat dissipation Effects 0.000 claims description 9
- 238000002485 combustion reaction Methods 0.000 claims description 8
- 239000012530 fluid Substances 0.000 claims description 7
- 239000007789 gas Substances 0.000 description 68
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 37
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
Images
Landscapes
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Description
本発明は、潜熱回収ボイラのボイラ効率計算方法に関する。 The present invention relates to a boiler efficiency calculation method for a latent heat recovery boiler.
省エネルギー及び二酸化炭素排出削減に対する社会的な要求に伴い、ボイラの高効率化が進んでいる。ボイラの熱効率を正しく算出し、エネルギー管理に役立てることの重要性は益々高まっている。ボイラの熱効率を測定する方法としては、主として、特許文献1に記載の排ガス損失法や、特許文献2に記載の入出熱法が存在する。 With the social demand for energy saving and reduction of carbon dioxide emissions, the efficiency of boilers is increasing. It is becoming more and more important to correctly calculate the thermal efficiency of boilers and use them for energy management. As a method for measuring the thermal efficiency of a boiler, there are mainly an exhaust gas loss method described in Patent Document 1 and an input / output heat method described in Patent Document 2.
ここで、排ガス損失法とは、基本的には、ボイラから排出される排ガスの温度と、ボイラへの給気の給気温度との差分に、排ガス量と比熱を乗じて算出される排ガス損失熱量を用いて、ボイラの熱効率を求める方法である。一方で、入出熱法とは、基本的には、蒸気のエンタルピーと給水のエンタルピーとの差分に給水量を乗じて算出されるボイラからの出熱を、燃料消費量と燃料発熱量との積によって算出されるボイラへの入熱で除算することによりボイラ効率を求める方法である。 Here, the exhaust gas loss method is basically an exhaust gas loss calculated by multiplying the difference between the temperature of the exhaust gas discharged from the boiler and the supply air temperature of the air supplied to the boiler by the amount of exhaust gas and the specific heat. This is a method of determining the thermal efficiency of a boiler using the amount of heat. On the other hand, in the heat input / output method, basically, the heat output from the boiler calculated by multiplying the difference between the enthalpy of steam and the enthalpy of water supply by the amount of water supply is the product of the fuel consumption amount and the fuel calorific value. This is a method of obtaining the boiler efficiency by dividing by the heat input to the boiler calculated by.
しかし、潜熱回収ボイラのボイラ効率を計算する場合、従来の方法では、簡単かつ正確にボイラ効率を計測することが出来なかった。 However, when calculating the boiler efficiency of the latent heat recovery boiler, it has not been possible to easily and accurately measure the boiler efficiency by the conventional method.
具体的には、潜熱回収ボイラのボイラ効率を計測する方法として、排ガス損失法をそのまま適用した場合、排ガス温度には潜熱回収部において回収された潜熱量が反映されないため、ボイラ効率は低く算出される。
また、例えば、排ガス損失法に対して、ドレンの量と温度を実測することにより得られる潜熱回収量を加味する方法が考えられる。しかし、ボイラ効率計測の都度、ドレンの量と温度を実測するのは、危険且つ手間のかかる作業であると共に、燃料中の水素の含有比率によりドレン量が変わってくるので、現実的ではない。また、上記の潜熱回収量を、推定近似式を用いて算出する方法も存在するが、実測値との間にずれが存在する。
Specifically, when the exhaust gas loss method is applied as it is as a method for measuring the boiler efficiency of the latent heat recovery boiler, the amount of latent heat recovered by the latent heat recovery unit is not reflected in the exhaust gas temperature, so the boiler efficiency is calculated to be low. To.
Further, for example, a method of adding the latent heat recovery amount obtained by actually measuring the amount of drain and the temperature to the exhaust gas loss method can be considered. However, it is not realistic to actually measure the amount and temperature of the drain each time the boiler efficiency is measured, because it is a dangerous and laborious task and the amount of drain changes depending on the hydrogen content ratio in the fuel. There is also a method of calculating the above-mentioned latent heat recovery amount using an estimated approximation formula, but there is a deviation from the measured value.
一方、入出熱法を用いて潜熱回収ボイラ全体のボイラ効率を測定することも可能であるが、入出熱法においては、入出熱量を算出するために、給水量を計測する必要がある。しかし、給水量を計測する流量計の誤差が、そのままボイラ効率の誤差に影響し、正確な測定を行う上で問題となる。 On the other hand, it is possible to measure the boiler efficiency of the entire latent heat recovery boiler using the heat input / output method, but in the heat input / output method, it is necessary to measure the amount of water supplied in order to calculate the amount of heat input / output. However, the error of the flow meter that measures the amount of water supply directly affects the error of the boiler efficiency, which poses a problem in performing accurate measurement.
そこで、本発明は、潜熱回収ボイラのボイラ効率を、簡単かつ正確に計算するボイラ効率計算方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a boiler efficiency calculation method for easily and accurately calculating the boiler efficiency of a latent heat recovery boiler.
本発明は、缶体と、前記缶体から排出される排気ガスの熱を回収する潜熱回収部とを備える潜熱回収ボイラ全体のボイラ効率を計算する方法であって、前記缶体に供給される燃焼空気の熱量と前記缶体から排出される排気ガスの熱量から算出される前記缶体の排ガス損失熱量と、前記潜熱回収部を通過する前後の被加熱流体の熱量の差から求められる潜熱回収部の回収熱量とを用いると共に、前記排ガス損失熱量から、前記潜熱回収部の回収熱量を減算するステップを有するボイラ効率計算方法に関する。 The present invention is a method for calculating the boiler efficiency of the entire latent heat recovery boiler including the can body and the latent heat recovery unit for recovering the heat of the exhaust gas discharged from the can body, and is supplied to the can body. Latent heat recovery obtained from the difference between the amount of heat lost in the exhaust gas of the can body calculated from the amount of heat of the combustion air and the amount of heat of the exhaust gas discharged from the can body and the amount of heat of the fluid to be heated before and after passing through the latent heat recovery unit. The present invention relates to a boiler efficiency calculation method having a step of subtracting the recovered heat amount of the latent heat recovery unit from the exhaust heat loss heat amount while using the recovered heat amount of the unit.
また、前記潜熱回収部は、エコノマイザ及び/又はエアヒータを備えることが好ましい。 Further, it is preferable that the latent heat recovery unit is provided with an economizer and / or an air heater.
また、前記潜熱回収ボイラ全体のボイラ効率をη、前記缶体における排ガス損失熱量をQ、前記潜熱回収部で回収される熱量をq、使用する燃料の燃料低位発熱量をHl、放熱及び未燃ガス損失をαとした場合、前記潜熱回収ボイラ全体のボイラ効率が、数式η=(1−(Q−q)/Hl)×100−αを用いて算出されることが好ましい。 Further, the boiler efficiency of the entire latent heat recovery boiler is η, the amount of heat loss from exhaust gas in the can body is Q, the amount of heat recovered by the latent heat recovery unit is q, the fuel low calorific value of the fuel used is Hl, heat dissipation and unburned. When the gas loss is α, it is preferable that the boiler efficiency of the entire latent heat recovery boiler is calculated using the formula η = (1- (Q−q) / Hl) × 100−α.
また、前記潜熱回収ボイラは、ブロー熱交換器を更に備えると共に、前記放熱及び未燃ガス損失に含まれるブロー損失を算出するステップを更に有することが好ましい。 Further, it is preferable that the latent heat recovery boiler further includes a blow heat exchanger and further has a step of calculating the blow loss included in the heat dissipation and the unburned gas loss.
本発明によれば、潜熱回収ボイラのボイラ効率を、簡単かつ正確に計算するボイラ効率計算方法を提供することができる。 According to the present invention, it is possible to provide a boiler efficiency calculation method for easily and accurately calculating the boiler efficiency of a latent heat recovery boiler.
以下、本発明の実施形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図1は、潜熱回収ボイラの構成例、及び、本発明に係るボイラ効率計算方法と他の計算方法とを用いてボイラ効率を算出する際に用いる、ボイラの燃焼実験によって得られた実測値を示す図である。 FIG. 1 shows a configuration example of a latent heat recovery boiler and an actually measured value obtained by a boiler combustion experiment used when calculating the boiler efficiency using the boiler efficiency calculation method according to the present invention and another calculation method. It is a figure which shows.
具体的には、潜熱回収ボイラ10は、缶体11と、エコノマイザ12とを備える。缶体11は、燃料を燃焼させて得た熱を水に伝えることにより、水を水蒸気に換える熱源機器、とりわけ小型貫流ボイラである。エコノマイザ12は、缶体11への給水を、缶体11から排出される排ガスが保有する熱で加熱することにより、潜熱回収ボイラ10のボイラ効率を上昇させる装置である。
Specifically, the latent
まず、JIS B 8222に準拠する、排ガス損失法によるボイラ効率の算出方法について説明する。 First, a method of calculating the boiler efficiency by the exhaust gas loss method based on JIS B 8222 will be described.
排ガス損失法によりボイラ効率を算出するためには、最初に空気比mを求める。ここでmは、排ガス中の二酸化炭素濃度最大値[体積%]をCO2max、排ガス中の二酸化炭素濃度[体積%]をCO2とした場合、
m=CO2max/CO2 (1)
として算出できる。
In order to calculate the boiler efficiency by the exhaust gas loss method, the air ratio m is first obtained. Here, m is when the maximum carbon dioxide concentration [volume%] in the exhaust gas is CO 2max and the carbon dioxide concentration [volume%] in the exhaust gas is CO 2 .
m = CO 2max / CO 2 (1)
Can be calculated as.
この空気比mを用いて、実際湿り排ガス量Gを求める。理論乾き排ガス量をGo、燃焼によって生じる水蒸気及び燃料中の水分による水蒸気量をGwとした場合、理論湿り排ガス量は、Go+Gwと算出できる。また、理論空気量をAoとした場合、余剰空気量は、(m−1)×Aoと算出できる。実際湿り排ガス量Gは、これら理論湿り排ガス量と理論空気量との合算であり、具体的には、
G=Go+Gw+(m−1)×Ao (2)
となる。
Using this air ratio m, the actual amount of wet exhaust gas G is obtained. If the theoretical dry exhaust gas quantity G o, the water vapor content due to moisture vapor and fuel caused by combustion was G w, the theoretical wet exhaust gas amount can be calculated as G o + G w. Further, when the theoretical air amount is A o , the surplus air amount can be calculated as (m-1) × A o . The actual wet exhaust gas amount G is the sum of these theoretical wet exhaust gas amount and the theoretical air amount, and specifically,
G = Go + G w + (m-1) x A o (2)
Will be.
次に、上記の実際湿り排ガス量Gを用いて、排ガス損失熱量Qを計算する。排ガス比熱をS、排ガス温度Tgから給気温度T0を引いた差分Tg−T0をΔTとすると、
Q=S×G×ΔT=S×G×(Tg−T0) (3)
となる。
Next, the exhaust gas loss heat amount Q is calculated using the actual wet exhaust gas amount G described above. Let S be the specific heat of the exhaust gas, and ΔT be the difference Tg-T0 obtained by subtracting the supply air temperature T0 from the exhaust gas temperature Tg.
Q = S × G × ΔT = S × G × (Tg-T0) (3)
Will be.
この排ガス損失熱量Q、及び、燃料低位発熱量Hl、放熱及び未燃ガス損失α[%]を用いると、ボイラ効率η[%]は、
η=(1−Q/Hl)×100−α (4)
と計算できる。
なお、Hl及びαは、燃料の種類により定まる値である。
Using this exhaust gas heat loss Q, fuel low calorific value Hl, heat dissipation and unburned gas loss α [%], the boiler efficiency η [%] is
η = (1-Q / Hl) × 100-α (4)
Can be calculated.
Hl and α are values determined by the type of fuel.
しかし、例えば、図1に記載の、缶体11とエコノマイザ12とを備える潜熱回収ボイラ10に対して、上記の排ガス損失法を用いたボイラ効率の計算方法を、そのまま適用した場合、排ガス温度には潜熱回収部において回収された潜熱量が反映されないため、ボイラ効率が低く算出されるという重大な欠点が存在した。
However, for example, when the method for calculating the boiler efficiency using the exhaust gas loss method described above is applied to the latent
ここで、ボイラ全体の排ガス損失熱量をQa、缶体部分の排ガス損失熱量をQs、潜熱回収部の排ガス熱回収量をqとすると、
Qa=Qs−q (5)
となる。
Here, if the exhaust gas heat loss amount of the entire boiler is Q a , the exhaust gas heat loss heat amount of the can body part is Q s , and the exhaust gas heat recovery amount of the latent heat recovery part is q.
Q a = Q s −q (5)
Will be.
上記の式(4)のQを、式(5)のQaに置きかえて、
η=(1−Qa/Hl)×100−α={1−(Qs−q)/Hl}×100−α (6)
となる。
The Q of the above formula (4), substituting the Q a of formula (5),
η = (1-Q a / Hl) × 100-α = {1- (Q s −q) / Hl} × 100-α (6)
Will be.
これにより、潜熱回収部において回収された潜熱量である排ガス熱回収量(q)が、ボイラ効率に反映されることとなり、上記の欠点が解消される。
ここで、潜熱回収部の排ガス熱回収量(q)は、潜熱回収部を流通する被加熱流体の受ける熱量から算出できることに注目し、被加熱流体の流量と、潜熱回収部前後の温度を計測することにより算出する。すなわち、式(6)中のQsについては、排ガスの温度差から排ガス損失熱量を算出し、qについては、被加熱流体の温度差から回収熱量を算出する。これにより、式(6)の右辺は、定数以外の全ての数値に対し、実測値を用いることが可能となる。
As a result, the exhaust gas heat recovery amount (q), which is the latent heat amount recovered by the latent heat recovery unit, is reflected in the boiler efficiency, and the above-mentioned drawbacks are eliminated.
Here, paying attention to the fact that the exhaust heat recovery amount (q) of the latent heat recovery unit can be calculated from the heat amount received by the heated fluid flowing through the latent heat recovery unit, the flow rate of the heated fluid and the temperature before and after the latent heat recovery unit are measured. Calculate by doing. That is, for Q s in the equation (6), the amount of heat lost in the exhaust gas is calculated from the temperature difference of the exhaust gas, and for q, the amount of heat recovered is calculated from the temperature difference of the fluid to be heated. As a result, for the right side of the equation (6), it is possible to use the actually measured values for all the numerical values other than the constants.
本発明の出願人は、実験機である三浦工業株式会社製ボイラSQ−2000ASに対して、燃料13Aを用いた30分間の燃焼実験を行うことにより、図1に示される各実測値を得た。
具体的には、缶体11への給気の温度T0=35[℃]が得られた。
また、缶体11で用いる燃料は13Aであるため、燃料の低位発熱量Hl=9406.9[kcal/m3N]=39377.3[kJ/m3N]であると共に、燃料消費量C=112.6[m3N/h]であった。
また、缶体11において生成される蒸気の圧力P=0.5MPaであり、その全熱h’’=2756.24[kJ/kg]、顕熱h’=670.87[kJ/kg]、乾き度X=0.99であった。
また、缶体11からエコノマイザ12に流入する排ガスの温度は、エコノマイザ12入口での温度Tgi=216[℃]であり、エコノマイザ12出口での温度Tgo=51[℃]であった。また、排ガス酸素濃度O2=3.7[%]であった。
また、潜熱回収ボイラ10への給水、すなわちエコノマイザ12への給水の、エコノマイザ12入口での給水温度Twi=14.3[℃]であり、給水量W=1.722[m3/h]=1.722×998.2[kg/h]=1719[kg/h]であった(水温が14.3℃における水の密度を998.2[kg/m3]とした)。エコノマイザ12出口での給水温度Two=89.2[℃]であり、エコノマイザ出口での給水量W=1719[kg/h]であった。
また、エコノマイザ12から排出されるドレン水の温度Tp=46.1[℃]、ドレン量D=61.1[kg/h]であった。
これらの値は、潜熱回収ボイラ10の各所に設置された温度センサ、流量センサ等によって検知された。
The applicant of the present invention obtained each measured value shown in FIG. 1 by conducting a combustion experiment for 30 minutes using fuel 13A on a boiler SQ-2000AS manufactured by Miura Co., Ltd., which is an experimental machine. ..
Specifically, the temperature T0 = 35 [° C.] of the air supplied to the can body 11 was obtained.
Further, since the fuel used in the can body 11 is 13A, the lower calorific value of the fuel is Hl = 9406.9 [kcal / m 3 N] = 39377.3 [kJ / m 3 N] and the fuel consumption C. = 112.6 [m 3 N / h].
Further, the pressure P of the steam generated in the can body 11 is 0.5 MPa, the total heat h''= 2756.24 [kJ / kg], the sensible heat h'= 670.87 [kJ / kg], and so on. The degree of dryness X = 0.99.
The temperature of the exhaust gas flowing into the
Further, the water supply to the latent
Further, the temperature of the drain water discharged from the
These values were detected by temperature sensors, flow rate sensors, and the like installed at various locations in the latent
〔本発明に係る計算方法による計算例、及び他の計算方法との比較〕
上記のように、本発明の出願人は、実験機である三浦工業株式会社製ボイラSQ−2000ASを用いた燃焼実験を行うことにより、図1に示される各実測値を得ることができた。以下では、これらの実測値を用い、(1)排ガス損失法にドレンの実測値を加味する方法、(2)ボイラ全体のボイラ効率を入出熱法で算出する方法、(3)本発明に係る方法の3つの方法でボイラ効率を算出し、比較する。
[Calculation example by the calculation method according to the present invention and comparison with other calculation methods]
As described above, the applicant of the present invention was able to obtain each measured value shown in FIG. 1 by conducting a combustion experiment using a boiler SQ-2000AS manufactured by Miura Co., Ltd., which is an experimental machine. In the following, these measured values will be used, (1) a method of adding the measured value of drain to the exhaust gas loss method, (2) a method of calculating the boiler efficiency of the entire boiler by the input / output heat method, and (3) the present invention. Boiler efficiencies are calculated and compared by the three methods.
(1) 排ガス損失法にドレンの実測値を加味する方法
排ガス損失法にドレンの実測値を加味した方法により算出されるボイラ効率ηeは、以下の式(7)により算出される。
ηe=(1−Q/Hl)×100−Lo+(αs/Hl×100) (7)
ここで、Qは排ガス損失熱量、Hlは低位発熱量、Loはその他損失、αsは潜熱回収量である。
(1) Method of adding the measured value of drain to the exhaust gas loss method The boiler efficiency η e calculated by the method of adding the measured value of drain to the exhaust gas loss method is calculated by the following formula (7).
η e = (1-Q / Hl) x 100-L o + (α s / Hl x 100) (7)
Here, Q is the exhaust gas heat loss, Hl is the lower heating value, L o other losses, the alpha s is the latent heat recovery amount.
式(7)の右辺中の排ガス損失熱量Qは、従来単位の場合、排ガス比熱0.33[kcal/(m3N・℃)]を用いて
Q=0.33×G×ΔT (8)
と算出される。
また、潜熱回収量αsは、1時間当たりの潜熱回収量Aと燃料消費量Cを用いると、
αs=A/C (9)
と算出される。
したがって、式(8)と式(9)を代入すると、式(7)は、
ηe=(1−0.33×G×ΔT/Hl)×100−Lo+A/(C×Hl)×100 (10)
となる。
In the case of the conventional unit, the heat loss Q of the exhaust gas in the right side of the equation (7) is Q = 0.33 × G × ΔT (8) using the specific heat of the exhaust gas 0.33 [kcal / (m 3 N · ° C)].
Is calculated.
Further, the latent heat recovery amount α s is calculated by using the latent heat recovery amount A and the fuel consumption amount C per hour.
α s = A / C (9)
Is calculated.
Therefore, by substituting equations (8) and (9), equation (7) becomes
η e = (1-0.33 × G × ΔT / Hl) × 100-Lo + A / (C × Hl) × 100 (10)
Will be.
更に、式(10)の右辺中の実際湿り排ガス量Gは、後述のように、燃料の低位発熱量(Hl)が既知であると共に、今回の実験では、気体燃料13Aを用いたため、従来単位の場合、
G=(12.25×Hl/10000)+(m−1)×(11.20×Hl/10000) (11)
となる。
また、
ΔT=Tgo−T0 (12)
である。
更に、1時間当たりの潜熱回収量Aは、ドレン水の潜熱量をhto、ドレン量をDとすると、
A=hto×D (13)
となる。
式(11)、式(12)、式(13)を代入すると、式(10)は、
G = (12.25 x Hl / 10000) + (m-1) x (11.20 x Hl / 10000) (11)
Will be.
Also,
ΔT = Tgo-T0 (12)
Is.
Further, the latent heat recovery amount A per hour is such that the latent heat amount of the drain water is hto and the drain amount is D.
A = hto × D (13)
Will be.
Substituting equations (11), (12), and (13), equation (10) becomes
更に、式(14)の右辺中の空気比mは、排ガス中の残存酸素濃度O2を用いると、
m=21/(21−O2) (15)
と算出され、同じく式(14)の右辺中のドレン水の潜熱量htoは、ドレン水の温度をTpとすると、
hto=597.5−0.584×Tp (16)
と算出される。
これら式(15)及び式(16)を代入すると、式(14)は、以下の式(17)となる。
m = 21 / (21-O 2 ) (15)
Similarly, the latent heat amount hto of the drain water in the right side of the equation (14) is calculated assuming that the temperature of the drain water is Tp.
hto = 597.5-0.584 × Tp (16)
Is calculated.
Substituting these equations (15) and (16), the equation (14) becomes the following equation (17).
図1に示す実測値である、Hl=9406.9[kcal/m3N]、O2=3.7[%]、Tgo=51[℃]、T0=35[℃]、Lo=0.28[%]、Tp=46.1[℃]、C=112.6[m3N/h]、D=61.1[kg/h]を式(17)に代入すると、
ηe=102.238[%]
と算出された。
The measured values shown in FIG. 1, Hl = 9406.9 [kcal / m 3 N], O 2 = 3.7 [%], Tgo = 51 [° C.], T0 = 35 [° C.], Lo = 0. Substituting 28 [%], Tp = 46.1 [° C.], C = 112.6 [m 3 N / h], and D = 61.1 [kg / h] into equation (17),
η e = 102.238 [%]
Was calculated.
(2) ボイラ全体のボイラ効率を入出熱法で算出する方法
入出熱法により算出されるボイラ効率ηiは、以下の式(18)により算出される。
ηi=Qo/Qi×100 (18)
ここで、Qoは出熱量、Qiは入熱量である。
(2) Method of calculating the boiler efficiency of the entire boiler by the heat input / output method The boiler efficiency η i calculated by the heat input / output method is calculated by the following formula (18).
η i = Q o / Q i × 100 (18)
Here, Q o is the amount of heat output and Q i is the amount of heat input.
給水量をW、乾き度をX、圧力0.5MPa蒸気の全熱をh’’、圧力0.5MPa蒸気の顕熱をh’、給水エンタルピーをhiとした時、出熱量Qoは、以下の式(19)によって算出される。
Qo=W×{X×(h’’−h’)+h’−hi} (19)
Water amount is W, the dryness degree X, the total heat pressure 0.5MPa steam h 'when', the sensible heat of the pressure 0.5MPa steam h ', a water supply enthalpy was hi, exits heat Q o is less It is calculated by the formula (19) of.
Q o = W × {X × (h''-h') + h'-hi} (19)
一方、燃料消費量をC、低位発熱量をHlとした時、入熱量Qiは、以下の式(20)によって算出される。
Qi=C×Hl (20)
Meanwhile, when the fuel consumption C, and Hl a lower heating value, the heat input Q i is calculated by the following equation (20).
Q i = C × Hl (20)
式(19)と式(20)を代入すると、式(18)は、以下の式(21)となる。
更に、給水エンタルピーhiは、給水温度をTwiとした場合、
hi=Twi×4.186 (22)
によって算出されるため、式(22)を代入すると、式(21)は、以下の式(23)となる。
h i = Twi × 4.186 (22 )
Therefore, when the equation (22) is substituted, the equation (21) becomes the following equation (23).
図1に示す実測値である、X=0.99、h’’=2756.24[kJ/kg]、h’=670.87[kJ/kg]、Twi=14.3[℃]、C=112.6[m3N/h]、Hl=9406.9[kcal/m3N]=39377.3[kJ/m3N]に加え、水の温度がTwi=14.3℃時における水の密度として、998.2[kg/m3]なる値を用い、W=1.722[m3/h]=1719[kg/h]と換算した値を式(23)に代入すると、
ηi=103.72[%]
と算出された。
Measured values shown in FIG. 1, X = 0.99, h''= 2756.24 [kJ / kg], h'= 670.87 [kJ / kg], Twi = 14.3 [° C.], C = 112.6 [m 3 N / h], Hl = 9406.9 [kcal / m 3 N] = 39377.3 [kJ / m 3 N], and when the water temperature is Twi = 14.3 ° C. Using a value of 998.2 [kg / m 3 ] as the water density and substituting the value converted to W = 1.722 [m 3 / h] = 1719 [kg / h] into equation (23),
ηi = 103.72 [%]
Was calculated.
(3) 本発明に係る計算方法
上記のように、本発明に係る計算方法においては、算出対象のボイラ効率をηとすると、上記の式(6)である、
η={1−(Qs−q)/Hl}×100−α (6)
なる数式を用いて算出される。
(3) Calculation method according to the present invention As described above, in the calculation method according to the present invention, where the boiler efficiency of the calculation target is η, the above equation (6) is used.
η = {1- (Q s −q) / Hl} × 100 − α (6)
It is calculated using the formula.
ここで、Qsに関しては、既知の排ガス損失法と同様に算出する。すなわち、上記の式(8)と同様に、
Qs=0.33×G×ΔT (24)
となる。ここで、上記の式(11)に記載のように、
G=(12.25×Hl/10000)+(m−1)×(11.20×Hl/10000) (11)
であると共に、ΔTは、缶体入口の給気温度T0と、缶体出口の排ガス温度Tgiとの差分であるから、
ΔT=Tgi−T0 (25)
である。式(11)と式(25)を式(24)に代入すると、
Qs=0.33×{(12.25×Hl/10000)+(m−1)×(11.20×Hl/10000)}×(Tgi−T0) (26)
となる。
ここで、低位発熱量Hl=9406.9[kcal/m3N]、m=1.2139、Tgi=216[℃]、T0=35[℃]なる数値を用いると、
Qs=822.9[kcal/m3N]
と算出された。
Here, Q s is calculated in the same manner as the known exhaust gas loss method. That is, as in the above equation (8),
Q s = 0.33 x G x ΔT (24)
Will be. Here, as described in the above equation (11),
G = (12.25 x Hl / 10000) + (m-1) x (11.20 x Hl / 10000) (11)
Since ΔT is the difference between the air supply temperature T0 at the inlet of the can body and the exhaust gas temperature Tgi at the outlet of the can body.
ΔT = Tgi-T0 (25)
Is. Substituting Eqs. (11) and (25) into Eq. (24)
Q s = 0.33 x {(12.25 x Hl / 10000) + (m-1) x (11.20 x Hl / 10000)} x (Tgi-T0) (26)
Will be.
Here, using the numerical values of low calorific value Hl = 9406.9 [kcal / m 3 N], m = 1.2139, Tgi = 216 [° C], and T0 = 35 [° C],
Q s = 822.9 [kcal / m 3 N]
Was calculated.
また、qに関しては、給水量をW、潜熱回収部入口での給水温度をTwi、潜熱回収部出口での給水温度をTwo、燃料消費量をCとすると、入出熱法を用い、
q=W×(Two−Twi)/C (27)
と算出される。
なお、エコノマイザ12においては、気体から液体、又は液体から気体への状態変化をしないことを前提としている。
Regarding q, assuming that the water supply amount is W, the water supply temperature at the latent heat recovery unit inlet is Twi, the water supply temperature at the latent heat recovery unit outlet is Two, and the fuel consumption is C, the input / output heat method is used.
q = W × (Two-Twi) / C (27)
Is calculated.
The
ここで、実測値であるW=1.722[m3/h]=1.722×998.2[kg/h]=1719[kg/h]、Two=89.2[℃]、Twi=14.3[℃]、C=112.6[m3N/h]を式(23)に代入すると、
q=1143.5[kcal/m3N]
と算出された。
Here, the measured values W = 1.722 [m 3 / h] = 1.722 × 998.2 [kg / h] = 1719 [kg / h], Two = 89.2 [° C.], Twi = Substituting 14.3 [° C.] and C = 112.6 [m 3 N / h] into equation (23),
q = 1143.5 [kcal / m 3 N]
Was calculated.
これらの算出値である、Qs=822.9、q=1143.5に加えて、Hl=9406.9、α=0.28を、上記の式(6)に代入すると、
η=103.13[%]
と算出された。
Substituting Hl = 9406.9 and α = 0.28 into the above equation (6) in addition to these calculated values, Q s = 822.9 and q = 1143.5,
η = 103.13 [%]
Was calculated.
〔本発明の計算方法を用いた場合の効果〕
上述した本実施形態に係るボイラ効率計算方法によれば、例えば、以下のような効果が奏される。
[Effect when the calculation method of the present invention is used]
According to the boiler efficiency calculation method according to the present embodiment described above, for example, the following effects are achieved.
本実施形態のボイラ効率計算方法は、缶体と、前記缶体から排出される排気ガスの熱を回収する潜熱回収部とを備える潜熱回収ボイラ全体のボイラ効率を計算する方法であって、前記缶体に供給される燃焼空気の熱量と前記缶体から排出される排気ガスの熱量から算出される前記缶体の排ガス損失熱量と、前記潜熱回収部を通過する前後の被加熱流体の熱量の差から求められる潜熱回収部の回収熱量とを用いると共に、前記排ガス損失熱量から、前記潜熱回収部の回収熱量を減算するステップを有する。 The boiler efficiency calculation method of the present embodiment is a method of calculating the boiler efficiency of the entire latent heat recovery boiler including the can body and the latent heat recovery unit for recovering the heat of the exhaust gas discharged from the can body. The amount of heat lost in the exhaust gas of the can body calculated from the amount of heat of the combustion air supplied to the can body and the amount of heat of the exhaust gas discharged from the can body, and the amount of heat of the fluid to be heated before and after passing through the latent heat recovery unit. It has a step of subtracting the recovered heat amount of the latent heat recovery unit from the exhaust heat loss heat amount while using the recovered heat amount of the latent heat recovery unit obtained from the difference.
上記のように、排ガス損失法にドレン実測値を加味した方法を用いて算出されるボイラ効率ηe=102.238[%]であった。また、ボイラ全体のボイラ効率に入出熱法を用いて算出されたボイラ効率ηi=103.72[%]であった。一方、本発明に係る方法を用いて算出されたボイラ効率η=103.13[%]であった。
排ガス損失法にドレン実測値を加味した方法では、ドレンに係る数値を実測しているため、ボイラ効率値に近い値が得られることが推定される。このボイラ効率ηeを基準とした場合、本発明に係る方法を用いて算出されたボイラ効率ηは、ボイラ全体に対して入出熱法を用いて算出されたボイラ効率ηiに比較すると、ηeとの差が小さかった。すなわち、本発明に係る方法は、ボイラ全体に対して入出熱法を適用する方法に比較して、真のボイラ効率値に近い値が得られることが推定された。
上記のように、入出熱法は給水量を計測する流量計の誤差が、そのままボイラ効率の誤差となってしまうため、排ガス損失法を用いる場合に比較すると、算出されるボイラ効率の誤差は大きくなってしまう。
ここで、本発明に係る方法においては、潜熱回収部に流通する被加熱流体の流量を計測するが、潜熱回収部で回収される熱量はボイラ全体で回収される熱量の一部に過ぎないため、流量計の誤差の影響を小さくすることができる。具体的には、ボイラ全体のボイラ効率を入出熱法で算出する方法では、式(19)から分かるように、給水量Wの誤差が出熱量Qo全体に影響してしまう。一方で、本実施形態に係る方法においては、式(6)及び式(27)から分かるように、給水量Wの誤差は、潜熱回収分のqにしか影響しない。このため、本発明に係る方法によって算出されるボイラ効率は、ボイラ全体のボイラ効率を入出熱法を用いて算出した場合に比べて、誤差が小さくなる。
As described above, the boiler efficiency η e = 102.238 [%] calculated by using the exhaust gas loss method plus the measured drain value. In addition, the boiler efficiency of the entire boiler was calculated by using the heat input / output method, and the boiler efficiency was η i = 103.72 [%]. On the other hand, the boiler efficiency η = 103.13 [%] calculated by using the method according to the present invention.
In the method in which the measured drain value is added to the exhaust gas loss method, the value related to the drain is actually measured, so it is estimated that a value close to the boiler efficiency value can be obtained. Based on this boiler efficiency η e , the boiler efficiency η calculated by using the method according to the present invention is compared with the boiler efficiency η i calculated by using the heat input / output method for the entire boiler. The difference with e was small. That is, it was presumed that the method according to the present invention can obtain a value close to the true boiler efficiency value as compared with the method of applying the heat input / output method to the entire boiler.
As described above, in the heat input / output method, the error of the flow meter that measures the amount of water supply becomes the error of the boiler efficiency as it is, so the error of the calculated boiler efficiency is larger than that of the case of using the exhaust gas loss method. turn into.
Here, in the method according to the present invention, the flow rate of the fluid to be heated flowing through the latent heat recovery unit is measured, but the amount of heat recovered by the latent heat recovery unit is only a part of the amount of heat recovered by the entire boiler. , The influence of the error of the flow meter can be reduced. Specifically, in the method of calculating the boiler efficiency of the entire boiler by the heat input / output method, as can be seen from the equation (19), the error of the water supply amount W affects the entire heat output amount Qo. On the other hand, in the method according to the present embodiment, as can be seen from the equations (6) and (27), the error of the water supply amount W affects only the latent heat recovery q. Therefore, the boiler efficiency calculated by the method according to the present invention has a smaller error than the case where the boiler efficiency of the entire boiler is calculated by using the heat input / output method.
また、単なる排ガス損失法では、ボイラ効率の算出にあたり、潜熱回収分の熱量が考慮されることがないが、本発明においてはこの潜熱回収分の熱量を考慮して、ボイラ効率を算出することが可能となる。 Further, in the simple exhaust gas loss method, the calorific value of the latent heat recovery is not considered in the calculation of the boiler efficiency, but in the present invention, the boiler efficiency can be calculated in consideration of the calorific value of the latent heat recovery. It will be possible.
同時に、真のボイラ効率に近い値が得られることが推定される、排ガス損失法にドレン実測値を加味した方法に比較すると、ドレンに係る数値を実測する必要がないため、簡単にボイラ効率を算出することが可能である。 At the same time, compared to the exhaust gas loss method, which is estimated to obtain a value close to the true boiler efficiency, and the measured drain value is added, it is not necessary to actually measure the value related to the drain, so the boiler efficiency can be easily improved. It is possible to calculate.
更に、排ガス損失法に加えてドレンに係る値を推定する推定近似式を用いた場合、潜熱回収部の大きなボイラほど、すなわち、ボイラ効率の高いボイラほど誤差が大きくなるので、本発明に係る計算方法を用いてボイラ効率を算出した場合のメリットは大きい。 Further, when an estimation approximation formula for estimating the value related to the drain is used in addition to the exhaust gas loss method, the larger the boiler of the latent heat recovery unit, that is, the higher the boiler efficiency, the larger the error. Therefore, the calculation according to the present invention. The merit of calculating the boiler efficiency using the method is great.
それと共に、本発明においては、ボイラ効率計算に用いる、定数以外の全ての数値を実測で確認できるため、推定近似式を用いる方法より精度が高くなる。 At the same time, in the present invention, since all the numerical values other than the constants used for the boiler efficiency calculation can be confirmed by actual measurement, the accuracy is higher than the method using the estimation approximation formula.
また、前記潜熱回収ボイラ全体のボイラ効率をη、前記缶体における排ガス損失熱量をQ[kcal/m3N]、前記潜熱回収部で回収される熱量をq[kcal/m3N]、使用する燃料の燃料低位発熱量をHl[kcal/m3N]、放熱及び未燃ガス損失をα[%]とした場合、前記潜熱回収ボイラ全体のボイラ効率が、数式η=(1−(Q−q)/Hl)×100−αを用いて算出されてもよい。 Further, the boiler efficiency of the entire latent heat recovery boiler is η, the amount of heat loss from exhaust gas in the can body is Q [kcal / m 3 N], and the amount of heat recovered by the latent heat recovery unit is q [kcal / m 3 N]. When the fuel low calorific value of the fuel to be used is Hl [kcal / m 3 N] and the heat dissipation and unburned gas loss are α [%], the boiler efficiency of the entire latent heat recovery boiler is calculated by the formula η = (1- (Q). It may be calculated using −q) / Hl) × 100 −α.
したがって、繰り返しとなるが、ボイラ効率計算に用いる、定数以外の全ての数値を実測で確認できるため、近似式を用いる方法より精度が高くなる。 Therefore, again, since all the numerical values other than the constants used for the boiler efficiency calculation can be confirmed by actual measurement, the accuracy is higher than the method using the approximate expression.
〔変形例〕
以上、本発明の好適な実施形態について説明したが、本発明は、上述した実施形態に限定されることなく、種々の形態で実施することができる。
[Modification example]
Although the preferred embodiment of the present invention has been described above, the present invention is not limited to the above-described embodiment, and can be implemented in various forms.
前記潜熱回収ボイラ10の潜熱回収部は、エコノマイザ12の代わりにエアヒータを備えてもよく、エコノマイザとエアヒータの双方を備えてもよい。
The latent heat recovery unit of the latent
また、潜熱回収ボイラ10の潜熱回収部は、エコノマイザ、及び/又はエアヒータに加えて、ブロー熱交換器を備えてもよい。この態様を図2に示す。
Further, the latent heat recovery unit of the latent
図2に示すように、潜熱回収ボイラ20は、缶体21と、エコノマイザ22と、ブロー熱交換器23とを備える。潜熱回収ボイラ20への給水は、最初にブロー熱交換器21を経由し、ブロー熱交換器23内で、缶体21から排出されてきたブロー水の熱により加熱される。その後、給水は、エコノマイザ22を経由し、エコノマイザ22内で、缶体21から排出されてきた排ガスにより加熱される。その後、給水は、缶体21内で、燃料を燃焼させていた熱により水蒸気に置換される。
As shown in FIG. 2, the latent
この時、全体の熱損失=排ガス損失+ブロー損失+放熱損失=缶体排ガス損失+缶体ブロー損失+缶体放熱損失−(エコノマイザ回収熱量+ブロー熱交換器回収熱量)となる。
すなわち、全体の熱損失をQA、缶体排ガス損失をQs、缶体ブロー損失をQB、缶体放熱損失をQD、エコノマイザ回収熱量をqe、ブロー熱交換器回収熱量をqbとすると、
QA=Qs+QB+QD−(qe+qb) (28)
なる式が成り立つ。式(6)のQa=Qs−qを、式(28)のQAに置きかえることにより、潜熱回収ボイラがブロー熱交換器を備えると共に、ブロー損失についても考慮した場合のボイラ効率を算出することが可能である。
At this time, the total heat loss = exhaust gas loss + blow loss + heat dissipation loss = can body exhaust gas loss + can body blow loss + can body heat dissipation loss- (economizer recovery heat amount + blow heat exchanger recovery heat amount).
That is, the total heat loss is Q A , the can body exhaust gas loss is Q s , the can body blow loss is Q B , the can body heat dissipation loss is Q D , the economizer recovery heat amount is q e , and the blow heat exchanger recovery heat amount is q b. Then
Q A = Q s + Q B + Q D- (q e + q b ) (28)
The formula holds. By replacing Q a = Q s −q in Eq. (6) with Q A in Eq. (28), the latent heat recovery boiler is equipped with a blow heat exchanger, and the boiler efficiency is calculated when blow loss is also taken into consideration. It is possible to do.
より具体的には、ブロー量をvB、ブローエンタルピーをhBとした場合、上記の缶体ブロー損失QBは、
QB=vB×hB (29)
と計算できる。
More specifically, when the blow amount is v B and the blow enthalpy is h B , the above-mentioned can body blow loss Q B is
Q B = v B x h B (29)
Can be calculated.
また、缶体の平均熱伝達率をhm、熱が通過する面積をAとした場合、缶体の熱伝達抵抗Rは、
R=1/hmA (30)
と計算できる。外気温度をT∞、缶体の表面温度をTsとした場合、上記の缶体放熱損失QDは、
QD=(T∞−Ts)/R (31)
として計算できる。
In addition, when the average heat transfer coefficient of the can body h m, the area for heat to pass to the A, the heat transfer resistance R of the can body,
R = 1 / h mA (30)
Can be calculated. T∞ outside air temperature, when the surface temperature of the can body was Ts, can body radiator loss Q D above,
Q D = (T∞-Ts) / R (31)
Can be calculated as.
また、給水量をW、エコノマイザ22出口のエンタルピーをheo、エコノマイザ22入口のエンタルピーをhei、ブロー熱交換器23出口のエンタルピーをhbo、ブロー熱交換器23入口のエンタルピーをhbiとした場合、
qe=W×(heo−hei) (32)
qb=W×(hbo−hbi) (33)
の二式が成り立つが、ブロー熱交換器23出口の温度と、エコノマイザ22入口の温度、延いては、双方のエンタルピーであるhboとheiとは等しいため、式(28)と式(29)を合算すると、
qe+qb=W×(heo−hbi) (34)
となる。
Also, the water supply amount W,
q e = W × ( heo- h ei ) (32)
q b = W × (h bo −h bi ) (33)
However, since the temperature at the outlet of the
q e + q b = W × ( heo −h bi ) (34)
Will be.
式(29)、式(31)、式(34)を、式(28)に代入し、更に上記のように、式(6)のQa=Qs−qを、式(28)のQAに置きかえることにより、潜熱回収ボイラ20がエコノマイザ22とブロー熱交換器23とを備える場合の、ブロー損失を考慮したボイラ効率を、実測値を用いて算出することが可能となる。
The equations (29), (31), and (34) are substituted into the equation (28), and Q a = Q s −q of the equation (6) is replaced with the Q of the equation (28) as described above. By replacing it with A , it becomes possible to calculate the boiler efficiency in consideration of the blow loss when the latent
なお、図2において、エコノマイザ22とブロー熱交換器23とは、缶体21から見て逆順であってもよい。この場合、エコノマイザ22出口の温度と、ブロー熱交換器23入口の温度、延いては、双方のエンタルピーであるheoとhbiとは等しいため、式(28)と式(29)とを合算すると、
qe+qb=W×(hbo−hei) (35)
となる。この式(35)を式(34)の代わりに用いることにより、同様に、ブロー損失を考慮したボイラ効率を、実測値を用いて算出することが可能となる。
In FIG. 2, the
q e + q b = W × (h bo −h ei ) (35)
Will be. By using this equation (35) instead of the equation (34), it is possible to similarly calculate the boiler efficiency in consideration of the blow loss by using the actually measured value.
10 20 潜熱回収ボイラ
11 21 缶体
12 22 エコノマイザ
23 ブロー熱交換器
10 20 Latent heat recovery boiler 11 21 Can
Claims (4)
前記放熱及び未燃ガス損失に含まれるブロー損失を算出するステップを更に有する、請求項3に記載のボイラ効率計算方法。 The latent heat recovery boiler further includes a blow heat exchanger and
The boiler efficiency calculation method according to claim 3, further comprising a step of calculating the blow loss included in the heat dissipation and the unburned gas loss.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016208861A JP6798249B2 (en) | 2016-10-25 | 2016-10-25 | Boiler efficiency calculation method for latent heat recovery boiler |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016208861A JP6798249B2 (en) | 2016-10-25 | 2016-10-25 | Boiler efficiency calculation method for latent heat recovery boiler |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018071825A JP2018071825A (en) | 2018-05-10 |
JP6798249B2 true JP6798249B2 (en) | 2020-12-09 |
Family
ID=62111583
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016208861A Active JP6798249B2 (en) | 2016-10-25 | 2016-10-25 | Boiler efficiency calculation method for latent heat recovery boiler |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6798249B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7371533B2 (en) * | 2020-02-28 | 2023-10-31 | 三浦工業株式会社 | Boiler efficiency calculation device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2530427B2 (en) * | 1985-05-14 | 1996-09-04 | 三浦工業 株式会社 | Boiler automatic management device |
JPH0420701A (en) * | 1990-05-14 | 1992-01-24 | Hirakawa Tekkosho:Kk | Method of controlling boiler load and its device |
JP4132380B2 (en) * | 1999-04-06 | 2008-08-13 | 株式会社サムソン | Heat recovery amount increasing device in latent heat recovery boiler |
JP5370807B2 (en) * | 2008-04-25 | 2013-12-18 | 株式会社ノーリツ | Latent heat recovery water heater |
JP5327663B2 (en) * | 2008-06-09 | 2013-10-30 | 雪印メグミルク株式会社 | Combustion equipment and jacket |
-
2016
- 2016-10-25 JP JP2016208861A patent/JP6798249B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018071825A (en) | 2018-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Taler et al. | Numerical simulation of convective superheaters in steam boilers | |
Hwang et al. | Experimental study on titanium heat exchanger used in a gas fired water heater for latent heat recovery | |
WO2018121704A1 (en) | Method for obtaining thermal efficiency of furnace | |
CN103672846B (en) | Method for monitoring wall temperature of heating surface and thickness of scale cinder of boiler superheater or reheater | |
JP2014047980A (en) | Latent heat recovery type hot water supply device | |
CN107796851A (en) | Blast furnace gas boiler as-fired coal gas calorific value and boiler thermal output on-line monitoring method | |
CN103728339B (en) | A kind of real-time identification method for average heat resistance of heat-exchange equipment on thermal power boiler side | |
JP2010139207A (en) | Steam generation amount calculating method for boiler | |
JP2009068798A (en) | System for optimal operation of thermal power plant | |
JP6798249B2 (en) | Boiler efficiency calculation method for latent heat recovery boiler | |
DE60325331D1 (en) | feedwater | |
CN207623031U (en) | A kind of condenser duty on-line monitoring system | |
CN103699790B (en) | A kind of real-time detection method of coal fired power plant furnace outlet flue gas mean temperature | |
CN113221477B (en) | Heat balance calculation method for determining circulating water flow | |
JP5482405B2 (en) | Boiler performance evaluation apparatus and method | |
CN106323019B (en) | It is double that wind single channel sintering circular-cooler waste heat boiler is taken to take wind flow flexible measurement method | |
CN106288831B (en) | A kind of pair takes wind single channel sintering circular-cooler waste heat boiler to take wind flow flexible measurement method | |
CN205535748U (en) | Boiler thermodynamic system with water - water heat exchanger | |
CN106440834B (en) | A kind of pair takes wind binary channels sintering circular-cooler waste heat boiler to take distinguished and admirable measuring method | |
CN112763399B (en) | Method for detecting flue gas corrosion risk area of low-temperature heating surface of boiler | |
CN112302964B (en) | Method for measuring efficiency of independent condensing steam-driven water supply pump | |
JP2004124852A (en) | Evaluation method and evaluation device for exhaust heat recovery equipment | |
WO2023085087A1 (en) | Combustion gas temperature estimation device, heat transfer surface evaluation device, control device, combustion gas temperature estimation method, heat transfer surface evaluation method, and heat transfer surface management method | |
CN108930977A (en) | A kind of furnace combustion state real-time online acquisition methods | |
CN118309836B (en) | Pipeline valve leakage amount estimation method and device, valve and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190719 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200624 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200728 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201020 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201102 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6798249 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |