WO2023085087A1 - Combustion gas temperature estimation device, heat transfer surface evaluation device, control device, combustion gas temperature estimation method, heat transfer surface evaluation method, and heat transfer surface management method - Google Patents

Combustion gas temperature estimation device, heat transfer surface evaluation device, control device, combustion gas temperature estimation method, heat transfer surface evaluation method, and heat transfer surface management method Download PDF

Info

Publication number
WO2023085087A1
WO2023085087A1 PCT/JP2022/039831 JP2022039831W WO2023085087A1 WO 2023085087 A1 WO2023085087 A1 WO 2023085087A1 JP 2022039831 W JP2022039831 W JP 2022039831W WO 2023085087 A1 WO2023085087 A1 WO 2023085087A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion gas
heat transfer
transfer surface
inlet
gas temperature
Prior art date
Application number
PCT/JP2022/039831
Other languages
French (fr)
Japanese (ja)
Inventor
隆 園田
康之 黒田
至秀 駒田
和貴 小原
明暢 神代
貴大 今道
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023085087A1 publication Critical patent/WO2023085087A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/38Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes

Definitions

  • the present disclosure relates to a combustion gas temperature estimation device, a heat transfer surface evaluation device, a control device, a combustion gas temperature estimation method, a heat transfer surface evaluation method, and a heat transfer surface management method.
  • a boiler is known that can generate steam by exchanging heat with combustion gas generated by burning fuel such as coal through a heat transfer surface.
  • Combustion gases generated in the boiler furnace are directed from the furnace exit toward the downstream economizer through the combustion gas flow path.
  • the combustion gas flow path is provided with a plurality of heat transfer surfaces along the flow direction of the combustion gas, and heat is exchanged on these heat transfer surfaces to generate steam.
  • Patent Document 1 the combustion gas temperature on the inlet side of each heat transfer surface on the upstream side is estimated based on the combustion gas temperature on the inlet side of the economizer on the downstream side, but the pressure of the combustion gas and steam is taken into consideration. Estimate calculations are based on specific heat and temperature without Since the combustion gas temperature on the inlet side of each heat transfer surface depends on the pressure of the combustion gas and steam, it is difficult to accurately estimate it with a simple method such as that disclosed in Patent Document 1.
  • At least one embodiment of the present disclosure has been made in view of the above circumstances, and includes a combustion gas temperature estimation device, a heat transfer surface evaluation device, a control device, and a combustion gas temperature estimation device that can accurately estimate the combustion gas temperature on the inlet side of the heat transfer surface.
  • An object of the present invention is to provide a gas temperature estimation method, a heat transfer surface evaluation method, and a heat transfer surface management method.
  • a combustion gas temperature estimation device includes: (1) A combustion gas temperature estimation device according to one aspect, A combustion gas temperature estimator for estimating the temperature of combustion gas supplied to at least one heat transfer surface for heat exchange with steam, comprising: an exit-side combustion gas temperature acquisition unit for acquiring an exit-side combustion gas temperature of the heat transfer surface; a combustion gas flow rate acquisition unit for acquiring the flow rate of the combustion gas; a steam heat absorption amount calculation unit for calculating the heat absorption amount of the steam on the heat transfer surface; an enthalpy change amount calculation unit for calculating an enthalpy change amount of the combustion gas on the heat transfer surface based on the heat absorption amount and the flow rate of the combustion gas; An inlet-side combustion gas enthalpy calculation unit for calculating the inlet-side combustion gas enthalpy of the combustion gas on the inlet side of the heat transfer surface by adding the enthalpy change amount to the enthalpy corresponding to the outlet-side combustion
  • a thermal area calculator prepare.
  • a heat transfer surface evaluation device according to at least one embodiment of the present disclosure; a control unit for controlling a soot blower for removing soot from the heat transfer surface based on the effective heat transfer area; Prepare.
  • a combustion gas temperature estimation method includes: A combustion gas temperature estimation method for estimating the temperature of combustion gas supplied to at least one heat transfer surface for heat exchange with steam, comprising: obtaining a combustion gas temperature on the outlet side of the heat transfer surface; obtaining a flow rate of the combustion gas; calculating the amount of heat absorbed by the steam on the heat transfer surface; calculating an enthalpy change amount of the combustion gas on the heat transfer surface based on the amount of heat absorbed and the flow rate of the combustion gas; calculating the inlet side combustion gas enthalpy of the combustion gas on the inlet side of the heat transfer surface by adding the enthalpy change amount to the enthalpy corresponding to the outlet side combustion gas temperature; calculating the inlet-side combustion gas temperature of the heat transfer surface based on the inlet-side combustion gas enthalpy; Prepare.
  • the heat transfer surface evaluation method includes: The inlet-side combustion gas temperature, the outlet-side combustion gas temperature, the inlet-side steam temperature of the heat transfer surface, and the outlet-side steam of the heat transfer surface estimated by the combustion gas temperature estimation method according to at least one embodiment of the present disclosure A step of calculating an effective heat transfer area of the heat transfer surface based on the temperature and the heat absorption amount.
  • a combustion gas temperature estimation device capable of estimating the combustion gas temperature on the inlet side of the heat transfer surface with high accuracy
  • a heat transfer surface evaluation device capable of estimating the combustion gas temperature on the inlet side of the heat transfer surface with high accuracy
  • a control device capable of estimating the combustion gas temperature on the inlet side of the heat transfer surface with high accuracy
  • a heat transfer surface evaluation device capable of estimating the combustion gas temperature on the inlet side of the heat transfer surface with high accuracy
  • a control device capable of estimating the combustion gas temperature on the inlet side of the heat transfer surface with high accuracy
  • a control device capable of estimating the combustion gas temperature on the inlet side of the heat transfer surface with high accuracy
  • a control device capable of estimating the combustion gas temperature on the inlet side of the heat transfer surface with high accuracy
  • a combustion gas temperature estimation method capable of estimating the combustion gas temperature on the inlet side of the heat transfer surface with high accuracy
  • a control device capable of estimating the combustion gas temperature on the inlet side of the heat transfer surface with high accuracy
  • FIG. 1 is a block diagram showing the configuration of a combustion gas temperature estimating device according to one embodiment
  • FIG. 2 is a schematic diagram extracting and showing the vicinity of the heat transfer surface in FIG. 1
  • 4 is a flow chart showing a combustion gas temperature estimation method according to one embodiment
  • 1 is a block diagram showing the configuration of a heat transfer surface evaluation device according to one embodiment
  • FIG. 7 is a characteristic graph showing the relationship between the correction value calculated by the correction unit of FIG.
  • FIG. 1 is a schematic diagram schematically showing the configuration of a boiler 1 according to one embodiment.
  • the boiler 1 has a combustion gas flow path 2 through which combustion gases produced in an upstream furnace (not shown) are made. At least one heat transfer surface 4 is provided in the combustion gas flow path 2 along the flow direction of the combustion gas. A plurality of heat transfer surfaces 4 may be provided in the combustion gas flow path 2, and in the example of FIG. surface 4b. These heat transfer surfaces 4 allow heat exchange between the combustion gas flowing through the combustion gas channel 2 and the steam flowing through the steam channel 6 . Note that, for example, an economizer is arranged on the downstream side of the combustion gas flow path 2 .
  • a combustion gas temperature sensor 8 for detecting the temperature of the combustion gas is provided on the downstream side of the heat transfer surface 4 arranged on the most downstream side of the combustion gas flow path 2 .
  • a combustion gas flow rate sensor 10 for detecting the flow rate of the combustion gas flowing through the combustion gas flow path 2 is also provided in the combustion gas flow path 2 .
  • a steam temperature sensor 12 for detecting the steam temperature is provided on the inlet side and the outlet side of each heat transfer surface 4 in the steam flow path 6 .
  • a first steam temperature sensor 12a provided on the outlet side of the first heat transfer surface 4a, the inlet side of the first heat transfer surface 4a and the outlet side of the second heat transfer surface 4b
  • a second steam temperature sensor 12b provided between and a third steam temperature sensor 12c provided on the inlet side of the second heat transfer surface 4b are shown.
  • a steam flow rate sensor 14 for detecting the flow rate of steam flowing through the steam flow path 6 is provided in the steam flow path 6 .
  • a steam pressure sensor 13 for detecting the steam pressure is provided on the inlet side and the outlet side of each heat transfer surface 4 in the steam flow path 6 .
  • a first steam pressure sensor 13a provided on the outlet side of the first heat transfer surface 4a, the inlet side of the first heat transfer surface 4a and the outlet side of the second heat transfer surface 4b and a third steam pressure sensor 13c provided on the inlet side of the second heat transfer surface 4b.
  • the temperature of the combustion gas flowing through the combustion gas flow path 2 is actually measured except for the outlet side of the heat transfer surface 4 (4a) on the most downstream side that can be detected by the combustion gas temperature sensor 8. Can not. Therefore, in order to detect the combustion gas temperature on the inlet side of each heat transfer surface 4 provided in the combustion gas flow path 2, it is necessary to additionally provide a combustion gas temperature sensor on the inlet side of each heat transfer surface 4. , the combustion gas is hot, which may not be preferable from the viewpoint of cost reduction. Therefore, in the present embodiment, the inlet-side combustion gas temperature Tgin of each heat transfer surface 4 can be preferably estimated by the combustion gas temperature estimating device 100 described below without additionally providing a combustion gas temperature sensor.
  • FIG. 2 is a block diagram showing the configuration of the combustion gas temperature estimation device 100 according to one embodiment.
  • the combustion gas temperature estimating device 100 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like.
  • a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program, for example, and the CPU reads out this program to a RAM or the like, and executes information processing and arithmetic processing. As a result, various functions are realized.
  • the program is pre-installed in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. etc. may be applied.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • the combustion gas temperature estimating device 100 includes an inlet side steam temperature acquisition section 102, an inlet side steam pressure acquisition section 104, an outlet side steam temperature acquisition section 106, and an outlet side steam pressure acquisition section . , a steam flow rate acquisition unit 110, an outlet side combustion gas temperature acquisition section 112, a combustion gas flow rate acquisition section 114, a steam heat absorption amount calculation section 116, an enthalpy change amount calculation section 118, and an outlet side combustion gas enthalpy calculation section 119. , an inlet-side combustion gas enthalpy calculator 120 and an inlet-side combustion gas temperature calculator 122 .
  • FIG. 3 is a schematic diagram showing the vicinity of the heat transfer surface 4 of FIG. 1 by extracting it.
  • the combustion gas flow path 2 On any one of the heat transfer surfaces 4 of the boiler 1 (may be the first heat transfer surface 4a or the second heat transfer surface 4b), the combustion gas flow path 2 The heat exchange between the combustion gas flowing through and the steam flowing through the steam passage 6 is schematically shown.
  • the inlet-side steam temperature acquisition unit 102 is configured to acquire the steam temperature (inlet-side steam temperature Tsin) on the inlet side of the heat transfer surface 4 .
  • the steam temperature sensors 12 first steam temperature sensor 12a, second steam temperature sensor 12b, third steam temperature sensor 12c
  • the inlet-side steam temperature acquiring unit 102 acquires the inlet-side steam temperature Tsin by receiving the detected values of these steam temperature sensors 12 .
  • the inlet-side steam pressure acquisition unit 104 is configured to acquire the steam pressure (inlet-side steam pressure Psin) on the inlet side of the heat transfer surface 4 .
  • the steam pressure sensors 13 first steam pressure sensor 13a, second steam pressure sensor 13b, third steam pressure sensor 13c
  • the inlet-side steam pressure acquisition unit 104 acquires the inlet-side steam pressure Psin by receiving the detected values of these steam pressure sensors 13 .
  • the outlet-side steam temperature acquisition unit 106 is configured to acquire the steam temperature (outlet-side steam temperature Tsout) on the outlet side of the heat transfer surface 4 .
  • the steam temperature sensors 12 first steam temperature sensor 12a, second steam temperature sensor 12b, third steam temperature sensor 12c
  • the outlet side steam temperature acquiring unit 106 acquires the outlet side steam temperature Tsout by receiving the detected values of these steam temperature sensors 12 .
  • the outlet-side steam pressure acquisition unit 108 is configured to acquire the steam pressure (outlet-side steam pressure Psout) on the outlet side of the heat transfer surface 4 .
  • the steam pressure sensors 13 first steam pressure sensor 13a, second steam pressure sensor 13b, third steam pressure sensor 13c
  • the outlet side steam pressure acquisition unit 108 acquires the outlet side steam pressure Psout by receiving the detected values of these steam pressure sensors 13 .
  • the steam flow rate acquisition unit 110 is configured to acquire the steam flow rate Fs in the steam flow path 6 .
  • the steam flow sensor 14 is installed in the steam flow path 6 , and the steam flow rate acquisition unit 110 acquires the steam flow rate Fs by receiving the detected value of the steam flow rate sensor 14 .
  • the exit-side combustion gas temperature acquisition unit 112 is configured to acquire the combustion gas temperature (exit-side combustion gas temperature Tgout) on the exit side of the heat transfer surface 4 . Specifically, when the inlet-side combustion gas temperature Tgin to be estimated is that of the first heat transfer surface 4a on the most downstream side, the outlet-side combustion gas temperature acquisition unit 112 obtains the temperature at the outlet of the first heat transfer surface 4a. By receiving the detected value of the combustion gas temperature sensor 8 installed on the side, the exit side combustion gas temperature Tgout is obtained.
  • the outlet-side combustion gas temperature acquisition unit 112 obtains the first The inlet-side combustion gas temperature Tgin (estimated value) estimated for the heat transfer surface 4a is obtained as the outlet-side combustion gas temperature Tgout.
  • the combustion gas flow rate acquisition unit 114 is configured to acquire the combustion gas flow rate Fg in the combustion gas flow path 2 .
  • the combustion gas flow sensor 10 is installed in the combustion gas flow path 2, and even if the flow sensor is not installed, the gas flow rate estimated by an analogous index can be substituted.
  • the combustion gas flow rate acquisition unit 114 acquires the combustion gas flow rate Fg by receiving the detected value of the estimated gas flow rate that can be inferred from the combustion gas flow rate sensor 10 .
  • the steam heat absorption calculation unit 116 is a configuration for calculating the steam heat absorption amount Qs on the heat transfer surface 4, and includes a steam enthalpy calculation unit 116a and a heat absorption calculation unit 116b.
  • the steam enthalpy calculation unit 116a obtains the inlet-side steam temperature Tsin obtained by the inlet-side steam temperature obtaining unit 102, the inlet-side steam pressure Psin obtained by the inlet-side steam pressure obtaining unit 104, and the outlet-side steam temperature obtaining unit 106.
  • the steam enthalpy change amount Es is calculated based on the obtained outlet side steam temperature Tsout and the outlet side steam pressure Psout obtained by the outlet side steam pressure obtaining unit 108 .
  • the heat absorption amount calculation unit 116b calculates the heat absorption amount of the steam from the heat transfer surface 4 based on the steam enthalpy change amount Es calculated by the steam enthalpy calculation unit 116a and the steam flow rate Fs acquired by the steam flow rate acquisition unit 110. Calculate Qs.
  • the enthalpy change amount calculator 118 is configured to calculate the enthalpy change amount ⁇ Eg of the combustion gas on the heat transfer surface 4 . Specifically, the enthalpy change amount calculation unit 118 calculates the enthalpy change based on the combustion gas flow rate Fg acquired by the combustion gas flow rate acquisition unit 114 and the steam heat absorption amount Qs calculated by the steam heat absorption amount calculation unit 116. A change amount ⁇ Eg is calculated.
  • the outlet-side combustion gas enthalpy calculator 119 is configured to calculate the enthalpy corresponding to the outlet-side combustion gas temperature (outlet-side combustion gas enthalpy). Specifically, the outlet side combustion gas enthalpy calculation unit 119 calculates the outlet side combustion gas enthalpy by converting the outlet side combustion gas temperature Tgout acquired by the outlet side combustion gas temperature acquisition unit 122 .
  • the inlet-side combustion gas enthalpy calculation unit 120 is configured to calculate the enthalpy of the combustion gas on the inlet side of the heat transfer surface 4 (the inlet-side combustion gas enthalpy Egin). Specifically, the inlet-side combustion gas enthalpy calculation unit 120 calculates the enthalpy change amount calculated by the enthalpy change amount calculation unit 118 with respect to the outlet-side combustion gas enthalpy Egout calculated by the outlet-side combustion gas enthalpy calculation unit 119. By adding ⁇ Eg, the inlet side combustion gas enthalpy Egin is calculated.
  • the inlet-side combustion gas temperature calculator 122 is configured to calculate the inlet-side combustion gas temperature Tgin (estimated value) of the heat transfer surface 4 . Specifically, the inlet-side combustion gas temperature calculation unit 122 calculates the inlet-side combustion gas temperature Tgin by converting the inlet-side combustion gas enthalpy Egin calculated by the inlet-side combustion gas enthalpy calculation unit 120 into temperature. .
  • FIG. 4 is a flow chart showing a combustion gas temperature estimation method according to one embodiment.
  • the combustion gas temperature estimation device 100 determines whether or not the boiler 1 is in a static operating state (step S100).
  • a static operating state means that the operating state is stable, eg, not in a transient state.
  • the combustion gas temperature estimation device 100 identifies the heat transfer surface 4 existing in the combustion gas flow path 2 (step S101).
  • the first heat transfer surface 4a and the second heat transfer surface 4b are specified.
  • the combustion gas temperature estimating device 100 estimates the inlet-side combustion gas temperature Tgin for the most downstream heat transfer surface (the first heat transfer surface 4a in the example of FIG. 1) among the plurality of heat transfer surfaces 4. (step S102).
  • the detection value of the combustion gas temperature sensor 8 installed on the outlet side of the heat transfer surface on the most downstream side is the outlet-side combustion gas temperature.
  • step S103 it is determined whether or not there is another heat transfer surface 4 upstream of the heat transfer surface 4 whose inlet side combustion gas temperature Tgin was estimated in step S102 (step S103).
  • the second heat transfer surface 4 is upstream of the first heat transfer surface 4a for which the inlet side combustion gas temperature Tgin was estimated in step S102. If there is another heat transfer surface (step S103: YES), the inlet side combustion gas temperature Tgin is estimated for the other heat transfer surface 4 (step S104).
  • step S104 the inlet side combustion gas temperature Tgin of the downstream heat transfer surface 4 estimated in step S102 is used as the outlet side combustion gas temperature Tgout.
  • step S104 the outlet-side combustion gas temperature acquisition unit 112 obtains the inlet-side combustion gas temperature Tgin of the first heat transfer surface 4a estimated in step S102 as the outlet-side temperature of the second heat transfer surface 4b.
  • the combustion gas temperature Tgout the combustion gas temperature Tgin on the inlet side of the second heat transfer surface 4b is estimated.
  • step S103 NO
  • step S103 NO
  • the inlet side combustion gas temperature Tgin of each heat transfer surface 4 can be accurately estimated without additionally installing a device such as a temperature sensor. .
  • FIG. 5 is a block diagram showing the configuration of a heat transfer surface evaluation device 200 according to one embodiment.
  • the heat transfer surface evaluation device 200 includes the above-described combustion gas temperature estimation device 100 and an effective heat transfer area calculator 202 .
  • the effective heat transfer area calculation unit 202 is a configuration for calculating the effective heat transfer area (SEF: Surface Efficiency Factor) of each heat transfer surface. 208 , a reference heat transfer coefficient acquisition unit 210 , and an effective heat transfer area calculation unit 212 .
  • SEF Surface Efficiency Factor
  • the representative gas/steam temperature difference calculator 204 is configured to calculate the temperature difference between the combustion gas and the steam on each heat transfer surface 4 .
  • the representative gas steam temperature difference calculation unit 204 calculates, for example, the representative combustion gas temperature Tg as an average value of the inlet side combustion gas temperature Tgin and the outlet side combustion gas temperature Tgout, and calculates the inlet side steam temperature Tsin and the outlet side steam temperature Tsout.
  • a representative steam temperature Ts may be calculated as an average value of , and the temperature difference between the representative combustion gas temperature Tg and the representative steam temperature Ts may be output. Alternatively, it may be calculated using the logarithmic average temperature difference between the inlet combustion gas temperature Tgin, the outlet combustion gas temperature Tgout, the inlet steam temperature Tsin, and the outlet steam temperature Tsout.
  • the virtual heat transfer coefficient calculator 208 is configured to calculate the virtual heat transfer coefficient R based on the representative gas-vapor temperature difference ⁇ Tgs calculated by the representative gas-vapor temperature difference calculator 204 .
  • the virtual heat transfer coefficient calculation unit 208 calculates the virtual heat transfer coefficient R based on the representative gas vapor temperature difference ⁇ Tgs calculated by the representative gas vapor temperature difference calculation unit 204, for example.
  • the standard heat transfer coefficient acquisition unit 210 is configured to acquire the standard heat transfer coefficient R'.
  • the reference heat transfer coefficient R' is a heat transfer coefficient specified as a specification for each heat transfer surface 4, and is, for example, a design value.
  • Such a reference heat transfer coefficient R′ is stored in advance in a storage medium (not shown), and is obtained by being read by the reference heat transfer coefficient obtaining unit 210 .
  • the effective heat transfer area calculation unit 212 calculates each This configuration is for calculating the effective heat transfer area S of the heat transfer surface 4 . Specifically, the effective heat transfer area calculator 212 calculates the effective heat transfer area S as a ratio between the virtual heat transfer coefficient R and the reference heat transfer coefficient R'. The effective heat transfer area S calculated in this manner becomes smaller when dirt accumulates on the heat transfer surfaces 4 and the heat transfer characteristics deteriorate. It is possible.
  • Fig. 6 is a modification of Fig. 5.
  • a heat transfer surface evaluation apparatus 200 according to this modification differs from that shown in FIG. 4 in that it further includes a correction unit 214 for correcting the effective heat transfer area S.
  • the correction unit 214 calculates a correction value Sa for multiplying the effective heat transfer area S calculated by the effective heat transfer area calculation unit 212 .
  • the correction value Sa is set depending on the inlet side combustion gas temperature Tgin calculated by the combustion gas temperature estimating device 100 .
  • FIG. 7 is a characteristic graph showing the relationship between the correction value Sa calculated by the correction unit 214 in FIG. 6 and the inlet-side combustion gas temperature Tgin calculated by the combustion gas temperature estimation device 100.
  • the correction value Sa is defined to increase as the inlet-side combustion gas temperature Tgin calculated by the combustion gas temperature estimating device 100 increases, and FIG.
  • the effective heat transfer area S increases as the inlet side combustion gas temperature Tgin increases.
  • control device Next, a control device for controlling the boiler 1 based on the effective heat transfer area S calculated as the evaluation index of each heat transfer surface 4 by the heat transfer surface evaluation device 200 described above will be described.
  • the control target is a soot blower device for removing soot by blowing an air flow against soot (such as soot) attached to the heat transfer surface 4.
  • soot blower device for removing soot by blowing an air flow against soot (such as soot) attached to the heat transfer surface 4.
  • soot blower device for removing soot by blowing an air flow against soot (such as soot) attached to the heat transfer surface 4.
  • FIG. 8 is a block diagram showing the configuration of the control device 300 according to one embodiment.
  • the control device 300 includes an effective heat transfer area acquisition unit 302 for acquiring the effective heat transfer area S of each heat transfer surface 4 calculated by the heat transfer surface evaluation device 200, and an effective heat transfer area acquisition unit 302 for controlling the soot blower to be controlled. and a control unit 304 .
  • the effective heat transfer area acquisition unit 302 acquires the effective heat transfer area S calculated for each heat transfer surface 4 by the heat transfer surface evaluation device 200 . Thereby, the heat transfer state of each of the plurality of heat transfer surfaces 4 is grasped. Based on the effective heat transfer area S obtained by the effective heat transfer area obtaining unit 302 , the control unit 304 controls the soot blowers provided on each heat transfer surface 4 . The control of the soot blower by the control unit 304 is performed, for example, so that the effective heat transfer area S of each heat transfer surface 4 is equal to or greater than a preset threshold value S0.
  • Fig. 9 shows the verification results showing the transition of the effective heat transfer area S on a certain heat transfer surface 4.
  • the soot blower operates at times t1 and t2 when the effective heat transfer area S is less than the threshold value S0, so that the effective heat transfer area S becomes equal to or greater than the unique threshold set for each heat transfer surface. controlled as By operating the soot blower corresponding to each heat transfer surface 4 based on the effective heat transfer area S in this manner, the effective heat transfer area S of each heat transfer surface 4 is set to an appropriate range for each heat transfer surface. is held to As a result, the heat transfer state of the heat transfer surface 4 can be favorably maintained while suppressing energy consumption due to unnecessary operation of the soot blower.
  • the effective heat transfer area S of each heat transfer surface 4 calculated by the heat transfer surface evaluation device 200 can be appropriately used for the operation of the boiler 1 and various maintenances.
  • the fuel for generating the combustion gases in the furnace of the boiler 1 may contain antifouling agents to prevent fouling from adhering to the heat transfer surfaces 4 .
  • the addition amount of the antifouling agent contained in the fuel may be adjusted based on the effective heat transfer area S.
  • the effective heat transfer area S is an index indicating the amount of dirt adhering to the heat transfer surface 4 as described above, the amount of dirt adhering to each heat transfer surface 4 is specified based on the effective heat transfer area S, and the Based on the adhesion amount, maintenance timing such as dirt removal work can be managed.
  • the effective heat transfer area S is calculated for each heat transfer surface 4, the amount of contaminants on each heat transfer surface 4 can be specified individually. Therefore, for example, by specifying the heat transfer surface 4 with a large amount of adhered dirt, it is possible to grasp the range in which the work of removing the dirt is required intensively during maintenance.
  • the effective heat transfer area S can also serve as an indicator of the amount of thinning/corrosion on the heat transfer surface 4 . From this point of view, the effective heat transfer area S may be used to manage the timing of maintenance such as repair work for thinning/corrosion occurring in each heat transfer surface 4 . In particular, since the effective heat transfer area S is calculated for each heat transfer surface 4, the thickness reduction/corrosion amount of each heat transfer surface 4 can be specified individually. Therefore, for example, by specifying the heat transfer surface 4 with a large amount of thinning/corrosion, it is also possible to grasp the range in which repair work is required intensively during maintenance.
  • a combustion gas temperature estimating device for estimating the temperature of combustion gas supplied to at least one heat transfer surface (4) for heat exchange with steam, comprising: an outlet side combustion gas temperature acquiring section (112) for acquiring the outlet side combustion gas temperature (Tgout) of the heat transfer surface; a combustion gas flow rate acquisition unit (114) for acquiring the flow rate (Fg) of the combustion gas; a vapor heat absorption calculation unit (116) for calculating the heat absorption amount (Qs) of the vapor on the heat transfer surface; an enthalpy change calculation unit (118) for calculating an enthalpy change ( ⁇ Eg) of the combustion gas on the heat transfer surface based on the amount of heat absorbed and the flow rate of the combustion gas; An inlet for calculating the inlet side combustion gas enthalpy (Egin) of the combustion gas on the inlet side of the heat transfer surface by adding the enthalpy change amount to the enthalpy (Egout) corresponding
  • the amount of enthalpy change of the combustion gas due to the heat transfer surface is calculated based on the amount of heat absorbed by the steam that exchanges heat with the combustion gas, and is added to the enthalpy corresponding to the outlet-side combustion gas temperature.
  • the enthalpy of the combustion gas on the inlet side is obtained.
  • the inlet side combustion gas temperature can be accurately estimated based on the inlet side combustion gas enthalpy without installing a device such as a temperature sensor on the inlet side of the heat transfer surface.
  • the inlet-side combustion gas temperature can be estimated in real time.
  • the at least one heat transfer surface includes a first heat transfer surface (4a) and a second heat transfer surface (4b) provided upstream along the flow direction of the combustion gas,
  • the outlet-side combustion gas temperature acquisition unit calculates the outlet-side combustion gas temperature for the second heat transfer surface.
  • the inlet-side combustion gas temperature calculation unit acquires the result of calculating the inlet-side combustion gas temperature for the first heat transfer surface.
  • the inlet-side combustion gas temperature on the first heat transfer surface and the second heat transfer surface provided along the flow direction of the combustion gas is calculated by using the estimation result of the inlet-side combustion gas temperature on the first heat transfer surface provided on the downstream side as the exit combustion gas temperature on the second heat transfer surface.
  • the gas temperature it is possible to estimate the inlet-side combustion gas temperature at each heat transfer surface.
  • the combustion gas temperature on the inlet side of each heat transfer surface can be estimated computationally without installing a device such as a temperature sensor on the inlet side of the plurality of heat transfer surfaces.
  • the at least one heat transfer surface includes a plurality of heat transfer surfaces (4a, 4b) provided along the flow direction of the combustion gas,
  • the outlet-side combustion gas temperature obtaining unit calculates the A detection value of a temperature sensor (8) provided downstream from the plurality of heat transfer surfaces is obtained.
  • the steam heat absorption calculation unit calculates the enthalpy of the steam based on the inlet-side steam temperature, the inlet-side steam pressure, the outlet-side steam temperature, and the outlet-side steam pressure, and calculates the enthalpy of the steam based on the enthalpy of the steam. to calculate the amount of heat absorption.
  • the amount of heat absorbed by the steam required to calculate the combustion gas temperature on the inlet side is calculated based on the temperature and pressure of the steam detected on the inlet side and outlet side of the heat transfer surface. be done.
  • a heat transfer surface evaluation device The combustion gas temperature estimating device (100) of (4) above; To calculate the effective heat transfer area (S) of the heat transfer surface based on the inlet side combustion gas temperature, the outlet side combustion gas temperature, the inlet side steam temperature, the outlet side steam temperature, and the amount of heat absorption An effective heat transfer area calculation unit (202) of Prepare.
  • the effective heat transfer area of the heat transfer surface is calculated based on the temperature of the combustion gas and steam on the inlet side and the outlet side of the heat transfer surface and the heat absorption amount.
  • the effective heat transfer area obtained in this manner can be used as an index indicating the influence of dirt accumulated on the heat transfer surface, for example.
  • a correction value calculator (214) is further provided for calculating a correction value (Sa) to be multiplied by the effective heat transfer area based on the inlet side combustion gas temperature.
  • the effective heat transfer area calculated by the effective heat transfer area calculator is multiplied by the correction value, thereby correcting the calculation result of the effective heat transfer area.
  • the correction value is set to increase as the inlet-side combustion gas temperature increases.
  • the effective heat transfer area can be calculated more accurately by taking into account the characteristic that the effective heat transfer area increases as the inlet side combustion gas temperature increases.
  • a control device (300) according to one aspect, A heat transfer surface evaluation device (200) according to any one of (5) to (7); a control unit (304) for controlling a soot blower for removing soot from the heat transfer surface based on the effective heat transfer area; Prepare.
  • the soot blower is controlled based on the effective heat transfer area calculated for the heat transfer surface. Since the effective heat transfer area is an index indicating the contamination of the heat transfer surface, soot can be removed at appropriate timing by controlling the soot blower based on the size of the effective heat transfer area.
  • a combustion gas temperature estimation method includes: A combustion gas temperature estimation method for estimating the temperature of combustion gas supplied to at least one heat transfer surface (4) for heat exchange with steam, comprising: obtaining a combustion gas temperature (Tgout) on the outlet side of the heat transfer surface; obtaining a flow rate (Fg) of the combustion gas; calculating a heat absorption amount (Qs) of the steam on the heat transfer surface; calculating an enthalpy change ( ⁇ Eg) of the combustion gas on the heat transfer surface based on the amount of heat absorbed and the flow rate of the combustion gas; calculating the inlet-side combustion gas enthalpy (Egin) of the combustion gas on the inlet side of the heat transfer surface by adding the enthalpy change amount to the enthalpy (Egout) corresponding to the outlet-side combustion gas temperature; calculating an inlet-side combustion gas temperature (Tgin) of the heat transfer surface based on the inlet-side combustion gas enthalpy; Prepare.
  • the amount of enthalpy change of the combustion gas due to the heat transfer surface is calculated based on the amount of heat absorbed by the steam heat-exchanging with the combustion gas, and is added to the enthalpy corresponding to the outlet-side combustion gas temperature.
  • the enthalpy of the combustion gas on the inlet side is obtained.
  • the inlet side combustion gas temperature can be accurately estimated based on the inlet side combustion gas enthalpy without installing a device such as a temperature sensor on the inlet side of the heat transfer surface.
  • the inlet-side combustion gas temperature can be estimated in real time.
  • a heat transfer surface evaluation method includes: The inlet-side combustion gas temperature, the outlet-side combustion gas temperature, the inlet-side steam temperature of the heat transfer surface, the outlet-side steam temperature of the heat transfer surface, estimated by the combustion gas temperature estimation method of the aspect (9) above, and calculating an effective heat transfer area (S) of the heat transfer surface based on the heat absorption amount.
  • the effective heat transfer area of the heat transfer surface is calculated based on the temperature of the combustion gas and steam on the inlet side and the outlet side of the heat transfer surface and the amount of heat absorbed.
  • the effective heat transfer area obtained in this manner can be used as an index indicating the influence of dirt accumulated on the heat transfer surface, for example.
  • a heat transfer surface management method includes: Based on the effective heat transfer area calculated by the heat transfer surface evaluation method of the aspect (10), an antifouling agent added to the boiler for generating the combustion gas, or maintenance of the heat transfer surface It further comprises a step of managing at least one of the timings.
  • the antifouling agent added to the boiler for generating the combustion gas, or the heat transfer surface at least one of the maintenance timing of As a result, maintenance such as antifouling agents and periodic inspections, and monitoring of thinning/corrosion amounts of the heat transfer surface can be carried out according to the progress of the heat transfer surface contamination, thereby preventing troubles such as leakage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

This combustion gas temperature estimation device estimates the temperature of combustion gas supplied to at least one heat transfer surface for heat exchange with steam. This device calculates the inlet-side combustion gas enthalpy of combustion gas at the inlet side of the heat transfer surface by calculating the amount of change in the enthalpy of combustion gas on the heat transfer surface on the basis of the amount of heat absorption of steam on the heat transfer surface and the combustion gas flow rate and adding the enthalpy change amount to the enthalpy corresponding to the outlet-side combustion gas temperature. Based on the inlet-side combustion gas enthalpy calculated in this way, the inlet-side combustion gas temperature of the heat transfer surface is calculated.

Description

燃焼ガス温度推定装置、伝熱面評価装置、制御装置、燃焼ガス温度推定方法、伝熱面評価方法、及び、伝熱面管理方法Combustion gas temperature estimation device, heat transfer surface evaluation device, control device, combustion gas temperature estimation method, heat transfer surface evaluation method, and heat transfer surface management method
 本開示は、燃焼ガス温度推定装置、伝熱面評価装置、制御装置、燃焼ガス温度推定方法、伝熱面評価方法、及び、伝熱面管理方法に関する。
 本願は、2021年11月12日に日本国特許庁に出願された特願2021-184876号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to a combustion gas temperature estimation device, a heat transfer surface evaluation device, a control device, a combustion gas temperature estimation method, a heat transfer surface evaluation method, and a heat transfer surface management method.
This application claims priority based on Japanese Patent Application No. 2021-184876 filed with the Japan Patent Office on November 12, 2021, the contents of which are incorporated herein.
 石炭等の燃料を燃焼して生成した燃焼ガスと伝熱面を介して熱交換することにより蒸気を生成可能なボイラが知られている。ボイラの火炉で生成された燃焼ガスは、火炉出口から下流側の節炭器に向けて燃焼ガス流路を介して導かれる。燃焼ガス流路には、燃焼ガスの流れ方向に沿って複数の伝熱面が設けられており、これらの伝熱面で熱交換を行うことで蒸気が生成される。 A boiler is known that can generate steam by exchanging heat with combustion gas generated by burning fuel such as coal through a heat transfer surface. Combustion gases generated in the boiler furnace are directed from the furnace exit toward the downstream economizer through the combustion gas flow path. The combustion gas flow path is provided with a plurality of heat transfer surfaces along the flow direction of the combustion gas, and heat is exchanged on these heat transfer surfaces to generate steam.
 ところでボイラの伝熱状態を評価するために、燃焼ガス流路に設けられた各伝熱面における入口側燃焼ガスの温度を測定する場合がある。このような各伝熱面における入口側燃焼ガス温度は、燃焼ガスの温度が高いと一般的な温度センサによる測定が困難な場合があるため、例えば特許文献1では、下流側の節炭器の入口側燃焼ガス温度に基づいて、上流側の各伝熱面における入口燃焼ガス温度を推定することが開示されている。 By the way, in order to evaluate the heat transfer state of the boiler, there are cases where the temperature of the combustion gas on the inlet side of each heat transfer surface provided in the combustion gas flow path is measured. Since it may be difficult to measure the combustion gas temperature on the inlet side of each heat transfer surface with a general temperature sensor if the temperature of the combustion gas is high, for example, in Patent Document 1, the downstream side economizer Estimating the inlet combustion gas temperature at each upstream heat transfer surface based on the inlet combustion gas temperature is disclosed.
特開平5-280703号公報JP-A-5-280703
 上記特許文献1では、上流側の各伝熱面の入口側燃焼ガス温度を、下流側の節炭器の入口側燃焼ガス温度に基づいて推定しているが、燃焼ガスや蒸気の圧力を考慮することなく、比熱及び温度に基づいて推定演算をしている。各伝熱面の入口側燃焼ガス温度は、燃焼ガスや蒸気の圧力に依存するため、特許文献1のような簡易的な手法では、精度のよい推定が難しい。 In Patent Document 1, the combustion gas temperature on the inlet side of each heat transfer surface on the upstream side is estimated based on the combustion gas temperature on the inlet side of the economizer on the downstream side, but the pressure of the combustion gas and steam is taken into consideration. Estimate calculations are based on specific heat and temperature without Since the combustion gas temperature on the inlet side of each heat transfer surface depends on the pressure of the combustion gas and steam, it is difficult to accurately estimate it with a simple method such as that disclosed in Patent Document 1.
 本開示の少なくとも一実施形態は上述の事情に鑑みなされたものであり、伝熱面の入口側燃焼ガス温度を精度よく推定可能な燃焼ガス温度推定装置、伝熱面評価装置、制御装置、燃焼ガス温度推定方法、伝熱面評価方法、及び、伝熱面管理方法を提供することを目的とする。 At least one embodiment of the present disclosure has been made in view of the above circumstances, and includes a combustion gas temperature estimation device, a heat transfer surface evaluation device, a control device, and a combustion gas temperature estimation device that can accurately estimate the combustion gas temperature on the inlet side of the heat transfer surface. An object of the present invention is to provide a gas temperature estimation method, a heat transfer surface evaluation method, and a heat transfer surface management method.
 本開示の少なくとも一実施形態に係る燃焼ガス温度推定装置は、上記課題を解決するために、
(1)一態様に係る燃焼ガス温度推定装置は、
 蒸気との熱交換を行うための少なくとも1つの伝熱面に供給される燃焼ガスの温度を推定するための燃焼ガス温度推定装置であって、
 前記伝熱面の出口側燃焼ガス温度を取得するための出口側燃焼ガス温度取得部と、
 前記燃焼ガスの流量を取得するための燃焼ガス流量取得部と、
 前記伝熱面における前記蒸気の吸熱量を算出するための蒸気吸熱量算出部と、
 前記吸熱量、及び、前記燃焼ガスの流量に基づいて、前記伝熱面における前記燃焼ガスのエンタルピー変化量を算出するためのエンタルピー変化量算出部と、
 前記出口側燃焼ガス温度に対応するエンタルピーに前記エンタルピー変化量を加算することにより、前記伝熱面の入口側における前記燃焼ガスの入口側燃焼ガスエンタルピーを算出するための入口側燃焼ガスエンタルピー算出部と、
 前記入口側燃焼ガスエンタルピーに基づいて、前記伝熱面の入口側燃焼ガス温度を算出するための入口側燃焼ガス温度算出部と、
を備える。
In order to solve the above problems, a combustion gas temperature estimation device according to at least one embodiment of the present disclosure includes:
(1) A combustion gas temperature estimation device according to one aspect,
A combustion gas temperature estimator for estimating the temperature of combustion gas supplied to at least one heat transfer surface for heat exchange with steam, comprising:
an exit-side combustion gas temperature acquisition unit for acquiring an exit-side combustion gas temperature of the heat transfer surface;
a combustion gas flow rate acquisition unit for acquiring the flow rate of the combustion gas;
a steam heat absorption amount calculation unit for calculating the heat absorption amount of the steam on the heat transfer surface;
an enthalpy change amount calculation unit for calculating an enthalpy change amount of the combustion gas on the heat transfer surface based on the heat absorption amount and the flow rate of the combustion gas;
An inlet-side combustion gas enthalpy calculation unit for calculating the inlet-side combustion gas enthalpy of the combustion gas on the inlet side of the heat transfer surface by adding the enthalpy change amount to the enthalpy corresponding to the outlet-side combustion gas temperature. and,
an inlet-side combustion gas temperature calculator for calculating the inlet-side combustion gas temperature of the heat transfer surface based on the inlet-side combustion gas enthalpy;
Prepare.
 本開示の少なくとも一実施形態に係る伝熱面評価装置は、上記課題を解決するために、
 本開示の少なくとも一実施形態に係る燃焼ガス温度推定装置と、
 前記入口側燃焼ガス温度、前記出口側燃焼ガス温度、前記入口側蒸気温度、前記出口側蒸気温度、及び、前記吸熱量に基づいて前記伝熱面の有効伝熱面積を算出するための有効伝熱面積算出部と、
を備える。
In order to solve the above problems, the heat transfer surface evaluation device according to at least one embodiment of the present disclosure,
a combustion gas temperature estimation device according to at least one embodiment of the present disclosure;
An effective heat transfer area for calculating an effective heat transfer area of the heat transfer surface based on the inlet side combustion gas temperature, the outlet side combustion gas temperature, the inlet side steam temperature, the outlet side steam temperature, and the heat absorption amount. a thermal area calculator;
Prepare.
 本開示の少なくとも一実施形態に係る制御装置は、上記課題を解決するために、
 本開示の少なくとも一実施形態に係る伝熱面評価装置と、
 前記有効伝熱面積に基づいて前記伝熱面のスートを除去するためのスートブロアを制御するための制御部と、
を備える。
In order to solve the above problems, the control device according to at least one embodiment of the present disclosure,
A heat transfer surface evaluation device according to at least one embodiment of the present disclosure;
a control unit for controlling a soot blower for removing soot from the heat transfer surface based on the effective heat transfer area;
Prepare.
 本開示の少なくとも一実施形態に係る燃焼ガス温度推定方法は、上記課題を解決するために、
 蒸気との熱交換を行うための少なくとも1つの伝熱面に供給される燃焼ガスの温度を推定するための燃焼ガス温度推定方法であって、
 前記伝熱面の出口側燃焼ガス温度を取得する工程と、
 前記燃焼ガスの流量を取得する工程と、
 前記伝熱面における前記蒸気の吸熱量を算出する工程と、
 前記吸熱量、及び、前記燃焼ガスの流量に基づいて、前記伝熱面における前記燃焼ガスのエンタルピー変化量を算出する工程と、
 前記出口側燃焼ガス温度に対応するエンタルピーに前記エンタルピー変化量を加算することにより、前記伝熱面の入口側における前記燃焼ガスの入口側燃焼ガスエンタルピーを算出する工程と、
 前記入口側燃焼ガスエンタルピーに基づいて、前記伝熱面の入口側燃焼ガス温度を算出する工程と、
を備える。
In order to solve the above problems, a combustion gas temperature estimation method according to at least one embodiment of the present disclosure includes:
A combustion gas temperature estimation method for estimating the temperature of combustion gas supplied to at least one heat transfer surface for heat exchange with steam, comprising:
obtaining a combustion gas temperature on the outlet side of the heat transfer surface;
obtaining a flow rate of the combustion gas;
calculating the amount of heat absorbed by the steam on the heat transfer surface;
calculating an enthalpy change amount of the combustion gas on the heat transfer surface based on the amount of heat absorbed and the flow rate of the combustion gas;
calculating the inlet side combustion gas enthalpy of the combustion gas on the inlet side of the heat transfer surface by adding the enthalpy change amount to the enthalpy corresponding to the outlet side combustion gas temperature;
calculating the inlet-side combustion gas temperature of the heat transfer surface based on the inlet-side combustion gas enthalpy;
Prepare.
 本開示の少なくとも一実施形態に係る伝熱面評価方法は、上記課題を解決するために、
 本開示の少なくとも一実施形態に係る燃焼ガス温度推定方法によって推定された前記入口側燃焼ガス温度、前記出口側燃焼ガス温度、前記伝熱面の入口側蒸気温度、前記伝熱面の出口側蒸気温度、及び、前記吸熱量に基づいて前記伝熱面の有効伝熱面積を算出する工程を備える。
In order to solve the above problems, the heat transfer surface evaluation method according to at least one embodiment of the present disclosure includes:
The inlet-side combustion gas temperature, the outlet-side combustion gas temperature, the inlet-side steam temperature of the heat transfer surface, and the outlet-side steam of the heat transfer surface estimated by the combustion gas temperature estimation method according to at least one embodiment of the present disclosure A step of calculating an effective heat transfer area of the heat transfer surface based on the temperature and the heat absorption amount.
 本開示の少なくとも一実施形態によれば、伝熱面の入口側燃焼ガス温度を精度よく推定可能な燃焼ガス温度推定装置、伝熱面評価装置、制御装置、燃焼ガス温度推定方法、伝熱面評価方法、及び、伝熱面管理方法を提供できる。 According to at least one embodiment of the present disclosure, a combustion gas temperature estimation device capable of estimating the combustion gas temperature on the inlet side of the heat transfer surface with high accuracy, a heat transfer surface evaluation device, a control device, a combustion gas temperature estimation method, and a heat transfer surface An evaluation method and a heat transfer surface management method can be provided.
一実施形態に係るボイラの構成を簡略的に示す模式図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic diagram which shows simply the structure of the boiler which concerns on one Embodiment. 一実施形態に係る燃焼ガス温度推定装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a combustion gas temperature estimating device according to one embodiment; FIG. 図1の伝熱面の近傍を抽出して示す模式図である。FIG. 2 is a schematic diagram extracting and showing the vicinity of the heat transfer surface in FIG. 1 ; 一実施形態に係る燃焼ガス温度推定方法を示すフローチャートである。4 is a flow chart showing a combustion gas temperature estimation method according to one embodiment. 一実施形態に係る伝熱面評価装置の構成を示すブロック図である。1 is a block diagram showing the configuration of a heat transfer surface evaluation device according to one embodiment; FIG. 図5の変形例である。It is a modification of FIG. 図6の補正部で算出される補正値と燃焼ガス温度推定装置で算出される入口側燃焼ガス温度との関係を示す特性グラフである。FIG. 7 is a characteristic graph showing the relationship between the correction value calculated by the correction unit of FIG. 6 and the inlet-side combustion gas temperature calculated by the combustion gas temperature estimating device; 一実施形態に係る制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of the control apparatus which concerns on one Embodiment. ある伝熱面における有効伝熱面積の推移を示す検証結果である。It is the verification result which shows transition of the effective heat-transfer area in a certain heat-transfer surface.
 以下、添付図面を参照して幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成等は、発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Several embodiments will be described below with reference to the accompanying drawings. However, the configurations described as the embodiments or illustrated in the drawings are not meant to limit the scope of the invention, but merely illustrative examples.
(ボイラの構成)
 まず本開示の少なくとも一実施形態に係る燃焼ガス温度推定装置の推定対象である燃焼ガスを取り扱うボイラの構成について説明する。図1は一実施形態に係るボイラ1の構成を簡略的に示す模式図である。
(Boiler configuration)
First, the configuration of a boiler that handles combustion gas, which is an estimation target of a combustion gas temperature estimation device according to at least one embodiment of the present disclosure, will be described. FIG. 1 is a schematic diagram schematically showing the configuration of a boiler 1 according to one embodiment.
 ボイラ1は、上流側にある火炉(不図示)で生成された燃焼ガスがなされる燃焼ガス流路2を有する。燃焼ガス流路2には、燃焼ガスの流れ方向に沿って少なくとも一つの伝熱面4が設けられる。燃焼ガス流路2には複数の伝熱面4が設けられてもよく、図1の例では、第1伝熱面4aと、第1伝熱面4aより上流側に位置する第2伝熱面4bとを含む。これらの伝熱面4では、燃焼ガス流路2を流れる燃焼ガスと、蒸気流路6を流れる蒸気とが熱交換可能である。
 尚、燃焼ガス流路2の下流側には、例えば節炭器が配置される。
The boiler 1 has a combustion gas flow path 2 through which combustion gases produced in an upstream furnace (not shown) are made. At least one heat transfer surface 4 is provided in the combustion gas flow path 2 along the flow direction of the combustion gas. A plurality of heat transfer surfaces 4 may be provided in the combustion gas flow path 2, and in the example of FIG. surface 4b. These heat transfer surfaces 4 allow heat exchange between the combustion gas flowing through the combustion gas channel 2 and the steam flowing through the steam channel 6 .
Note that, for example, an economizer is arranged on the downstream side of the combustion gas flow path 2 .
 燃焼ガス流路2のうち最下流側に配置された伝熱面4の下流側には、燃焼ガスの温度を検出するための燃焼ガス温度センサ8が設けられる。また燃焼ガス流路2には、燃焼ガス流路2を流れる燃焼ガスの流量を検出するための燃焼ガス流量センサ10が設けられる。 A combustion gas temperature sensor 8 for detecting the temperature of the combustion gas is provided on the downstream side of the heat transfer surface 4 arranged on the most downstream side of the combustion gas flow path 2 . A combustion gas flow rate sensor 10 for detecting the flow rate of the combustion gas flowing through the combustion gas flow path 2 is also provided in the combustion gas flow path 2 .
 蒸気流路6のうち各伝熱面4の入口側及び出口側には、蒸気温度を検出するための蒸気温度センサ12がそれぞれ設けられる。本実施形態では、蒸気温度センサ12として、第1伝熱面4aの出口側に設けられた第1蒸気温度センサ12a、第1伝熱面4aの入口側と第2伝熱面4bの出口側との間に設けられた第2蒸気温度センサ12b、及び、第2伝熱面4bの入口側に設けられた第3蒸気温度センサ12cが示されている。また蒸気流路6には、蒸気流路6を流れる蒸気の流量を検出するための蒸気流量センサ14が設けられている。 A steam temperature sensor 12 for detecting the steam temperature is provided on the inlet side and the outlet side of each heat transfer surface 4 in the steam flow path 6 . In this embodiment, as the steam temperature sensor 12, a first steam temperature sensor 12a provided on the outlet side of the first heat transfer surface 4a, the inlet side of the first heat transfer surface 4a and the outlet side of the second heat transfer surface 4b A second steam temperature sensor 12b provided between and a third steam temperature sensor 12c provided on the inlet side of the second heat transfer surface 4b are shown. A steam flow rate sensor 14 for detecting the flow rate of steam flowing through the steam flow path 6 is provided in the steam flow path 6 .
 蒸気流路6のうち各伝熱面4の入口側及び出口側には、蒸気圧力を検出するための蒸気圧力センサ13がそれぞれ設けられる。本実施形態では、蒸気圧力センサ13として、第1伝熱面4aの出口側に設けられた第1蒸気圧力センサ13a、第1伝熱面4aの入口側と第2伝熱面4bの出口側との間に設けられた第2蒸気圧力センサ13b、及び、第2伝熱面4bの入口側に設けられた第3蒸気圧力センサ13cが示されている。 A steam pressure sensor 13 for detecting the steam pressure is provided on the inlet side and the outlet side of each heat transfer surface 4 in the steam flow path 6 . In this embodiment, as the steam pressure sensor 13, a first steam pressure sensor 13a provided on the outlet side of the first heat transfer surface 4a, the inlet side of the first heat transfer surface 4a and the outlet side of the second heat transfer surface 4b and a third steam pressure sensor 13c provided on the inlet side of the second heat transfer surface 4b.
 このような構成を有するボイラ1では、燃焼ガス流路2を流れる燃焼ガスの温度は、燃焼ガス温度センサ8によって検出可能な最下流側の伝熱面4(4a)の出口側を除いて実測できない。そのため燃焼ガス流路2に設けられた各伝熱面4の入口側燃焼ガス温度を検出するためには、各伝熱面4の入口側にも追加で燃焼ガス温度センサを設ける必要があるが、燃焼ガスは高温であり、コスト削減の観点からも好ましくない場合がある。そこで本実施形態では、以下に述べる燃焼ガス温度推定装置100によって、追加で燃焼ガス温度センサを設けることなく、各伝熱面4の入口側燃焼ガス温度Tginを好適に推定可能である。 In the boiler 1 having such a configuration, the temperature of the combustion gas flowing through the combustion gas flow path 2 is actually measured except for the outlet side of the heat transfer surface 4 (4a) on the most downstream side that can be detected by the combustion gas temperature sensor 8. Can not. Therefore, in order to detect the combustion gas temperature on the inlet side of each heat transfer surface 4 provided in the combustion gas flow path 2, it is necessary to additionally provide a combustion gas temperature sensor on the inlet side of each heat transfer surface 4. , the combustion gas is hot, which may not be preferable from the viewpoint of cost reduction. Therefore, in the present embodiment, the inlet-side combustion gas temperature Tgin of each heat transfer surface 4 can be preferably estimated by the combustion gas temperature estimating device 100 described below without additionally providing a combustion gas temperature sensor.
(燃焼ガス温度推定装置)
 図2は一実施形態に係る燃焼ガス温度推定装置100の構成を示すブロック図である。燃焼ガス温度推定装置100は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。尚、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
(Combustion gas temperature estimation device)
FIG. 2 is a block diagram showing the configuration of the combustion gas temperature estimation device 100 according to one embodiment. The combustion gas temperature estimating device 100 includes, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like. A series of processes for realizing various functions is stored in a storage medium or the like in the form of a program, for example, and the CPU reads out this program to a RAM or the like, and executes information processing and arithmetic processing. As a result, various functions are realized. The program is pre-installed in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. etc. may be applied. Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
 図2に示すように、燃焼ガス温度推定装置100は、入口側蒸気温度取得部102と、入口側蒸気圧力取得部104と、出口側蒸気温度取得部106と、出口側蒸気圧力取得部108と、蒸気流量取得部110と、出口側燃焼ガス温度取得部112と、燃焼ガス流量取得部114と、蒸気吸熱量算出部116と、エンタルピー変化量算出部118と、出口側燃焼ガスエンタルピー算出部119と、入口側燃焼ガスエンタルピー算出部120と、入口側燃焼ガス温度算出部122とを備える。 As shown in FIG. 2, the combustion gas temperature estimating device 100 includes an inlet side steam temperature acquisition section 102, an inlet side steam pressure acquisition section 104, an outlet side steam temperature acquisition section 106, and an outlet side steam pressure acquisition section . , a steam flow rate acquisition unit 110, an outlet side combustion gas temperature acquisition section 112, a combustion gas flow rate acquisition section 114, a steam heat absorption amount calculation section 116, an enthalpy change amount calculation section 118, and an outlet side combustion gas enthalpy calculation section 119. , an inlet-side combustion gas enthalpy calculator 120 and an inlet-side combustion gas temperature calculator 122 .
 ここで燃焼ガス温度推定装置100の各ブロックについて、図3を参照して説明する。図3は図1の伝熱面4の近傍を抽出して示す模式図である。図3では、ボイラ1が有する伝熱面4のいずれか1つ(第1伝熱面4aであってもよいし、第2伝熱面4bであってもよい)において、燃焼ガス流路2を流れる燃焼ガスと、蒸気流路6を流れる蒸気とが熱交換する様子が模式的に示されている。 Here, each block of the combustion gas temperature estimation device 100 will be described with reference to FIG. FIG. 3 is a schematic diagram showing the vicinity of the heat transfer surface 4 of FIG. 1 by extracting it. In FIG. 3, on any one of the heat transfer surfaces 4 of the boiler 1 (may be the first heat transfer surface 4a or the second heat transfer surface 4b), the combustion gas flow path 2 The heat exchange between the combustion gas flowing through and the steam flowing through the steam passage 6 is schematically shown.
 入口側蒸気温度取得部102は、伝熱面4の入口側における蒸気温度(入口側蒸気温度Tsin)を取得するための構成である。上述したように蒸気流路6のうち各伝熱面4の入口側には蒸気温度センサ12(第1蒸気温度センサ12a、第2蒸気温度センサ12b、第3蒸気温度センサ12c)が設置されており、入口側蒸気温度取得部102は、これらの蒸気温度センサ12の検出値を受信することにより、入口側蒸気温度Tsinを取得する。 The inlet-side steam temperature acquisition unit 102 is configured to acquire the steam temperature (inlet-side steam temperature Tsin) on the inlet side of the heat transfer surface 4 . As described above, the steam temperature sensors 12 (first steam temperature sensor 12a, second steam temperature sensor 12b, third steam temperature sensor 12c) are installed on the inlet side of each heat transfer surface 4 in the steam flow path 6. The inlet-side steam temperature acquiring unit 102 acquires the inlet-side steam temperature Tsin by receiving the detected values of these steam temperature sensors 12 .
 入口側蒸気圧力取得部104は、伝熱面4の入口側における蒸気圧力(入口側蒸気圧力Psin)を取得するための構成である。上述したように蒸気流路6のうち各伝熱面4の入口側には蒸気圧力センサ13(第1蒸気圧力センサ13a、第2蒸気圧力センサ13b、第3蒸気圧力センサ13c)が設置されており、入口側蒸気圧力取得部104は、これらの蒸気圧力センサ13の検出値を受信することにより、入口側蒸気圧力Psinを取得する。 The inlet-side steam pressure acquisition unit 104 is configured to acquire the steam pressure (inlet-side steam pressure Psin) on the inlet side of the heat transfer surface 4 . As described above, the steam pressure sensors 13 (first steam pressure sensor 13a, second steam pressure sensor 13b, third steam pressure sensor 13c) are installed on the inlet side of each heat transfer surface 4 in the steam flow path 6. The inlet-side steam pressure acquisition unit 104 acquires the inlet-side steam pressure Psin by receiving the detected values of these steam pressure sensors 13 .
 出口側蒸気温度取得部106は、伝熱面4の出口側における蒸気温度(出口側蒸気温度Tsout)を取得するための構成である。上述したように蒸気流路6のうち各伝熱面4の出口側には蒸気温度センサ12(第1蒸気温度センサ12a、第2蒸気温度センサ12b、第3蒸気温度センサ12c)が設置されており、出口側蒸気温度取得部106は、これらの蒸気温度センサ12の検出値を受信することにより、出口側蒸気温度Tsoutを取得する。 The outlet-side steam temperature acquisition unit 106 is configured to acquire the steam temperature (outlet-side steam temperature Tsout) on the outlet side of the heat transfer surface 4 . As described above, the steam temperature sensors 12 (first steam temperature sensor 12a, second steam temperature sensor 12b, third steam temperature sensor 12c) are installed on the outlet side of each heat transfer surface 4 in the steam flow path 6. The outlet side steam temperature acquiring unit 106 acquires the outlet side steam temperature Tsout by receiving the detected values of these steam temperature sensors 12 .
 出口側蒸気圧力取得部108は、伝熱面4の出口側における蒸気圧力(出口側蒸気圧力Psout)を取得するための構成である。上述したように蒸気流路6のうち各伝熱面4の出口側には蒸気圧力センサ13(第1蒸気圧力センサ13a、第2蒸気圧力センサ13b、第3蒸気圧力センサ13c)が設置されており、出口側蒸気圧力取得部108は、これらの蒸気圧力センサ13の検出値を受信することにより、出口側蒸気圧力Psoutを取得する。 The outlet-side steam pressure acquisition unit 108 is configured to acquire the steam pressure (outlet-side steam pressure Psout) on the outlet side of the heat transfer surface 4 . As described above, the steam pressure sensors 13 (first steam pressure sensor 13a, second steam pressure sensor 13b, third steam pressure sensor 13c) are installed on the outlet side of each heat transfer surface 4 in the steam flow path 6. The outlet side steam pressure acquisition unit 108 acquires the outlet side steam pressure Psout by receiving the detected values of these steam pressure sensors 13 .
 蒸気流量取得部110は、蒸気流路6における蒸気流量Fsを取得するための構成である。上述したように蒸気流路6には蒸気流量センサ14が設置されており、蒸気流量取得部110は、蒸気流量センサ14の検出値を受信することにより、蒸気流量Fsを取得する。 The steam flow rate acquisition unit 110 is configured to acquire the steam flow rate Fs in the steam flow path 6 . As described above, the steam flow sensor 14 is installed in the steam flow path 6 , and the steam flow rate acquisition unit 110 acquires the steam flow rate Fs by receiving the detected value of the steam flow rate sensor 14 .
 出口側燃焼ガス温度取得部112は、伝熱面4の出口側における燃焼ガス温度(出口側燃焼ガス温度Tgout)を取得するための構成である。具体的には、推定対象となる入口側燃焼ガス温度Tginが最下流側の第1伝熱面4aのものである場合、出口側燃焼ガス温度取得部112は、第1伝熱面4aの出口側に設置された燃焼ガス温度センサ8の検出値を受信することにより、出口側燃焼ガス温度Tgoutを取得する。一方、推定対象となる入口側燃焼ガス温度Tginが他の伝熱面(第2伝熱面4b)のものである場合、出口側燃焼ガス温度取得部112は、直近の下流側にある第1伝熱面4aについて推定された入口側燃焼ガス温度Tgin(推定値)を出口側燃焼ガス温度Tgoutとして取得する。 The exit-side combustion gas temperature acquisition unit 112 is configured to acquire the combustion gas temperature (exit-side combustion gas temperature Tgout) on the exit side of the heat transfer surface 4 . Specifically, when the inlet-side combustion gas temperature Tgin to be estimated is that of the first heat transfer surface 4a on the most downstream side, the outlet-side combustion gas temperature acquisition unit 112 obtains the temperature at the outlet of the first heat transfer surface 4a. By receiving the detected value of the combustion gas temperature sensor 8 installed on the side, the exit side combustion gas temperature Tgout is obtained. On the other hand, when the inlet-side combustion gas temperature Tgin to be estimated is that of another heat transfer surface (the second heat transfer surface 4b), the outlet-side combustion gas temperature acquisition unit 112 obtains the first The inlet-side combustion gas temperature Tgin (estimated value) estimated for the heat transfer surface 4a is obtained as the outlet-side combustion gas temperature Tgout.
 燃焼ガス流量取得部114は、燃焼ガス流路2における燃焼ガス流量Fgを取得するための構成である。上述したように燃焼ガス流路2には燃焼ガス流量センサ10が設置されており、また流量センサが設置されていなくてもそれに類推する指標で推定されたガス流量であっても代用可能で、燃焼ガス流量取得部114は、燃焼ガス流量センサ10もしくはそれに類推可能な推定されたガス流量の検出値を受信することにより、燃焼ガス流量Fgを取得する。 The combustion gas flow rate acquisition unit 114 is configured to acquire the combustion gas flow rate Fg in the combustion gas flow path 2 . As described above, the combustion gas flow sensor 10 is installed in the combustion gas flow path 2, and even if the flow sensor is not installed, the gas flow rate estimated by an analogous index can be substituted. The combustion gas flow rate acquisition unit 114 acquires the combustion gas flow rate Fg by receiving the detected value of the estimated gas flow rate that can be inferred from the combustion gas flow rate sensor 10 .
 蒸気吸熱量算出部116は、伝熱面4における蒸気吸熱量Qsを算出するための構成であり、蒸気エンタルピー算出部116aと、吸熱量算出部116bとを備えて構成される。蒸気エンタルピー算出部116aは、入口側蒸気温度取得部102で取得された入口側蒸気温度Tsin、入口側蒸気圧力取得部104で取得された入口側蒸気圧力Psin、出口側蒸気温度取得部106で取得された出口側蒸気温度Tsout、出口側蒸気圧力取得部108で取得された出口側蒸気圧力Psoutに基づいて、蒸気エンタルピー変化量Esを算出する。吸熱量算出部116bは、蒸気エンタルピー算出部116aで算出された蒸気エンタルピー変化量Esと、蒸気流量取得部110で取得された蒸気流量Fsとに基づいて、伝熱面4からの蒸気の吸熱量Qsを算出する。 The steam heat absorption calculation unit 116 is a configuration for calculating the steam heat absorption amount Qs on the heat transfer surface 4, and includes a steam enthalpy calculation unit 116a and a heat absorption calculation unit 116b. The steam enthalpy calculation unit 116a obtains the inlet-side steam temperature Tsin obtained by the inlet-side steam temperature obtaining unit 102, the inlet-side steam pressure Psin obtained by the inlet-side steam pressure obtaining unit 104, and the outlet-side steam temperature obtaining unit 106. The steam enthalpy change amount Es is calculated based on the obtained outlet side steam temperature Tsout and the outlet side steam pressure Psout obtained by the outlet side steam pressure obtaining unit 108 . The heat absorption amount calculation unit 116b calculates the heat absorption amount of the steam from the heat transfer surface 4 based on the steam enthalpy change amount Es calculated by the steam enthalpy calculation unit 116a and the steam flow rate Fs acquired by the steam flow rate acquisition unit 110. Calculate Qs.
 エンタルピー変化量算出部118は、伝熱面4における燃焼ガスのエンタルピー変化量ΔEgを算出するための構成である。具体的には、エンタルピー変化量算出部118は、燃焼ガス流量取得部114で取得された燃焼ガスの流量Fgと、蒸気吸熱量算出部116で算出された蒸気吸熱量Qsとに基づいて、エンタルピー変化量ΔEgを算出する。 The enthalpy change amount calculator 118 is configured to calculate the enthalpy change amount ΔEg of the combustion gas on the heat transfer surface 4 . Specifically, the enthalpy change amount calculation unit 118 calculates the enthalpy change based on the combustion gas flow rate Fg acquired by the combustion gas flow rate acquisition unit 114 and the steam heat absorption amount Qs calculated by the steam heat absorption amount calculation unit 116. A change amount ΔEg is calculated.
 出口側燃焼ガスエンタルピー算出部119は、出口側燃焼ガス温度に対応するエンタルピー(出口側燃焼ガスエンタルピー)を算出するための構成である。具体的には、出口側燃焼ガスエンタルピー算出部119は、出口側燃焼ガス温度取得部122で取得された出口側燃焼ガス温度Tgoutを変換することにより、出口側燃焼ガスエンタルピーを算出する。 The outlet-side combustion gas enthalpy calculator 119 is configured to calculate the enthalpy corresponding to the outlet-side combustion gas temperature (outlet-side combustion gas enthalpy). Specifically, the outlet side combustion gas enthalpy calculation unit 119 calculates the outlet side combustion gas enthalpy by converting the outlet side combustion gas temperature Tgout acquired by the outlet side combustion gas temperature acquisition unit 122 .
 入口側燃焼ガスエンタルピー算出部120は、伝熱面4の入口側における燃焼ガスのエンタルピー(入口側燃焼ガスエンタルピーEgin)を算出するための構成である。具体的には、入口側燃焼ガスエンタルピー算出部120は、出口側燃焼ガスエンタルピー算出部119で算出された出口側燃焼ガスエンタルピーEgoutに対して、エンタルピー変化量算出部118で算出されたエンタルピー変化量ΔEgを加算することにより、入口側燃焼ガスエンタルピーEginを算出する。 The inlet-side combustion gas enthalpy calculation unit 120 is configured to calculate the enthalpy of the combustion gas on the inlet side of the heat transfer surface 4 (the inlet-side combustion gas enthalpy Egin). Specifically, the inlet-side combustion gas enthalpy calculation unit 120 calculates the enthalpy change amount calculated by the enthalpy change amount calculation unit 118 with respect to the outlet-side combustion gas enthalpy Egout calculated by the outlet-side combustion gas enthalpy calculation unit 119. By adding ΔEg, the inlet side combustion gas enthalpy Egin is calculated.
 入口側燃焼ガス温度算出部122は、伝熱面4の入口側燃焼ガス温度Tgin(推定値)を算出するための構成である。具体的には、入口側燃焼ガス温度算出部122は、入口側燃焼ガスエンタルピー算出部120で算出された入口側燃焼ガスエンタルピーEginを温度に変換することにより、入口側燃焼ガス温度Tginを算出する。 The inlet-side combustion gas temperature calculator 122 is configured to calculate the inlet-side combustion gas temperature Tgin (estimated value) of the heat transfer surface 4 . Specifically, the inlet-side combustion gas temperature calculation unit 122 calculates the inlet-side combustion gas temperature Tgin by converting the inlet-side combustion gas enthalpy Egin calculated by the inlet-side combustion gas enthalpy calculation unit 120 into temperature. .
 続いて上記構成を有する燃焼ガス温度推定装置100を用いて実施可能な燃焼ガス温度推定方法について説明する。図4は一実施形態に係る燃焼ガス温度推定方法を示すフローチャートである。 Next, a combustion gas temperature estimation method that can be implemented using the combustion gas temperature estimation device 100 having the above configuration will be described. FIG. 4 is a flow chart showing a combustion gas temperature estimation method according to one embodiment.
 まず燃焼ガス温度推定装置100は、ボイラ1の運転状態が静的であるか否かを判定する(ステップS100)。静的運転状態とは、運転状態が安定しており、例えば過渡状態にないことを意味する。 First, the combustion gas temperature estimation device 100 determines whether or not the boiler 1 is in a static operating state (step S100). A static operating state means that the operating state is stable, eg, not in a transient state.
 ボイラ1の運転状態が静的である場合(ステップS100:YES)、燃焼ガス温度推定装置100は、燃焼ガス流路2に存在する伝熱面4を特定する(ステップS101)。図1の例では、燃焼ガス流路2にある2つの伝熱面(第1伝熱面4a、及び、第2伝熱面4b)がそれぞれ特定される。 When the operating state of the boiler 1 is static (step S100: YES), the combustion gas temperature estimation device 100 identifies the heat transfer surface 4 existing in the combustion gas flow path 2 (step S101). In the example of FIG. 1, two heat transfer surfaces (the first heat transfer surface 4a and the second heat transfer surface 4b) in the combustion gas flow path 2 are specified.
 続いて燃焼ガス温度推定装置100は、複数の伝熱面4のうち最下流側にある伝熱面(図1の例では、第1伝熱面4a)について、入口側燃焼ガス温度Tginを推定する(ステップS102)。ステップS102では、出口側燃焼ガス温度取得部112において、最下流側の伝熱面の出口側(例えば節炭器の入口側)に設置された燃焼ガス温度センサ8の検出値が出口側燃焼ガス温度Tgoutとして取得されることで、入口側燃焼ガス温度Tginが推定される。 Subsequently, the combustion gas temperature estimating device 100 estimates the inlet-side combustion gas temperature Tgin for the most downstream heat transfer surface (the first heat transfer surface 4a in the example of FIG. 1) among the plurality of heat transfer surfaces 4. (step S102). In step S102, in the outlet-side combustion gas temperature acquisition unit 112, the detection value of the combustion gas temperature sensor 8 installed on the outlet side of the heat transfer surface on the most downstream side (for example, the inlet side of the economizer) is the outlet-side combustion gas temperature. By obtaining the temperature Tgout, the inlet-side combustion gas temperature Tgin is estimated.
 続いてステップS102で入口側燃焼ガス温度Tginを推定した伝熱面4より上流側に他の伝熱面4があるか否かを判定する(ステップS103)。図1の例では、ステップS102で入口側燃焼ガス温度Tginの推定が行われた第1伝熱面4aより上流側に第2伝熱面4がある。このように他の伝熱面がある場合(ステップS103:YES)、当該他の伝熱面4について、入口側燃焼ガス温度Tginが推定される(ステップS104)。ステップS104では、出口側燃焼ガス温度Tgoutとして、ステップS102で推定された下流側の伝熱面4の入口側燃焼ガス温度Tginが用いられる。図1の例では、ステップS104において、出口側燃焼ガス温度取得部112は、ステップS102において推定された第1伝熱面4aの入口側燃焼ガス温度Tginを、第2伝熱面4bの出口側燃焼ガス温度Tgoutとして取得することにより、第2伝熱面4bの入口側燃焼ガス温度Tginの推定が行われる。 Subsequently, it is determined whether or not there is another heat transfer surface 4 upstream of the heat transfer surface 4 whose inlet side combustion gas temperature Tgin was estimated in step S102 (step S103). In the example of FIG. 1, the second heat transfer surface 4 is upstream of the first heat transfer surface 4a for which the inlet side combustion gas temperature Tgin was estimated in step S102. If there is another heat transfer surface (step S103: YES), the inlet side combustion gas temperature Tgin is estimated for the other heat transfer surface 4 (step S104). In step S104, the inlet side combustion gas temperature Tgin of the downstream heat transfer surface 4 estimated in step S102 is used as the outlet side combustion gas temperature Tgout. In the example of FIG. 1, in step S104, the outlet-side combustion gas temperature acquisition unit 112 obtains the inlet-side combustion gas temperature Tgin of the first heat transfer surface 4a estimated in step S102 as the outlet-side temperature of the second heat transfer surface 4b. By obtaining the combustion gas temperature Tgout, the combustion gas temperature Tgin on the inlet side of the second heat transfer surface 4b is estimated.
 他の伝熱面4について入口側燃焼ガス温度Tginの推定が完了すると、処理はステップS103に戻される。そして他の伝熱面4がない場合(ステップS103:NO)、全ての伝熱面4について入口側燃焼ガス温度Tginの推定が完了したと判断し、一連の処理が終了する。 When the estimation of the inlet-side combustion gas temperature Tgin for the other heat transfer surfaces 4 is completed, the process returns to step S103. If there is no other heat transfer surface 4 (step S103: NO), it is determined that the estimation of the inlet-side combustion gas temperature Tgin has been completed for all heat transfer surfaces 4, and the series of processing ends.
 以上説明したように上記構成の燃焼ガス温度推定装置100によれば、各伝熱面4の入口側燃焼ガス温度Tginを、追加で温度センサのようなデバイスを設置することなく、精度よく推定できる。 As described above, according to the combustion gas temperature estimating apparatus 100 configured as described above, the inlet side combustion gas temperature Tgin of each heat transfer surface 4 can be accurately estimated without additionally installing a device such as a temperature sensor. .
(伝熱面評価装置)
 続いて前述の燃焼ガス温度推定装置100を用いた伝熱面評価装置200について説明する。図5は一実施形態に係る伝熱面評価装置200の構成を示すブロック図である。伝熱面評価装置200は、前述の燃焼ガス温度推定装置100と、有効伝熱面積算出部202とを備える。
(Heat transfer surface evaluation device)
Next, a heat transfer surface evaluation device 200 using the combustion gas temperature estimation device 100 described above will be described. FIG. 5 is a block diagram showing the configuration of a heat transfer surface evaluation device 200 according to one embodiment. The heat transfer surface evaluation device 200 includes the above-described combustion gas temperature estimation device 100 and an effective heat transfer area calculator 202 .
 有効伝熱面積算出部202は、各伝熱面の有効伝熱面積(SEF:Surface Efficiency Factor)を算出するための構成であり、代表ガス蒸気温度差算出部204と、仮想熱伝達率算出部208と、基準熱伝達率取得部210と、有効伝熱面積算出部212とを備える。 The effective heat transfer area calculation unit 202 is a configuration for calculating the effective heat transfer area (SEF: Surface Efficiency Factor) of each heat transfer surface. 208 , a reference heat transfer coefficient acquisition unit 210 , and an effective heat transfer area calculation unit 212 .
 代表ガス蒸気温度差算出部204は、各伝熱面4における燃焼ガスと蒸気の温度差を算出するための構成である。代表ガス蒸気温度差算出部204は、例えば、入口側燃焼ガス温度Tgin及び出口側燃焼ガス温度Tgoutの平均値として、代表燃焼ガス温度Tgを算出し、入口側蒸気温度Tsin及び出口側蒸気温度Tsoutの平均値として、代表蒸気温度Tsを算出し、代表燃焼ガス温度Tgと代表蒸気温度Tsの温度差を出力してもよい。また、入口燃焼ガス温度Tgin、出口燃焼ガス温度Tgout、入口蒸気温度Tsin、出口蒸気温度Tsoutの対数平均温度差を用いて算出してもよい。 The representative gas/steam temperature difference calculator 204 is configured to calculate the temperature difference between the combustion gas and the steam on each heat transfer surface 4 . The representative gas steam temperature difference calculation unit 204 calculates, for example, the representative combustion gas temperature Tg as an average value of the inlet side combustion gas temperature Tgin and the outlet side combustion gas temperature Tgout, and calculates the inlet side steam temperature Tsin and the outlet side steam temperature Tsout. A representative steam temperature Ts may be calculated as an average value of , and the temperature difference between the representative combustion gas temperature Tg and the representative steam temperature Ts may be output. Alternatively, it may be calculated using the logarithmic average temperature difference between the inlet combustion gas temperature Tgin, the outlet combustion gas temperature Tgout, the inlet steam temperature Tsin, and the outlet steam temperature Tsout.
 仮想熱伝達率算出部208は、代表ガス蒸気温度差算出部204で算出された代表ガス蒸気温度差△Tgsに基づいて、仮想熱伝達率Rを算出するための構成である。仮想熱伝達率算出部208は、例えば、代表ガス蒸気温度差算出部204で算出された代表ガス蒸気温度差△Tgsに基づいて、仮想熱伝達率Rを算出する。 The virtual heat transfer coefficient calculator 208 is configured to calculate the virtual heat transfer coefficient R based on the representative gas-vapor temperature difference ΔTgs calculated by the representative gas-vapor temperature difference calculator 204 . The virtual heat transfer coefficient calculation unit 208 calculates the virtual heat transfer coefficient R based on the representative gas vapor temperature difference ΔTgs calculated by the representative gas vapor temperature difference calculation unit 204, for example.
 基準熱伝達率取得部210は、基準熱伝達率R´を取得するための構成である。基準熱伝達率R´は、各伝熱面4に仕様として規定された熱伝達率であり、例えば設計値である。このような基準熱伝達率R´は、予め記憶媒体(不図示)に記憶されており、基準熱伝達率取得部210によって読み出されることで取得される。 The standard heat transfer coefficient acquisition unit 210 is configured to acquire the standard heat transfer coefficient R'. The reference heat transfer coefficient R' is a heat transfer coefficient specified as a specification for each heat transfer surface 4, and is, for example, a design value. Such a reference heat transfer coefficient R′ is stored in advance in a storage medium (not shown), and is obtained by being read by the reference heat transfer coefficient obtaining unit 210 .
 有効伝熱面積算出部212は、仮想熱伝達率算出部208で算出された仮想熱伝達率Rと、基準熱伝達率取得部210で算出された基準熱伝達率R´とに基づいて、各伝熱面4の有効伝熱面積Sをそれぞれ算出するための構成である。具体的には、有効伝熱面積算出部212は、仮想熱伝達率Rと基準熱伝達率R´との比として、有効伝熱面積Sを算出する。このように算出された有効伝熱面積Sは、伝熱面4に汚れが蓄積されて伝熱特性が低下すると小さくなるため、各伝熱面4に蓄積される汚れの影響を示す指標として活用可能である。 The effective heat transfer area calculation unit 212 calculates each This configuration is for calculating the effective heat transfer area S of the heat transfer surface 4 . Specifically, the effective heat transfer area calculator 212 calculates the effective heat transfer area S as a ratio between the virtual heat transfer coefficient R and the reference heat transfer coefficient R'. The effective heat transfer area S calculated in this manner becomes smaller when dirt accumulates on the heat transfer surfaces 4 and the heat transfer characteristics deteriorate. It is possible.
 図6は図5の変形例である。この変形例に係る伝熱面評価装置200は、図4に比べて、有効伝熱面積Sを補正するための補正部214を更に備える点で異なる。補正部214は、有効伝熱面積算出部212で算出された有効伝熱面積Sに対して乗算するための補正値Saを算出する。補正値Saは、燃焼ガス温度推定装置100で算出された入口側燃焼ガス温度Tginに依存して設定される。 Fig. 6 is a modification of Fig. 5. A heat transfer surface evaluation apparatus 200 according to this modification differs from that shown in FIG. 4 in that it further includes a correction unit 214 for correcting the effective heat transfer area S. The correction unit 214 calculates a correction value Sa for multiplying the effective heat transfer area S calculated by the effective heat transfer area calculation unit 212 . The correction value Sa is set depending on the inlet side combustion gas temperature Tgin calculated by the combustion gas temperature estimating device 100 .
 ここで図7は図6の補正部214で算出される補正値Saと燃焼ガス温度推定装置100で算出される入口側燃焼ガス温度Tginとの関係を示す特性グラフである。補正値Saは、燃焼ガス温度推定装置100で算出される入口側燃焼ガス温度Tginが高くなるに従って大きくなるように規定され、図7では特に両者が比例関係にある場合が例示されている。一般的に、有効伝熱面積Sは入口側燃焼ガス温度Tginが高くなるほど大きくなるという特性を有することから、このような補正値Saを有効伝熱面積算出部212で算出された有効伝熱面積Sに乗算した補正後の有効伝熱面積S´を求めることで、有効伝熱面積をより精度よく算出できる。 7 is a characteristic graph showing the relationship between the correction value Sa calculated by the correction unit 214 in FIG. 6 and the inlet-side combustion gas temperature Tgin calculated by the combustion gas temperature estimation device 100. FIG. The correction value Sa is defined to increase as the inlet-side combustion gas temperature Tgin calculated by the combustion gas temperature estimating device 100 increases, and FIG. In general, the effective heat transfer area S increases as the inlet side combustion gas temperature Tgin increases. By obtaining the corrected effective heat transfer area S′ by multiplying S, the effective heat transfer area can be calculated more accurately.
(制御装置)
 続いて上述の伝熱面評価装置200で、各伝熱面4の評価指標として算出された有効伝熱面積Sに基づいてボイラ1を制御するための制御装置について説明する。以下の説明では、制御装置の実施形態の一つとして、伝熱面4に付着したスート(煤等)に対して気流を吹き付けることによりスートを除去するためのスートブロア装置を制御対象とした場合について例示するが、制御装置の制御対象はこれに限らず広く採用することができる。
(Control device)
Next, a control device for controlling the boiler 1 based on the effective heat transfer area S calculated as the evaluation index of each heat transfer surface 4 by the heat transfer surface evaluation device 200 described above will be described. In the following description, as one embodiment of the control device, the control target is a soot blower device for removing soot by blowing an air flow against soot (such as soot) attached to the heat transfer surface 4. Although exemplified, the controlled object of the control device is not limited to this and can be widely adopted.
 図8は一実施形態に係る制御装置300の構成を示すブロック図である。制御装置300は、伝熱面評価装置200で算出された各伝熱面4の有効伝熱面積Sを取得するための有効伝熱面積取得部302と、制御対象であるスートブロアを制御するための制御部304とを備える。 FIG. 8 is a block diagram showing the configuration of the control device 300 according to one embodiment. The control device 300 includes an effective heat transfer area acquisition unit 302 for acquiring the effective heat transfer area S of each heat transfer surface 4 calculated by the heat transfer surface evaluation device 200, and an effective heat transfer area acquisition unit 302 for controlling the soot blower to be controlled. and a control unit 304 .
 有効伝熱面積取得部302は、伝熱面評価装置200で各伝熱面4について算出された有効伝熱面積Sをそれぞれ取得する。これにより、複数の伝熱面4の各々について伝熱状態が把握される。そして制御部304では、有効伝熱面積取得部302で取得された有効伝熱面積Sに基づいて、各伝熱面4に設けられたスートブロアが制御される。制御部304によるスートブロアの制御は、例えば、各伝熱面4の有効伝熱面積Sが予め設定された閾値S0以上になるように実施される。 The effective heat transfer area acquisition unit 302 acquires the effective heat transfer area S calculated for each heat transfer surface 4 by the heat transfer surface evaluation device 200 . Thereby, the heat transfer state of each of the plurality of heat transfer surfaces 4 is grasped. Based on the effective heat transfer area S obtained by the effective heat transfer area obtaining unit 302 , the control unit 304 controls the soot blowers provided on each heat transfer surface 4 . The control of the soot blower by the control unit 304 is performed, for example, so that the effective heat transfer area S of each heat transfer surface 4 is equal to or greater than a preset threshold value S0.
 図9はある伝熱面4における有効伝熱面積Sの推移を示す検証結果である。この検証結果によれば、有効伝熱面積Sが閾値S0未満になる時刻t1,t2においてスートブロアが動作することにより、有効伝熱面積Sが伝熱面毎に設定される固有の閾値以上になるように制御される。このように、有効伝熱面積Sに基づいて各伝熱面4に対応するスートブロアを動作させることで、各伝熱面4の有効伝熱面積Sが伝熱面毎に適切な範囲になるように保持される。これにより、スートブロアの必要以上な動作によるエネルギ消費を抑制しながら、伝熱面4の伝熱状態を良好に保持することができる。  Fig. 9 shows the verification results showing the transition of the effective heat transfer area S on a certain heat transfer surface 4. According to this verification result, the soot blower operates at times t1 and t2 when the effective heat transfer area S is less than the threshold value S0, so that the effective heat transfer area S becomes equal to or greater than the unique threshold set for each heat transfer surface. controlled as By operating the soot blower corresponding to each heat transfer surface 4 based on the effective heat transfer area S in this manner, the effective heat transfer area S of each heat transfer surface 4 is set to an appropriate range for each heat transfer surface. is held to As a result, the heat transfer state of the heat transfer surface 4 can be favorably maintained while suppressing energy consumption due to unnecessary operation of the soot blower.
 また伝熱面評価装置200で算出された各伝熱面4の有効伝熱面積Sは、ボイラ1の運用や各種メンテナンスに適宜利用可能である。例えば、ボイラ1の火炉で燃焼ガスを生成するための燃料には伝熱面4に付着する汚れを防止するための汚れ防止剤が含まれることがある。この場合、燃料に含まれる汚れ防止剤の添加量を、有効伝熱面積Sに基づいて調整してもよい。 Also, the effective heat transfer area S of each heat transfer surface 4 calculated by the heat transfer surface evaluation device 200 can be appropriately used for the operation of the boiler 1 and various maintenances. For example, the fuel for generating the combustion gases in the furnace of the boiler 1 may contain antifouling agents to prevent fouling from adhering to the heat transfer surfaces 4 . In this case, the addition amount of the antifouling agent contained in the fuel may be adjusted based on the effective heat transfer area S.
 また有効伝熱面積Sは、前述したように伝熱面4に付着した汚れを示す指標となるため、有効伝熱面積Sに基づいて各伝熱面4の汚れの付着量を特定し、その付着量に基づいて汚れの除去作業等のメンテナンス時期を管理できる。特に有効伝熱面積Sは伝熱面4ごとに算出されるため、各伝熱面4の汚れの付着量を個別に特定することができる。そのため、例えば、汚れの付着量が大きな伝熱面4を特定することでメンテナンス時に重点的に汚れの除去作業が必要となる範囲を把握することもできる。 Further, since the effective heat transfer area S is an index indicating the amount of dirt adhering to the heat transfer surface 4 as described above, the amount of dirt adhering to each heat transfer surface 4 is specified based on the effective heat transfer area S, and the Based on the adhesion amount, maintenance timing such as dirt removal work can be managed. In particular, since the effective heat transfer area S is calculated for each heat transfer surface 4, the amount of contaminants on each heat transfer surface 4 can be specified individually. Therefore, for example, by specifying the heat transfer surface 4 with a large amount of adhered dirt, it is possible to grasp the range in which the work of removing the dirt is required intensively during maintenance.
 また有効伝熱面積Sは、伝熱面4における減肉/腐食量を示す指標ともなり得る。この観点から、有効伝熱面積Sに基づいて各伝熱面4に生じた減肉/腐食等の補修作業等のメンテナンス時期を管理してもよい。特に有効伝熱面積Sは伝熱面4ごとに算出されるため、各伝熱面4の減肉/腐食量を個別に特定することができる。そのため、例えば、減肉/腐食量が大きな伝熱面4を特定することでメンテナンス時に重点的に補修作業が必要となる範囲を把握することもできる。 The effective heat transfer area S can also serve as an indicator of the amount of thinning/corrosion on the heat transfer surface 4 . From this point of view, the effective heat transfer area S may be used to manage the timing of maintenance such as repair work for thinning/corrosion occurring in each heat transfer surface 4 . In particular, since the effective heat transfer area S is calculated for each heat transfer surface 4, the thickness reduction/corrosion amount of each heat transfer surface 4 can be specified individually. Therefore, for example, by specifying the heat transfer surface 4 with a large amount of thinning/corrosion, it is also possible to grasp the range in which repair work is required intensively during maintenance.
 その他、本開示の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態を適宜組み合わせてもよい。 In addition, it is possible to appropriately replace the components in the above-described embodiments with well-known components within the scope of the present disclosure, and the above-described embodiments may be combined as appropriate.
 上記各実施形態に記載の内容は、例えば以下のように把握される。 The contents described in each of the above embodiments can be understood, for example, as follows.
(1)一態様に係る燃焼ガス温度推定装置は、
 蒸気との熱交換を行うための少なくとも1つの伝熱面(4)に供給される燃焼ガスの温度を推定するための燃焼ガス温度推定装置(100)であって、
 前記伝熱面の出口側燃焼ガス温度(Tgout)を取得するための出口側燃焼ガス温度取得部(112)と、
 前記燃焼ガスの流量(Fg)を取得するための燃焼ガス流量取得部(114)と、
 前記伝熱面における前記蒸気の吸熱量(Qs)を算出するための蒸気吸熱量算出部(116)と、
 前記吸熱量、及び、前記燃焼ガスの流量に基づいて、前記伝熱面における前記燃焼ガスのエンタルピー変化量(ΔEg)を算出するためのエンタルピー変化量算出部(118)と、
 前記出口側燃焼ガス温度に対応するエンタルピー(Egout)に前記エンタルピー変化量を加算することにより、前記伝熱面の入口側における前記燃焼ガスの入口側燃焼ガスエンタルピー(Egin)を算出するための入口側燃焼ガスエンタルピー算出部(120)と、
 前記入口側燃焼ガスエンタルピーに基づいて、前記伝熱面の入口側燃焼ガス温度(Tgin)を算出するための入口側燃焼ガス温度算出部(122)と、
を備える。
(1) A combustion gas temperature estimation device according to one aspect,
A combustion gas temperature estimating device (100) for estimating the temperature of combustion gas supplied to at least one heat transfer surface (4) for heat exchange with steam, comprising:
an outlet side combustion gas temperature acquiring section (112) for acquiring the outlet side combustion gas temperature (Tgout) of the heat transfer surface;
a combustion gas flow rate acquisition unit (114) for acquiring the flow rate (Fg) of the combustion gas;
a vapor heat absorption calculation unit (116) for calculating the heat absorption amount (Qs) of the vapor on the heat transfer surface;
an enthalpy change calculation unit (118) for calculating an enthalpy change (ΔEg) of the combustion gas on the heat transfer surface based on the amount of heat absorbed and the flow rate of the combustion gas;
An inlet for calculating the inlet side combustion gas enthalpy (Egin) of the combustion gas on the inlet side of the heat transfer surface by adding the enthalpy change amount to the enthalpy (Egout) corresponding to the outlet side combustion gas temperature a side combustion gas enthalpy calculator (120);
an inlet-side combustion gas temperature calculator (122) for calculating the inlet-side combustion gas temperature (Tgin) of the heat transfer surface based on the inlet-side combustion gas enthalpy;
Prepare.
 上記(1)の態様によれば、燃焼ガスと熱交換される蒸気の吸熱量に基づいて、伝熱面による燃焼ガスのエンタルピー変化量を算出し、出口側燃焼ガス温度に対応するエンタルピーに加算することで、入口側燃焼ガスのエンタルピーが求められる。これにより、入口側燃焼ガスエンタルピーに基づいて入口側燃焼ガス温度を、伝熱面の入口側に温度センサのようなデバイスを設置することなく、精度よく推定できる。また、このような入口側燃焼ガス温度の推定演算を十分に迅速に行うことで、入口側燃焼ガス温度のリアルタイム推定が可能となる。 According to the above aspect (1), the amount of enthalpy change of the combustion gas due to the heat transfer surface is calculated based on the amount of heat absorbed by the steam that exchanges heat with the combustion gas, and is added to the enthalpy corresponding to the outlet-side combustion gas temperature. By doing so, the enthalpy of the combustion gas on the inlet side is obtained. As a result, the inlet side combustion gas temperature can be accurately estimated based on the inlet side combustion gas enthalpy without installing a device such as a temperature sensor on the inlet side of the heat transfer surface. In addition, by performing the calculation for estimating the inlet-side combustion gas temperature sufficiently quickly, the inlet-side combustion gas temperature can be estimated in real time.
(2)他の態様では、上記(1)の態様において、
 前記少なくとも1つの伝熱面は、第1伝熱面(4a)、前記燃焼ガスの流れ方向に沿って上流側に設けられた第2伝熱面(4b)を含み、
 前記入口側燃焼ガス温度算出部が前記第2伝熱面について前記入口側燃焼ガス温度を算出する場合に、前記出口側燃焼ガス温度取得部は、前記第2伝熱面の前記出口側燃焼ガス温度として、前記入口側燃焼ガス温度算出部が前記第1伝熱面について前記入口側燃焼ガス温度を算出した結果を取得する。
(2) In another aspect, in the aspect of (1) above,
The at least one heat transfer surface includes a first heat transfer surface (4a) and a second heat transfer surface (4b) provided upstream along the flow direction of the combustion gas,
When the inlet-side combustion gas temperature calculator calculates the inlet-side combustion gas temperature for the second heat transfer surface, the outlet-side combustion gas temperature acquisition unit calculates the outlet-side combustion gas temperature for the second heat transfer surface. As the temperature, the inlet-side combustion gas temperature calculation unit acquires the result of calculating the inlet-side combustion gas temperature for the first heat transfer surface.
 上記(2)の態様によれば、燃焼ガスの流れ方向に沿って設けられた第1伝熱面及び第2伝熱面における入口側燃焼ガス温度をそれぞれ推定できる。特に、上流側に設けられる第2伝熱面における入口側燃焼ガス温度は、下流側に設けられた第1伝熱面における入口側燃焼ガス温度の推定結果を、第2伝熱面における出口燃焼ガス温度として用いることで、各伝熱面における入口側燃焼ガス温度を推定することができる。これにより、複数の伝熱面の入口側に温度センサ等のデバイスを設置することなく、各伝熱面の入口側燃焼ガス温度を演算的に推定できる。 According to the aspect (2) above, it is possible to estimate the inlet-side combustion gas temperature on the first heat transfer surface and the second heat transfer surface provided along the flow direction of the combustion gas. In particular, the inlet-side combustion gas temperature on the second heat transfer surface provided on the upstream side is calculated by using the estimation result of the inlet-side combustion gas temperature on the first heat transfer surface provided on the downstream side as the exit combustion gas temperature on the second heat transfer surface. By using it as the gas temperature, it is possible to estimate the inlet-side combustion gas temperature at each heat transfer surface. As a result, the combustion gas temperature on the inlet side of each heat transfer surface can be estimated computationally without installing a device such as a temperature sensor on the inlet side of the plurality of heat transfer surfaces.
(3)他の態様では、上記(1)又は(2)の態様において、
 前記少なくとも1つの伝熱面は、前記燃焼ガスの流れ方向に沿って設けられた複数の伝熱面(4a、4b)を含み、
 前記入口側燃焼ガス温度算出部が前記複数の伝熱面のうち最下流に位置する前記伝熱面について前記入口側燃焼ガス温度を算出する場合に、前記出口側燃焼ガス温度取得部は、前記複数の伝熱面より下流側に設けられた温度センサ(8)の検出値を取得する。
(3) In another aspect, in the above aspect (1) or (2),
The at least one heat transfer surface includes a plurality of heat transfer surfaces (4a, 4b) provided along the flow direction of the combustion gas,
When the inlet-side combustion gas temperature calculating unit calculates the inlet-side combustion gas temperature for the heat transfer surface positioned most downstream among the plurality of heat transfer surfaces, the outlet-side combustion gas temperature obtaining unit calculates the A detection value of a temperature sensor (8) provided downstream from the plurality of heat transfer surfaces is obtained.
(4)他の態様では上記(1)から(3)のいずれか一態様において、
 前記伝熱面の入口側蒸気温度(Tsin)を検出するための入口側蒸気温度検出部(102)と、
 前記伝熱面の入口側蒸気圧力(Psin)を検出するための入口側蒸気圧力検出部(104)と、
 前記伝熱面の出口側蒸気温度(Tsout)を検出するための出口側蒸気温度検出部(106)と、
 前記伝熱面の出口側蒸気圧力(Psout)を検出するための出口側蒸気圧力検出部(108)と、
を更に備え、
 前記蒸気吸熱量算出部は、前記入口側蒸気温度、前記入口側蒸気圧力、前記出口側蒸気温度、及び、前記出口側蒸気圧力に基づいて前記蒸気のエンタルピーを算出し、前記蒸気のエンタルピーに基づいて前記吸熱量を算出する。
(4) In another aspect, in any one aspect of (1) to (3) above,
an inlet-side steam temperature detector (102) for detecting the inlet-side steam temperature (Tsin) of the heat transfer surface;
an inlet-side steam pressure detector (104) for detecting the inlet-side steam pressure (Psin) of the heat transfer surface;
an outlet side steam temperature detector (106) for detecting the outlet side steam temperature (Tsout) of the heat transfer surface;
an outlet steam pressure detector (108) for detecting the outlet steam pressure (Psout) of the heat transfer surface;
further comprising
The steam heat absorption calculation unit calculates the enthalpy of the steam based on the inlet-side steam temperature, the inlet-side steam pressure, the outlet-side steam temperature, and the outlet-side steam pressure, and calculates the enthalpy of the steam based on the enthalpy of the steam. to calculate the amount of heat absorption.
 上記(4)の態様によれば、入口側燃焼ガス温度を算出するために必要な蒸気の吸熱量は、伝熱面の入口側及び出口側で検出された蒸気の温度及び圧力に基づいて算出される。 According to the aspect (4) above, the amount of heat absorbed by the steam required to calculate the combustion gas temperature on the inlet side is calculated based on the temperature and pressure of the steam detected on the inlet side and outlet side of the heat transfer surface. be done.
 (5)一態様に係る伝熱面評価装置は、
 上記(4)の燃焼ガス温度推定装置(100)と、
 前記入口側燃焼ガス温度、前記出口側燃焼ガス温度、前記入口側蒸気温度、前記出口側蒸気温度、及び、前記吸熱量に基づいて前記伝熱面の有効伝熱面積(S)を算出するための有効伝熱面積算出部(202)と、
を備える。
(5) A heat transfer surface evaluation device according to one aspect,
The combustion gas temperature estimating device (100) of (4) above;
To calculate the effective heat transfer area (S) of the heat transfer surface based on the inlet side combustion gas temperature, the outlet side combustion gas temperature, the inlet side steam temperature, the outlet side steam temperature, and the amount of heat absorption An effective heat transfer area calculation unit (202) of
Prepare.
 上記(5)の態様によれば、伝熱面の入口側及び出口側における燃焼ガス及び蒸気の温度、並びに、吸熱量に基づいて、伝熱面の有効伝熱面積が算出される。このように得られた有効伝熱面積は、例えば、伝熱面に蓄積される汚れの影響を示す指標として活用可能である。 According to the aspect (5) above, the effective heat transfer area of the heat transfer surface is calculated based on the temperature of the combustion gas and steam on the inlet side and the outlet side of the heat transfer surface and the heat absorption amount. The effective heat transfer area obtained in this manner can be used as an index indicating the influence of dirt accumulated on the heat transfer surface, for example.
(6)他の態様では、上記(5)の態様において、
 前記入口側燃焼ガス温度に基づいて、前記有効伝熱面積に乗算される補正値(Sa)を算出するための補正値算出部(214)を更に備える。
(6) In another aspect, in the aspect of (5) above,
A correction value calculator (214) is further provided for calculating a correction value (Sa) to be multiplied by the effective heat transfer area based on the inlet side combustion gas temperature.
 上記(6)の態様によれば、有効伝熱面積算出部で算出された有効伝熱面積に対して、補正値が乗算されることで、有効伝熱面積の算出結果が補正される。これにより、有効伝熱面積が入口側燃焼ガス温度に依存して変化する影響を加味することができ、より精度のよい有効伝熱面積の算出が可能となる。 According to the aspect (6) above, the effective heat transfer area calculated by the effective heat transfer area calculator is multiplied by the correction value, thereby correcting the calculation result of the effective heat transfer area. As a result, it is possible to take into account the effect of the change in the effective heat transfer area depending on the temperature of the combustion gas on the inlet side, and to calculate the effective heat transfer area with higher accuracy.
(7)他の態様では、上記(6)の態様において、
 前記補正値は、前記入口側燃焼ガス温度が高くなるに従って大きくなるように設定される。
(7) In another aspect, in the aspect of (6) above,
The correction value is set to increase as the inlet-side combustion gas temperature increases.
 上記(7)の態様によれば、入口側燃焼ガス温度が高くなるほど有効伝熱面積が大きくなるという特性を加味することで有効伝熱面積を、より精度よく算出できる。 According to the above aspect (7), the effective heat transfer area can be calculated more accurately by taking into account the characteristic that the effective heat transfer area increases as the inlet side combustion gas temperature increases.
(8)一態様に係る制御装置(300)は、
 (5)から(7)のいずれか一態様の伝熱面評価装置(200)と、
 前記有効伝熱面積に基づいて前記伝熱面のスートを除去するためのスートブロアを制御するための制御部(304)と、
を備える。
(8) A control device (300) according to one aspect,
A heat transfer surface evaluation device (200) according to any one of (5) to (7);
a control unit (304) for controlling a soot blower for removing soot from the heat transfer surface based on the effective heat transfer area;
Prepare.
 上記(8)の態様によれば、伝熱面に対して算出された有効伝熱面積に基づいてスートブロアの制御が行われる。有効伝熱面積は伝熱面の汚れを示す指標となるため、有効伝熱面積の大きさに基づいてスートブロア制御を行うことで、適切なタイミングでスートの除去が可能となる。 According to the aspect (8) above, the soot blower is controlled based on the effective heat transfer area calculated for the heat transfer surface. Since the effective heat transfer area is an index indicating the contamination of the heat transfer surface, soot can be removed at appropriate timing by controlling the soot blower based on the size of the effective heat transfer area.
(9)一態様に係る燃焼ガス温度推定方法は、
 蒸気との熱交換を行うための少なくとも1つの伝熱面(4)に供給される燃焼ガスの温度を推定するための燃焼ガス温度推定方法であって、
 前記伝熱面の出口側燃焼ガス温度(Tgout)を取得する工程と、
 前記燃焼ガスの流量(Fg)を取得する工程と、
 前記伝熱面における前記蒸気の吸熱量(Qs)を算出する工程と、
 前記吸熱量、及び、前記燃焼ガスの流量に基づいて、前記伝熱面における前記燃焼ガスのエンタルピー変化量(ΔEg)を算出する工程と、
 前記出口側燃焼ガス温度に対応するエンタルピー(Egout)に前記エンタルピー変化量を加算することにより、前記伝熱面の入口側における前記燃焼ガスの入口側燃焼ガスエンタルピー(Egin)を算出する工程と、
 前記入口側燃焼ガスエンタルピーに基づいて、前記伝熱面の入口側燃焼ガス温度(Tgin)を算出する工程と、
を備える。
(9) A combustion gas temperature estimation method according to one aspect includes:
A combustion gas temperature estimation method for estimating the temperature of combustion gas supplied to at least one heat transfer surface (4) for heat exchange with steam, comprising:
obtaining a combustion gas temperature (Tgout) on the outlet side of the heat transfer surface;
obtaining a flow rate (Fg) of the combustion gas;
calculating a heat absorption amount (Qs) of the steam on the heat transfer surface;
calculating an enthalpy change (ΔEg) of the combustion gas on the heat transfer surface based on the amount of heat absorbed and the flow rate of the combustion gas;
calculating the inlet-side combustion gas enthalpy (Egin) of the combustion gas on the inlet side of the heat transfer surface by adding the enthalpy change amount to the enthalpy (Egout) corresponding to the outlet-side combustion gas temperature;
calculating an inlet-side combustion gas temperature (Tgin) of the heat transfer surface based on the inlet-side combustion gas enthalpy;
Prepare.
 上記(9)の態様によれば、燃焼ガスと熱交換される蒸気の吸熱量に基づいて、伝熱面による燃焼ガスのエンタルピー変化量を算出し、出口側燃焼ガス温度に対応するエンタルピーに加算することで、入口側燃焼ガスのエンタルピーが求められる。これにより、入口側燃焼ガスエンタルピーに基づいて入口側燃焼ガス温度を、伝熱面の入口側に温度センサのようなデバイスを設置することなく、精度よく推定できる。また、このような入口側燃焼ガス温度の推定演算を十分に迅速に行うことで、入口側燃焼ガス温度のリアルタイム推定が可能となる。 According to the above aspect (9), the amount of enthalpy change of the combustion gas due to the heat transfer surface is calculated based on the amount of heat absorbed by the steam heat-exchanging with the combustion gas, and is added to the enthalpy corresponding to the outlet-side combustion gas temperature. By doing so, the enthalpy of the combustion gas on the inlet side is obtained. As a result, the inlet side combustion gas temperature can be accurately estimated based on the inlet side combustion gas enthalpy without installing a device such as a temperature sensor on the inlet side of the heat transfer surface. In addition, by performing the calculation for estimating the inlet-side combustion gas temperature sufficiently quickly, the inlet-side combustion gas temperature can be estimated in real time.
(10)一態様に係る伝熱面評価方法は、
 上記(9)の態様の燃焼ガス温度推定方法によって推定された前記入口側燃焼ガス温度、前記出口側燃焼ガス温度、前記伝熱面の入口側蒸気温度、前記伝熱面の出口側蒸気温度、及び、前記吸熱量に基づいて前記伝熱面の有効伝熱面積(S)を算出する工程を備える。
(10) A heat transfer surface evaluation method according to one aspect includes:
The inlet-side combustion gas temperature, the outlet-side combustion gas temperature, the inlet-side steam temperature of the heat transfer surface, the outlet-side steam temperature of the heat transfer surface, estimated by the combustion gas temperature estimation method of the aspect (9) above, and calculating an effective heat transfer area (S) of the heat transfer surface based on the heat absorption amount.
 上記(10)の態様によれば、伝熱面の入口側及び出口側における燃焼ガス及び蒸気の温度、並びに、吸熱量に基づいて、伝熱面の有効伝熱面積が算出される。このように得られた有効伝熱面積は、例えば、伝熱面に蓄積される汚れの影響を示す指標として活用可能である。 According to the aspect (10) above, the effective heat transfer area of the heat transfer surface is calculated based on the temperature of the combustion gas and steam on the inlet side and the outlet side of the heat transfer surface and the amount of heat absorbed. The effective heat transfer area obtained in this manner can be used as an index indicating the influence of dirt accumulated on the heat transfer surface, for example.
(11)一態様に係る伝熱面管理方法は、
 上記(10)の態様の伝熱面評価方法によって算出された前記有効伝熱面積に基づいて、前記燃焼ガスを生成するためのボイラに添加される汚れ防止剤、又は、前記伝熱面のメンテナンス時期の少なくとも一方を管理する工程を更に備える。
(11) A heat transfer surface management method according to one aspect includes:
Based on the effective heat transfer area calculated by the heat transfer surface evaluation method of the aspect (10), an antifouling agent added to the boiler for generating the combustion gas, or maintenance of the heat transfer surface It further comprises a step of managing at least one of the timings.
 上記(11)の態様によれば、伝熱面の汚れ等を示す指標である有効伝熱面積に基づいて、燃焼ガスを生成するためのボイラに添加される汚れ防止剤、又は、伝熱面のメンテナンス時期の少なくとも一方が管理される。これにより、伝熱面汚れの進行具合に応じて汚れ防止剤や定検等のメンテナンス、伝熱面の減肉/腐食量の監視等を行うことで、漏洩等の不具合を未然に防止できる。 According to the aspect (11) above, based on the effective heat transfer area, which is an index indicating the contamination of the heat transfer surface, the antifouling agent added to the boiler for generating the combustion gas, or the heat transfer surface at least one of the maintenance timing of As a result, maintenance such as antifouling agents and periodic inspections, and monitoring of thinning/corrosion amounts of the heat transfer surface can be carried out according to the progress of the heat transfer surface contamination, thereby preventing troubles such as leakage.
1 ボイラ
2 燃焼ガス流路
4 伝熱面
4a 第1伝熱面
4b 第2伝熱面
4a 第1伝熱面
6 蒸気流路
8 燃焼ガス温度センサ
10 燃焼ガス流量センサ
12 蒸気温度センサ
12a 第1蒸気温度センサ
12b 第2蒸気温度センサ
12c 第3蒸気温度センサ
13 蒸気圧力センサ
13a 第1蒸気圧力センサ
13b 第2蒸気圧力センサ
13c 第3蒸気圧力センサ
14 蒸気流量センサ
100 燃焼ガス温度推定装置
102 入口側蒸気温度取得部
104 入口側蒸気圧力取得部
106 出口側蒸気温度取得部
108 出口側蒸気圧力取得部
110 蒸気流量取得部
112 出口側燃焼ガス温度取得部
114 燃焼ガス流量取得部
116 蒸気吸熱量算出部
116a 蒸気エンタルピー算出部
116b 吸熱量算出部
118 エンタルピー変化量算出部
119 出口側燃焼ガスエンタルピー算出部
120 入口側燃焼ガスエンタルピー算出部
122 入口側燃焼ガス温度算出部
200 伝熱面評価装置
202 有効伝熱面積算出部
204 代表ガス蒸気温度差算出部
208 仮想熱伝達率算出部
210 基準熱伝達率取得部
212 有効伝熱面積算出部
214 補正部
300 制御装置
302 有効伝熱面積取得部
304 制御部
1 boiler 2 combustion gas flow path 4 heat transfer surface 4a first heat transfer surface 4b second heat transfer surface 4a first heat transfer surface 6 steam flow path 8 combustion gas temperature sensor 10 combustion gas flow rate sensor 12 steam temperature sensor 12a first Steam temperature sensor 12b Second steam temperature sensor 12c Third steam temperature sensor 13 Steam pressure sensor 13a First steam pressure sensor 13b Second steam pressure sensor 13c Third steam pressure sensor 14 Steam flow rate sensor 100 Combustion gas temperature estimation device 102 Inlet side Steam temperature acquisition unit 104 Inlet side steam pressure acquisition unit 106 Outlet side steam temperature acquisition unit 108 Outlet side steam pressure acquisition unit 110 Steam flow rate acquisition unit 112 Exit side combustion gas temperature acquisition unit 114 Combustion gas flow rate acquisition unit 116 Steam heat absorption calculation unit 116a steam enthalpy calculator 116b heat absorption calculator 118 enthalpy change calculator 119 outlet side combustion gas enthalpy calculator 120 inlet side combustion gas enthalpy calculator 122 inlet side combustion gas temperature calculator 200 heat transfer surface evaluation device 202 effective heat transfer Area calculation unit 204 Representative gas vapor temperature difference calculation unit 208 Virtual heat transfer coefficient calculation unit 210 Reference heat transfer coefficient acquisition unit 212 Effective heat transfer area calculation unit 214 Correction unit 300 Control device 302 Effective heat transfer area acquisition unit 304 Control unit

Claims (11)

  1.  蒸気との熱交換を行うための少なくとも1つの伝熱面に供給される燃焼ガスの温度を推定するための燃焼ガス温度推定装置であって、
     前記伝熱面の出口側燃焼ガス温度を取得するための出口側燃焼ガス温度取得部と、
     前記燃焼ガスの流量を取得するための燃焼ガス流量取得部と、
     前記伝熱面における前記蒸気の吸熱量を算出するための蒸気吸熱量算出部と、
     前記吸熱量、及び、前記燃焼ガスの流量に基づいて、前記伝熱面における前記燃焼ガスのエンタルピー変化量を算出するためのエンタルピー変化量算出部と、
     前記出口側燃焼ガス温度に対応するエンタルピーに前記エンタルピー変化量を加算することにより、前記伝熱面の入口側における前記燃焼ガスの入口側燃焼ガスエンタルピーを算出するための入口側燃焼ガスエンタルピー算出部と、
     前記入口側燃焼ガスエンタルピーに基づいて、前記伝熱面の入口側燃焼ガス温度を算出するための入口側燃焼ガス温度算出部と、
    を備える、燃焼ガス温度推定装置。
    A combustion gas temperature estimator for estimating the temperature of combustion gas supplied to at least one heat transfer surface for heat exchange with steam, comprising:
    an exit-side combustion gas temperature acquisition unit for acquiring an exit-side combustion gas temperature of the heat transfer surface;
    a combustion gas flow rate acquisition unit for acquiring the flow rate of the combustion gas;
    a steam heat absorption amount calculation unit for calculating the heat absorption amount of the steam on the heat transfer surface;
    an enthalpy change amount calculation unit for calculating an enthalpy change amount of the combustion gas on the heat transfer surface based on the heat absorption amount and the flow rate of the combustion gas;
    An inlet-side combustion gas enthalpy calculation unit for calculating the inlet-side combustion gas enthalpy of the combustion gas on the inlet side of the heat transfer surface by adding the enthalpy change amount to the enthalpy corresponding to the outlet-side combustion gas temperature. and,
    an inlet-side combustion gas temperature calculator for calculating the inlet-side combustion gas temperature of the heat transfer surface based on the inlet-side combustion gas enthalpy;
    A combustion gas temperature estimator.
  2.  前記少なくとも1つの伝熱面は、第1伝熱面、前記燃焼ガスの流れ方向に沿って上流側に設けられた第2伝熱面を含み、
     前記入口側燃焼ガス温度算出部が前記第2伝熱面について前記入口側燃焼ガス温度を算出する場合に、前記出口側燃焼ガス温度取得部は、前記第2伝熱面の前記出口側燃焼ガス温度として、前記入口側燃焼ガス温度算出部が前記第1伝熱面について前記入口側燃焼ガス温度を算出した結果を取得する、請求項1に記載の燃焼ガス温度推定装置。
    The at least one heat transfer surface includes a first heat transfer surface and a second heat transfer surface provided upstream along the flow direction of the combustion gas,
    When the inlet-side combustion gas temperature calculator calculates the inlet-side combustion gas temperature for the second heat transfer surface, the outlet-side combustion gas temperature acquisition unit calculates the outlet-side combustion gas temperature for the second heat transfer surface. 2. The combustion gas temperature estimating device according to claim 1, wherein said inlet-side combustion gas temperature calculator acquires, as the temperature, a result of calculating said inlet-side combustion gas temperature for said first heat transfer surface.
  3.  前記少なくとも1つの伝熱面は、前記燃焼ガスの流れ方向に沿って設けられた複数の伝熱面を含み、
     前記入口側燃焼ガス温度算出部が前記複数の伝熱面のうち最下流に位置する前記伝熱面について前記入口側燃焼ガス温度を算出する場合に、前記出口側燃焼ガス温度取得部は、前記複数の伝熱面より下流側に設けられた温度センサの検出値を取得する、請求項1又は2に記載の燃焼ガス温度推定装置。
    The at least one heat transfer surface includes a plurality of heat transfer surfaces provided along the flow direction of the combustion gas,
    When the inlet-side combustion gas temperature calculating unit calculates the inlet-side combustion gas temperature for the heat transfer surface positioned most downstream among the plurality of heat transfer surfaces, the outlet-side combustion gas temperature obtaining unit calculates the 3. A combustion gas temperature estimating device according to claim 1 or 2, which acquires a detected value of a temperature sensor provided downstream of the plurality of heat transfer surfaces.
  4.  前記伝熱面の入口側蒸気温度を検出するための入口側蒸気温度検出部と、
     前記伝熱面の入口側蒸気圧力を検出するための入口側蒸気圧力検出部と、
     前記伝熱面の出口側蒸気温度を検出するための出口側蒸気温度検出部と、
     前記伝熱面の出口側蒸気圧力を検出するための出口側蒸気圧力検出部と、
    を更に備え、
     前記蒸気吸熱量算出部は、前記入口側蒸気温度、前記入口側蒸気圧力、前記出口側蒸気温度、及び、前記出口側蒸気圧力に基づいて前記蒸気のエンタルピーを算出し、前記蒸気のエンタルピーに基づいて前記吸熱量を算出する、請求項1又は2に記載の燃焼ガス温度推定装置。
    an inlet-side steam temperature detection unit for detecting the inlet-side steam temperature of the heat transfer surface;
    an inlet-side steam pressure detection unit for detecting inlet-side steam pressure of the heat transfer surface;
    an outlet-side steam temperature detection unit for detecting the outlet-side steam temperature of the heat transfer surface;
    an outlet-side steam pressure detection unit for detecting the outlet-side steam pressure of the heat transfer surface;
    further comprising
    The steam heat absorption calculation unit calculates the enthalpy of the steam based on the inlet-side steam temperature, the inlet-side steam pressure, the outlet-side steam temperature, and the outlet-side steam pressure, and calculates the enthalpy of the steam based on the enthalpy of the steam. 3. The combustion gas temperature estimating device according to claim 1, wherein the amount of heat absorbed is calculated by
  5.  請求項4に記載の燃焼ガス温度推定装置と、
     前記入口側燃焼ガス温度、前記出口側燃焼ガス温度、前記入口側蒸気温度、前記出口側蒸気温度、及び、前記吸熱量に基づいて前記伝熱面の有効伝熱面積を算出するための有効伝熱面積算出部と、
    を備える、伝熱面評価装置。
    A combustion gas temperature estimating device according to claim 4;
    An effective heat transfer area for calculating an effective heat transfer area of the heat transfer surface based on the inlet side combustion gas temperature, the outlet side combustion gas temperature, the inlet side steam temperature, the outlet side steam temperature, and the heat absorption amount. a thermal area calculator;
    A heat transfer surface evaluation device comprising:
  6.  前記入口側燃焼ガス温度に基づいて、前記有効伝熱面積に乗算される補正値を算出するための補正値算出部を更に備える、請求項5に記載の伝熱面評価装置。 The heat transfer surface evaluation device according to claim 5, further comprising a correction value calculation unit for calculating a correction value to be multiplied by the effective heat transfer area based on the inlet-side combustion gas temperature.
  7.  前記補正値は、前記入口側燃焼ガス温度が高くなるに従って大きくなるように設定される、請求項6に記載の伝熱面評価装置。 The heat transfer surface evaluation device according to claim 6, wherein the correction value is set to increase as the inlet-side combustion gas temperature increases.
  8.  請求項5に記載の伝熱面評価装置と、
     前記有効伝熱面積に基づいて前記伝熱面のスートを除去するためのスートブロアを制御するための制御部と、
    を備える、制御装置。
    A heat transfer surface evaluation device according to claim 5;
    a control unit for controlling a soot blower for removing soot from the heat transfer surface based on the effective heat transfer area;
    A controller.
  9.  蒸気との熱交換を行うための少なくとも1つの伝熱面に供給される燃焼ガスの温度を推定するための燃焼ガス温度推定方法であって、
     前記伝熱面の出口側燃焼ガス温度を取得する工程と、
     前記燃焼ガスの流量を取得する工程と、
     前記伝熱面における前記蒸気の吸熱量を算出する工程と、
     前記吸熱量、及び、前記燃焼ガスの流量に基づいて、前記伝熱面における前記燃焼ガスのエンタルピー変化量を算出する工程と、
     前記出口側燃焼ガス温度に対応するエンタルピーに前記エンタルピー変化量を加算することにより、前記伝熱面の入口側における前記燃焼ガスの入口側燃焼ガスエンタルピーを算出する工程と、
     前記入口側燃焼ガスエンタルピーに基づいて、前記伝熱面の入口側燃焼ガス温度を算出する工程と、
    を備える、燃焼ガス温度推定方法。
    A combustion gas temperature estimation method for estimating the temperature of combustion gas supplied to at least one heat transfer surface for heat exchange with steam, comprising:
    obtaining a combustion gas temperature on the outlet side of the heat transfer surface;
    obtaining a flow rate of the combustion gas;
    calculating the amount of heat absorbed by the steam on the heat transfer surface;
    calculating an enthalpy change amount of the combustion gas on the heat transfer surface based on the amount of heat absorbed and the flow rate of the combustion gas;
    calculating the inlet side combustion gas enthalpy of the combustion gas on the inlet side of the heat transfer surface by adding the enthalpy change amount to the enthalpy corresponding to the outlet side combustion gas temperature;
    calculating the inlet-side combustion gas temperature of the heat transfer surface based on the inlet-side combustion gas enthalpy;
    A combustion gas temperature estimation method, comprising:
  10.  請求項9に記載の燃焼ガス温度推定方法によって推定された前記入口側燃焼ガス温度、前記出口側燃焼ガス温度、前記伝熱面の入口側蒸気温度、前記伝熱面の出口側蒸気温度、及び、前記吸熱量に基づいて前記伝熱面の有効伝熱面積を算出する工程を備える、伝熱面評価方法。 The inlet-side combustion gas temperature, the outlet-side combustion gas temperature, the inlet-side steam temperature of the heat transfer surface, the outlet-side steam temperature of the heat transfer surface estimated by the combustion gas temperature estimation method according to claim 9, and and calculating an effective heat transfer area of the heat transfer surface based on the heat absorption amount.
  11.  請求項10に記載の伝熱面評価方法によって算出された前記有効伝熱面積に基づいて、前記燃焼ガスを生成するためのボイラに添加される汚れ防止剤、又は、前記伝熱面のメンテナンス時期の少なくとも一方を管理する工程を更に備える、伝熱面管理方法。 Based on the effective heat transfer area calculated by the heat transfer surface evaluation method according to claim 10, antifouling agent added to the boiler for generating the combustion gas, or maintenance timing of the heat transfer surface A heat transfer surface management method, further comprising a step of managing at least one of
PCT/JP2022/039831 2021-11-12 2022-10-26 Combustion gas temperature estimation device, heat transfer surface evaluation device, control device, combustion gas temperature estimation method, heat transfer surface evaluation method, and heat transfer surface management method WO2023085087A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021184876A JP2023072363A (en) 2021-11-12 2021-11-12 Combustion gas temperature estimation device, heat transfer surface evaluation device, control device, combustion gas temperature estimation method, heat transfer surface evaluation method, and heat transfer surface management method
JP2021-184876 2021-11-12

Publications (1)

Publication Number Publication Date
WO2023085087A1 true WO2023085087A1 (en) 2023-05-19

Family

ID=86335660

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039831 WO2023085087A1 (en) 2021-11-12 2022-10-26 Combustion gas temperature estimation device, heat transfer surface evaluation device, control device, combustion gas temperature estimation method, heat transfer surface evaluation method, and heat transfer surface management method

Country Status (2)

Country Link
JP (1) JP2023072363A (en)
WO (1) WO2023085087A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613916A (en) * 1984-06-15 1986-01-09 Babcock Hitachi Kk Soot blower controlling device
JP2006010229A (en) * 2004-06-28 2006-01-12 Hitachi Ltd Boiler deterioration diagnosing method, device, system and recording medium for recording program
JP2006194550A (en) * 2005-01-17 2006-07-27 Hitachi Ltd Method and apparatus for estimating generated steam of waste heat recovery boiler, and method and system for supporting maintenance plan of power generation facility
WO2021100760A1 (en) * 2019-11-20 2021-05-27 株式会社Ihi Information processing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613916A (en) * 1984-06-15 1986-01-09 Babcock Hitachi Kk Soot blower controlling device
JP2006010229A (en) * 2004-06-28 2006-01-12 Hitachi Ltd Boiler deterioration diagnosing method, device, system and recording medium for recording program
JP2006194550A (en) * 2005-01-17 2006-07-27 Hitachi Ltd Method and apparatus for estimating generated steam of waste heat recovery boiler, and method and system for supporting maintenance plan of power generation facility
WO2021100760A1 (en) * 2019-11-20 2021-05-27 株式会社Ihi Information processing device

Also Published As

Publication number Publication date
JP2023072363A (en) 2023-05-24

Similar Documents

Publication Publication Date Title
US7890214B2 (en) Method and apparatus for controlling soot blowing using statistical process control
US20090063113A1 (en) Dual Model Approach for Boiler Section Cleanliness Calculation
JP5855240B2 (en) Operation method of circulating waste heat recovery steam generator
CN103886188A (en) Rotary-type air pre-heater air leakage rate real-time estimation method based on differential pressure
JPH0211811B2 (en)
JP2016173227A (en) Method and system for increasing condensation of water and acid
JP2011064381A (en) Method of estimating metal temperature of boiler heat transfer pipe and method of estimating lifetime
WO2023085087A1 (en) Combustion gas temperature estimation device, heat transfer surface evaluation device, control device, combustion gas temperature estimation method, heat transfer surface evaluation method, and heat transfer surface management method
JPS60108611A (en) Soot blowing work system by decision of model parameter
JP6909425B2 (en) Air preheater differential pressure rise predictor
JP5721568B2 (en) Cooling device and cooling water leakage detection method
JP3690992B2 (en) Abnormality diagnosis method and apparatus for thermal power plant
JP2008039224A (en) Structure of constant pressure once-through boiler and operating method therefor
JP4231024B2 (en) Absorption diagnosis method and apparatus for absorption refrigerator
JPH01181013A (en) Air preheater performance diagnostic method
JPH05280703A (en) Boiller scale estimating device
US20060112682A1 (en) Working medium supply control system in heat exchanger
KR101554933B1 (en) clearing period measuring method of boiler depending on decrease of heat transfer coefficient
JPH05288303A (en) Boiler stained state estimation device
JP7371533B2 (en) Boiler efficiency calculation device
JP6798249B2 (en) Boiler efficiency calculation method for latent heat recovery boiler
JP2001132934A (en) Soot blower for boiler and control method thereof
JP4347193B2 (en) Method and apparatus for predicting scale behavior of plant
JP6303473B2 (en) Steam pipe loss measurement system and steam pipe loss measurement method
JP2020186417A (en) Corrosion management system, water treatment apparatus, and power plant, as well as corrosion management method, as well as corrosion management program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892587

Country of ref document: EP

Kind code of ref document: A1