JP2011064381A - Method of estimating metal temperature of boiler heat transfer pipe and method of estimating lifetime - Google Patents

Method of estimating metal temperature of boiler heat transfer pipe and method of estimating lifetime Download PDF

Info

Publication number
JP2011064381A
JP2011064381A JP2009214697A JP2009214697A JP2011064381A JP 2011064381 A JP2011064381 A JP 2011064381A JP 2009214697 A JP2009214697 A JP 2009214697A JP 2009214697 A JP2009214697 A JP 2009214697A JP 2011064381 A JP2011064381 A JP 2011064381A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
metal temperature
scale
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009214697A
Other languages
Japanese (ja)
Other versions
JP5380219B2 (en
Inventor
Masaru Shimizu
大 清水
Motoroku Nakao
元六 仲尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2009214697A priority Critical patent/JP5380219B2/en
Publication of JP2011064381A publication Critical patent/JP2011064381A/en
Application granted granted Critical
Publication of JP5380219B2 publication Critical patent/JP5380219B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple method of estimating a metal temperature of a boiler heat transfer pipe having general versatility and capable of estimating the metal temperature of the heat transfer pipe with high accuracy. <P>SOLUTION: A relational expression of the metal temperature of the heat transfer pipe, a boiler operating time, and a thickness of oxidized scale formed on an inner face or an outer face of the heat transfer pipe is determined, the metal temperature of a gas downstream-side heat transfer pipe is estimated on the basis of a measured thickness of the oxidized scale of the gas downstream-side heat transfer pipe and a measured boiler operating time by using the relational expression, and the increase of metal temperature due to the oxidized scale of a gas upstream-side heat transfer pipe is determined on the basis of the estimated metal temperature as an initial metal temperature of the gas upstream-side heat transfer pipe, a measured thickness of the oxidized scale of the upstream-side heat transfer pipe, and the measured boiler operating time by using the operational expression, thus the metal temperature of the gas upstream-side heat transfer pipe is estimated. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、例えば火力発電用ボイラ装置やゴミ焼却用ボイラ装置などの高温部伝熱管のメタル温度推定方法ならびに寿命推定方法に関するものである。   The present invention relates to a metal temperature estimation method and a life estimation method for a high-temperature section heat transfer tube such as a thermal power generation boiler device and a garbage incineration boiler device.

図1は火力発電用ボイラ装置の概略構成図である。同図に示すように、ボイラ本体1の下部側には多数のバーナ2が設置され、またバーナ2の燃焼によって生成される燃焼ガスが流通する煙道内3には過熱器4や再熱器5などの各種熱交換器が設置されている。これら過熱器4や再熱器5などの熱交換器は、多数本の伝熱管を所定のピッチで垂直方向に配置して構成した図示しない伝熱パネルの組み合わせから構成されている。   FIG. 1 is a schematic configuration diagram of a thermal power generation boiler apparatus. As shown in the figure, a large number of burners 2 are installed on the lower side of the boiler body 1, and a superheater 4 and a reheater 5 are disposed in a flue 3 through which combustion gas generated by combustion of the burner 2 circulates. Various heat exchangers such as are installed. These heat exchangers such as the superheater 4 and the reheater 5 are composed of a combination of heat transfer panels (not shown) in which a large number of heat transfer tubes are arranged in a vertical direction at a predetermined pitch.

図2は、過熱器伝熱管の拡大横断面図である。
前記過熱器4や再熱器5は高温・高圧の水蒸気を発生させる熱交換器であり、それを構成する伝熱管6の内側には過熱蒸気9(図3参照)が流通する関係上、伝熱管6の内面には水蒸気酸化スケール7が生成、堆積し、一方、伝熱管6の外面には高温酸化スケール8が生成、堆積する。
FIG. 2 is an enlarged cross-sectional view of the superheater heat transfer tube.
The superheater 4 and the reheater 5 are heat exchangers that generate high-temperature and high-pressure steam, and the superheated steam 9 (see FIG. 3) is circulated inside the heat transfer pipe 6 constituting the heat exchanger. A steam oxidation scale 7 is generated and deposited on the inner surface of the heat tube 6, while a high temperature oxide scale 8 is generated and deposited on the outer surface of the heat transfer tube 6.

前記水蒸気酸化スケール7は、酸化スケール中の酸素又は金属成分(Fe,Crなど)の拡散がスケール成長の律則になるため、温度が一定の場合、水蒸気酸化スケール7の成長は時間に対して放物線則に従う。このため過熱器4や再熱器5で多用されている伝熱管材料の腐食しろは、温度条件に応じて試算し、初期肉厚設定に反映されていた。   In the steam oxidation scale 7, since the diffusion of oxygen or metal components (Fe, Cr, etc.) in the oxide scale becomes a rule of scale growth, when the temperature is constant, the growth of the steam oxidation scale 7 with respect to time. Follow the parabolic law. For this reason, the corrosion margin of the heat transfer tube material frequently used in the superheater 4 and the reheater 5 is calculated according to the temperature condition and reflected in the initial wall thickness setting.

しかしながら、図2から明らかなように、同じ伝熱管6でも、熱負荷の影響により燃焼ガス流れ方向上流側の方が、燃焼ガス流れ方向下流側よりも、伝熱管6の内面に生成する水蒸気酸化スケール7の厚さが厚い。このように水蒸気酸化スケール7が厚く生成すると、燃焼ガス流れ方向下流側の伝熱管6に比べて伝熱管6のメタル温度が上昇し、加速酸化減肉およびクリープ損傷を引き起こす場合がある。   However, as is apparent from FIG. 2, even in the same heat transfer tube 6, steam oxidation generated on the inner surface of the heat transfer tube 6 on the upstream side in the combustion gas flow direction is more affected by the heat load than on the downstream side in the combustion gas flow direction. The scale 7 is thick. Thus, when the steam oxidation scale 7 is formed thickly, the metal temperature of the heat transfer tube 6 is increased as compared with the heat transfer tube 6 on the downstream side in the combustion gas flow direction, which may cause accelerated oxidation thinning and creep damage.

図3は、高温酸化スケール8ならびに水蒸気酸化スケール7の生成によるメタル温度の変化を示すモデル図である。図中の符号10はスケール生成前の温度分布(点線)、符号11はスケール生成後の温度分布(実線)である。   FIG. 3 is a model diagram showing changes in the metal temperature due to the generation of the high-temperature oxidation scale 8 and the steam oxidation scale 7. In the drawing, reference numeral 10 denotes a temperature distribution (dotted line) before scale generation, and reference numeral 11 denotes a temperature distribution (solid line) after scale generation.

酸化スケールの熱伝導率は管材の熱伝導率の約1/20〜1/50で、非常に低い値であるため、特に熱負荷が高い燃焼ガス流れ方向上流側伝熱管6のメタル温度は、スケール上での点線と実線の温度差から明らかなように、酸化スケールによる熱伝阻害で上昇する。そしてこのメタル温度の上昇とスケール成長加速が繰り返されることにより、内圧応力が高まり、クリープ損傷が加速し、設計段階で想定されたクリープ寿命よりも早期に寿命に達し、最終的にはクリープ噴破することがある。   Since the thermal conductivity of the oxide scale is about 1/20 to 1/50 of the thermal conductivity of the tube material, which is a very low value, the metal temperature of the heat transfer tube 6 on the upstream side in the combustion gas flow direction where the heat load is particularly high, As is clear from the temperature difference between the dotted line and the solid line on the scale, it rises due to the heat transfer inhibition by the oxide scale. The repeated increase in metal temperature and acceleration of scale growth increase internal pressure stress, accelerate creep damage, reach the life earlier than the creep life assumed in the design stage, and finally creep blast There are things to do.

従って、熱負荷が高い伝熱管の材料選定や腐食しろの試算は、酸化スケール生成によるメタル温度上昇を考慮した寿命診断に基づいて行なう必要があり、そのためには実際に設置されている伝熱管のメタル温度を高精度に推定する必要がある。   Therefore, it is necessary to select the material of the heat transfer tube with high heat load and to estimate the corrosion allowance based on the life diagnosis considering the metal temperature rise due to the generation of oxide scale. For that purpose, the heat transfer tube of the actually installed heat transfer tube is required. It is necessary to estimate the metal temperature with high accuracy.

特開2004−116810号公報JP 2004-116810 A 特開2006−300601号公報JP 2006-300601 A 特開2003−344261号公報JP 2003-344261 A

前記課題を解決するため、運転中の伝熱管メタル温度を推定する方法として以下に示すような提案がなされている。
特許文献1(特開2004−116810号公報)では、伝熱管パネルの異なるメタル温度を簡便かつ低コストで検知する方法が提案されているが、排熱回収ボイラ装置の吊り下げ伝熱管という特定装置、部位を対象としており、そのために汎用性がない。
In order to solve the above problems, the following proposals have been made as a method for estimating the heat transfer tube metal temperature during operation.
Patent Document 1 (Japanese Patent Application Laid-Open No. 2004-116810) proposes a method for detecting different metal temperatures of a heat transfer tube panel simply and at low cost, but a specific device called a suspended heat transfer tube of an exhaust heat recovery boiler device. , For the part, and therefore not versatile.

また特許文献2(特開2006−300601号公報)では、使用後の鋼材に析出した析出物質の含有率変化を利用して、使用温度を推定する方法が提案されている。しかし、析出物質の含有率を測定するために、析出物質のみをICP発光分析およびX線回折分析により同定および定量する必要があり、そのために操作が煩雑である。   Further, Patent Document 2 (Japanese Patent Laid-Open No. 2006-300601) proposes a method for estimating a use temperature by utilizing a change in the content of a precipitated substance deposited on a used steel material. However, in order to measure the content of the precipitated substance, it is necessary to identify and quantify only the precipitated substance by ICP emission analysis and X-ray diffraction analysis, which makes the operation complicated.

さらに特許文献3(特開2003−344261号公報)では、フェライト系耐熱鋼の時効による硬さの変化を利用した温度の推定方法が提案されている。しかしこの方法は、温度、時間とともに硬さが単調に低下するフェライト系耐熱鋼のみに適用可能であり、従って伝熱管の材質に制限があり、汎用性がない。   Further, Patent Document 3 (Japanese Patent Application Laid-Open No. 2003-344261) proposes a temperature estimation method using a change in hardness due to aging of ferritic heat resistant steel. However, this method can be applied only to ferritic heat-resistant steel whose hardness decreases monotonically with temperature and time. Therefore, the material of the heat transfer tube is limited and is not versatile.

このように熱負荷が高いボイラ伝熱管のメタル温度および寿命診断を簡便に推定する有効な手段がないのが現状である。   As described above, there is no effective means for simply estimating the metal temperature and life diagnosis of a boiler heat transfer tube having a high heat load.

本発明の目的は、このような従来技術の欠点を解消し、簡便で、汎用性があり、しかも実際に設置されている伝熱管のメタル温度を高精度に推定することのできるボイラ伝熱管のメタル温度推定方法ならびにそれに基づく寿命推定方法を提供することにある。   The object of the present invention is to eliminate such drawbacks of the prior art, and is a simple and versatile boiler heat transfer tube that can accurately estimate the metal temperature of the actually installed heat transfer tube. An object of the present invention is to provide a metal temperature estimation method and a life estimation method based thereon.

前記目的を達成するため、本発明の第1の手段は、燃焼ガス流れ方向の上流側と下流側伝熱管のメタル温度を推定する方法において、
伝熱管のメタル温度とボイラ運転時間と伝熱管の内面あるいは外面に形成される酸化スケールの厚さとの関係式を予め求めておき、
前記ガス下流側伝熱管の前記酸化スケールの実測厚さと実測ボイラ運転時間から、前記関係式を用いて当該ガス下流側伝熱管のメタル温度を推定し、
その推定したメタル温度を、前記ガス上流側伝熱管の初期メタル温度として、その初期メタル温度と当該ガス上流側伝熱管の酸化スケールの実測厚さと実測ボイラ運転時間から前記関係式を用いて、当該ガス上流側伝熱管の酸化スケールによるメタル温度上昇を求めて、当該ガス上流側伝熱管のメタル温度を推定することを特徴とするものである。
In order to achieve the above object, the first means of the present invention is a method for estimating the metal temperatures of the upstream and downstream heat transfer tubes in the combustion gas flow direction,
Obtain a relational expression in advance between the metal temperature of the heat transfer tube, the boiler operation time, and the thickness of the oxide scale formed on the inner surface or outer surface of the heat transfer tube,
From the measured thickness of the oxide scale of the gas downstream heat transfer tube and the measured boiler operation time, the metal temperature of the gas downstream heat transfer tube is estimated using the relational expression,
The estimated metal temperature is used as the initial metal temperature of the gas upstream heat transfer tube, from the initial metal temperature, the measured thickness of the oxide scale of the gas upstream heat transfer tube, and the measured boiler operation time, using the relational expression, The metal temperature rise by the oxidation scale of the gas upstream heat transfer tube is obtained, and the metal temperature of the gas upstream heat transfer tube is estimated.

本発明の第2の手段は前記第1の手段において、前記酸化スケールが伝熱管の内面に生成した水蒸気酸化スケールであることを特徴とするものである。   According to a second means of the present invention, in the first means, the oxide scale is a steam oxide scale generated on the inner surface of the heat transfer tube.

本発明の第3の手段は、燃焼ガス流れ方向の上流側と下流側伝熱管の寿命を推定する方法において、
伝熱管のメタル温度とボイラ運転時間と伝熱管の内面あるいは外面に形成される酸化スケールの厚さとの関係式を予め求めておき、
前記ガス下流側伝熱管の前記酸化スケールの実測厚さと実測ボイラ運転時間から、前記関係式を用いて当該ガス下流側伝熱管のメタル温度を推定し、
その推定したメタル温度を、前記ガス上流側伝熱管の初期メタル温度として、その初期メタル温度と当該ガス上流側伝熱管の酸化スケールの実測厚さと実測ボイラ運転時間から前記関係式を用いて、当該ガス上流側伝熱管の酸化スケールによるメタル温度上昇を求めて、当該ガス上流側伝熱管のメタル温度を推定し、
予め求めておいた伝熱管のメタル温度とクリープ破断時間と応力との関係式を用いて、前記推定したガス上流側伝熱管のメタル温度と応力と実測ボイラ運転時間から、当該ガス上流側伝熱管のクリープ寿命を推定することを特徴とするものである。
According to a third means of the present invention, in the method for estimating the life of the upstream and downstream heat transfer tubes in the combustion gas flow direction,
Obtain a relational expression in advance between the metal temperature of the heat transfer tube, the boiler operation time, and the thickness of the oxide scale formed on the inner surface or outer surface of the heat transfer tube,
From the measured thickness of the oxide scale of the gas downstream heat transfer tube and the measured boiler operation time, the metal temperature of the gas downstream heat transfer tube is estimated using the relational expression,
The estimated metal temperature is used as the initial metal temperature of the gas upstream heat transfer tube, from the initial metal temperature, the measured thickness of the oxide scale of the gas upstream heat transfer tube, and the measured boiler operation time, using the relational expression, Obtain the metal temperature rise due to the oxide scale of the gas upstream heat transfer tube, estimate the metal temperature of the gas upstream heat transfer tube,
Using the relationship between the metal temperature, creep rupture time and stress of the heat transfer tube obtained in advance, the gas upstream heat transfer tube is calculated from the estimated metal temperature and stress of the gas upstream heat transfer tube and the measured boiler operation time. It is characterized by estimating the creep life of the material.

本発明の第4の手段は前記第3の手段において、前記酸化スケールが伝熱管の内面に生成した水蒸気酸化スケールであることを特徴とするものである。   A fourth means of the present invention is characterized in that, in the third means, the oxide scale is a steam oxide scale formed on the inner surface of the heat transfer tube.

本発明は前述のような構成になっており、簡便で、汎用性があり、しかも実際に設置されている伝熱管のメタル温度を高精度に推定することのできるボイラ伝熱管のメタル温度推定方法ならびにそれに基づく寿命推定方法を提供することができる。   The present invention has the above-described configuration, is simple, versatile, and can accurately estimate the metal temperature of a heat transfer tube that is actually installed, with high accuracy. In addition, a life estimation method based thereon can be provided.

火力発電用ボイラ装置の概略構成図である。It is a schematic block diagram of the boiler apparatus for thermal power generation. 過熱器伝熱管の拡大横断面図である。It is an expansion cross-sectional view of a superheater heat exchanger tube. 高温酸化スケールならびに水蒸気酸化スケールの生成による伝熱管メタル温度の変化を示すモデル図である。It is a model figure which shows the change of the heat exchanger tube metal temperature by the production | generation of a high temperature oxidation scale and a steam oxidation scale. 本発明の実施例において、内面酸化スケールの厚さとボイラ運転時間からメタル温度を推定するための特性図である。In the Example of this invention, it is a characteristic view for estimating a metal temperature from the thickness of an internal surface oxidation scale, and a boiler operation time. 本発明の実施例において、内面酸化スケール厚さとメタル温度から等価時間を算出して、スケール成長を予測する考え方を説明するための図である。In the Example of this invention, it is a figure for demonstrating the idea of calculating an equivalent time from inner surface oxidation scale thickness and metal temperature, and estimating a scale growth. 本発明の実施例において、前記等価時間からスケールの成長を予測する計算を時間ステップ毎に繰り返して行い、その計算結果を纏めた図である。In the Example of this invention, it is the figure which repeated the calculation which estimates the growth of a scale from the said equivalent time for every time step, and put together the calculation result. 本発明の実施例において、ボイラ運転時間から伝熱管のメタル温度を推定するための特性図である。In the Example of this invention, it is a characteristic view for estimating the metal temperature of a heat exchanger tube from boiler operation time. 本発明の実施例において、推定したメタル温度および水蒸気酸化スケール厚さと伝熱管の寸法ならびに伝熱管の内圧から求めたボイラ運転時間と伝熱管のクリープ損傷率との関係を示す特性図である。In the Example of this invention, it is a characteristic view which shows the relationship between the boiler operating time calculated | required from the estimated metal temperature, steam oxidation scale thickness, the size of a heat exchanger tube, and the internal pressure of a heat exchanger tube, and the creep damage rate of a heat exchanger tube. 本発明の実施例において、UTスケール厚さ測定装置を用いた伝熱管のメタル温度および寿命推定システムを説明するための概略構成図である。In the Example of this invention, it is a schematic block diagram for demonstrating the metal temperature and lifetime estimation system of a heat exchanger tube using the UT scale thickness measuring apparatus.

次に本発明の実施例について式および図面を用いて詳細に説明する。
本発明の実施例では、過熱器用あるいは再熱器用伝熱管の材質としてSTBA24のフェライト系低合金鋼(Cr−Mo鋼)を使用し、ボイラ運転時間が50,000時間、ガス上流側伝熱管の水蒸気酸化スケール測定厚さが0.8mm、ガス下流側伝熱管の水蒸気酸化スケール測定厚さが0.5mmである場合を例にとって説明する。
Next, embodiments of the present invention will be described in detail with reference to formulas and drawings.
In the embodiment of the present invention, ferritic low alloy steel (Cr-Mo steel) of STBA24 is used as the material for the superheater or reheater heat transfer tube, the boiler operation time is 50,000 hours, and the gas upstream heat transfer tube A case where the measured thickness of the steam oxide scale is 0.8 mm and the measured thickness of the steam oxide scale of the gas downstream side heat transfer tube is 0.5 mm will be described as an example.

まず、熱負荷が低いガス下流側伝熱管のメタル温度を推定する。
熱負荷が低い場合、水蒸気酸化スケール生成による温度上昇の影響がほとんどないため、メタル温度は一定とみなすことができる。この場合、水蒸気酸化スケールの成長は、酸化スケール中の酸素又は金属成分(Fe,Crなど)の拡散が水蒸気酸化スケール成長の律則になるため、水蒸気酸化スケールの厚さは下記の(1)式に示すように時間に対して放物線則に従う。
First, the metal temperature of the gas downstream side heat transfer tube with a low heat load is estimated.
When the heat load is low, the metal temperature can be regarded as constant because there is almost no influence of the temperature rise due to the generation of the steam oxidation scale. In this case, the growth of the steam oxidation scale is because the diffusion of oxygen or metal components (Fe, Cr, etc.) in the oxide scale becomes the law of the steam oxidation scale growth. Follow the parabolic law over time as shown in the equation.

Y=√(Kp×t)・・・・(1)
ここでYは酸化スケールの厚さ(μm)、Kpは放物線則速度定数、tは時間(時間)である。また放物線則速度定数Kpの対数は下記の(2)式で表される。
Y = √ (Kp × t) (1)
Here, Y is the oxide scale thickness (μm), Kp is a parabolic law rate constant, and t is time (hours). The logarithm of the parabolic law rate constant Kp is expressed by the following equation (2).

log(Kp)=a/T+b・・・・(2)
ここでTは温度(K)、a,bは定数である。この定数a,bは、鋼種毎に実験データに基づいて算出され、データベース化されている。
log (Kp) = a / T + b (2)
Here, T is a temperature (K), and a and b are constants. The constants a and b are calculated based on experimental data for each steel type and are stored in a database.

ここで、前記STBA24(Cr−Mo鋼)のa値を21、b値を−1.7×104とすると、図4に示すように伝熱管の内面に形成される水蒸気酸化スケールの厚さはメタル温度とボイラ運転時間で決定される。図中の曲線Aはメタル温度が580℃、曲線Bはメタル温度が560℃、曲線Cはメタル温度が540℃、曲線Dはメタル温度が520℃の場合の特性曲線である。図中の△印で示したように本実施例の場合はボイラ運転時間が50,000時間であるため、前述のように0.5mmのスケール厚さとなるメタル温度は560℃と推定される。 Here, when the a value of the STBA24 (Cr—Mo steel) is 21 and the b value is −1.7 × 10 4 , the thickness of the steam oxidation scale formed on the inner surface of the heat transfer tube as shown in FIG. Is determined by the metal temperature and boiler operation time. Curve A in the figure is a characteristic curve when the metal temperature is 580 ° C., curve B is the metal temperature is 560 ° C., curve C is the metal temperature is 540 ° C., and curve D is the characteristic curve when the metal temperature is 520 ° C. In the case of the present embodiment as indicated by Δ in the figure, the boiler operation time is 50,000 hours, so that the metal temperature at which the scale thickness is 0.5 mm is estimated to be 560 ° C. as described above.

この図の特性曲線A,B,C,D・・・のように、伝熱管のメタル温度とボイラ運転時間と伝熱管の内面に形成される水蒸気酸化スケールの厚さとの関係は予め求められて、式化あるいはテーブル化されている。   Like the characteristic curves A, B, C, D... In this figure, the relationship between the metal temperature of the heat transfer tube, the boiler operation time, and the thickness of the steam oxidation scale formed on the inner surface of the heat transfer tube is obtained in advance. Formulated or tabulated.

次に、熱負荷が高いガス上流側伝熱管のメタル温度を推定する。
水蒸気酸化スケールが生成していないボイラ運転初期段階のガス上流側部分のメタル温度は、熱負荷による温度上昇は発生しないため、ガス下流側伝熱管のメタル温度(前述のように本実施例では560℃)とみなすことができる。まず、この初期メタル温度を用いて、熱負荷および水蒸気酸化スケールによって発生するメタル温度上昇を以下の方法で推定する。
Next, the metal temperature of the gas upstream heat transfer tube having a high heat load is estimated.
The metal temperature in the upstream portion of the gas at the initial stage of boiler operation in which no steam oxidation scale is generated does not increase in temperature due to the heat load, so the metal temperature of the heat transfer tube on the downstream side of the gas (as described above, 560 in this embodiment). ° C). First, using this initial metal temperature, the metal temperature rise caused by the heat load and the steam oxidation scale is estimated by the following method.

ボイラ運転初期のメタル温度を560℃とし、時間ステップ毎にスケール厚さと温度上昇から決まるメタル温度を求め、その温度でのスケールの成長を計算する。スケールの成長は前記(1),(2)式で求まる各温度でのスケール成長カーブ(特性曲線)を用いて予測するが、メタル温度が刻々と変化する場合、時間ステップ毎にスケール厚さとメタル温度から等価時間を算出して、スケール成長を予測する必要がある。   The metal temperature at the initial stage of boiler operation is set to 560 ° C., the metal temperature determined from the scale thickness and the temperature rise is obtained for each time step, and the scale growth at that temperature is calculated. Scale growth is predicted using a scale growth curve (characteristic curve) at each temperature obtained by the above equations (1) and (2). When the metal temperature changes every moment, the scale thickness and the metal are It is necessary to predict the scale growth by calculating the equivalent time from the temperature.

図5を用いてその考え方を説明する。同図の横軸は時間、縦軸は内面酸化スケールの厚さをとっている。同図においてメタル温度が温度T1から温度T2に変化する場合、時間t1でのスケール厚さと等しくなる等価時間(t2)を計算し、その時間からスケールの成長を予測する。この計算を予め決められた時間ステップ(本実施例では4000時間)毎に繰り返して計算し、その計算結果を纏めたのが図6である。   The concept will be described with reference to FIG. In the figure, the horizontal axis represents time, and the vertical axis represents the thickness of the internal oxide scale. In the figure, when the metal temperature changes from temperature T1 to temperature T2, an equivalent time (t2) equal to the scale thickness at time t1 is calculated, and scale growth is predicted from that time. This calculation is repeated at predetermined time steps (4000 hours in this embodiment), and the calculation results are summarized in FIG.

図中の曲線Eは温度上昇60℃/mm、曲線Fは温度上昇40℃/mm、曲線Gは温度上昇20℃/mm、曲線Hは温度上昇0℃/mmの特性曲線である。この特性図を基に、運転時間50,000時間でスケール厚さが0.8mmとなる温度上昇は曲線Fの40℃/mmであると推定される。このように温度上昇が分かれば、スケール厚さの変化より、下記の(3)式から図7に示すようにガス上流側伝熱管のメタル温度を推定することができる。   In the figure, a curve E is a characteristic curve of a temperature increase of 60 ° C./mm, a curve F is a temperature increase of 40 ° C./mm, a curve G is a temperature increase of 20 ° C./mm, and a curve H is a characteristic curve of a temperature increase of 0 ° C./mm. Based on this characteristic diagram, the temperature rise at which the scale thickness becomes 0.8 mm after 50,000 hours of operation is estimated to be 40 ° C./mm of curve F. If the temperature rise is known in this way, the metal temperature of the gas upstream heat transfer tube can be estimated from the following equation (3) from the change in scale thickness as shown in FIG.

Tm=Tf+Ys×ΔT・・・・(3)
ここでTmはガス上流側伝熱管のメタル温度(℃)、Tfはボイラ運転初期のメタル温度(℃)、Ysはスケール厚さ(mm)、ΔTは水蒸気酸化スケールの付着による温度上昇(℃/mm)である。
Tm = Tf + Ys × ΔT (3)
Here, Tm is the metal temperature (° C) of the gas upstream side heat transfer tube, Tf is the metal temperature (° C) at the initial stage of boiler operation, Ys is the thickness of the scale (mm), and ΔT is the temperature rise (° C / mm).

次に、推定したガス上流側伝熱管のメタル温度及びスケールの厚さから、クリープ寿命を推定する。クリープ損傷による破断時間(tr)は温度・時間パラメータである下記の(4)式に示すLMP(ラーソンミラーパラメータ)で整理でき、またLMPは下記の(5)式に示す応力(MPa)の関数で近似される。   Next, the creep life is estimated from the estimated metal temperature of the gas upstream heat transfer tube and the thickness of the scale. The rupture time (tr) due to creep damage can be arranged by the LMP (Larson Miller parameter) shown in the following equation (4) which is a temperature / time parameter, and LMP is a function of the stress (MPa) shown in the following (5) equation. Is approximated by

LMP=T×〔log(tr)+C〕・・・・(4)
ここでTはメタル絶対温度(K)、trはクリープ破断時間(時間)、Cは定数である。
LMP = T × [log (tr) + C] (4)
Here, T is a metal absolute temperature (K), tr is a creep rupture time (hour), and C is a constant.

LMP=A+A×logσ+A×(logσ)2+A×(logσ)3・・・・(5)
ここでσは応力(MPa)、A,A,A,Aは定数である。
LMP = A 0 + A 1 × logσ + A 2 × (logσ) 2 + A 3 × (logσ) 3 ... (5)
Here, σ is stress (MPa), and A 0 , A 1 , A 2 , and A 3 are constants.

前記応力σは伝熱管の外径と肉厚および内圧により、下記の(6)式に示す平均径の式を用いて応力を算出する。   The stress σ is calculated by using the average diameter equation shown in the following equation (6) based on the outer diameter, thickness, and internal pressure of the heat transfer tube.

σ=〔P×(D−d)〕/(2×d)・・・・(6)
ここでσは応力(MPa)、Pは伝熱管の内圧(MPa)、Dは伝熱管の外径(mm)、dは伝熱管の肉厚(mm)である。この伝熱管の肉厚dはスケールが生成すると減少する。一般にスケール厚さの半分が減肉量となるため、肉厚dは下記の(7)式で表せられる。
σ = [P × (D−d)] / (2 × d) (6)
Here, σ is stress (MPa), P is the internal pressure (MPa) of the heat transfer tube, D is the outer diameter (mm) of the heat transfer tube, and d is the wall thickness (mm) of the heat transfer tube. The wall thickness d of the heat transfer tube decreases as the scale is generated. Generally, since half of the scale thickness is the thickness reduction amount, the thickness d can be expressed by the following equation (7).

d=df−Ys/2・・・・(7)
ここでdfはスケール生成前の初期肉厚(mm)、Ysはスケール厚さ(mm)である。
d = df−Ys / 2 (7)
Here, df is the initial thickness (mm) before scale generation, and Ys is the scale thickness (mm).

すなわち、(4)〜(7)式と推定したメタル温度と内面酸化スケール厚さと伝熱管の寸法(外径、肉厚)ならびに伝熱管の内圧が分かると、伝熱管のクリープ破断時間(tr)を得ることができる。   That is, when the estimated metal temperature, inner surface oxide scale thickness, heat transfer tube dimensions (outer diameter, wall thickness) and internal pressure of the heat transfer tube and the internal pressure of the heat transfer tube are known as the equations (4) to (7), the heat transfer tube creep rupture time (tr) Can be obtained.

従って、時間ステップ毎に推定したメタル温度および水蒸気酸化スケール厚さからクリープ破断時間(tr)を計算し、ステップ時間分のスケールの付着による温度上昇ΔTによるクリープ寿命消費率を下記の(8)式で計算する。   Therefore, the creep rupture time (tr) is calculated from the estimated metal temperature and steam oxidation scale thickness for each time step, and the creep life consumption rate due to the temperature increase ΔT due to the scale adhesion for the step time is expressed by the following equation (8): Calculate with

クリープ寿命消費率=ΔT/tr・・・・(8)
時間ステップ毎にこの(8)式の計算を行い、各ステップ時のクリープ寿命消費率を総合したものをクリープ損傷率とする。
Creep life consumption rate = ΔT / tr (8)
The equation (8) is calculated for each time step, and the creep life consumption rate at each step is summed as the creep damage rate.

推定したメタル温度および水蒸気酸化スケール厚さと伝熱管の寸法(外径:50mm、肉厚:5mm)ならびに伝熱管の内圧を6MPaとし、前記LMPの常数をC=19,A=1.9×104,A=4.5×10,A=−2.3×103,A=0として計算した結果を図8の特性曲線Iに示す。同図の横軸はボイラ運転時間、縦軸は伝熱管のクリープ損傷率を示している。 Estimated metal temperature and steam oxidation scale thickness and heat transfer tube dimensions (outer diameter: 50 mm, wall thickness: 5 mm) and the internal pressure of the heat transfer tube are 6 MPa, and the constants of the LMP are C = 19, A 0 = 1.9 × The calculation results with 10 4 , A 1 = 4.5 × 10, A 2 = −2.3 × 10 3 , and A 3 = 0 are shown in the characteristic curve I of FIG. In the figure, the horizontal axis indicates the boiler operation time, and the vertical axis indicates the creep damage rate of the heat transfer tube.

なお、図中の特性曲線Jは前記温度上昇を加味しないメタル温度が580℃と推定した場合の、従来の方法によって求められたボイラ運転時間と伝熱管のクリープ損傷率との関係を示す特性曲線、特性曲線Kは同じく前記温度上昇を加味しないメタル温度が560℃と推定した場合の、従来の方法によって求められたボイラ運転時間と伝熱管のクリープ損傷率との関係を示す特性曲線である。   In addition, the characteristic curve J in the figure shows the relationship between the boiler operating time and the heat transfer tube creep damage rate obtained by the conventional method when the metal temperature not considering the temperature rise is estimated to be 580 ° C. Similarly, the characteristic curve K is a characteristic curve showing the relationship between the boiler operating time and the creep damage rate of the heat transfer tube obtained by the conventional method when the metal temperature not considering the temperature rise is estimated to be 560 ° C.

前記特性曲線Iから明らかなように、温度上昇を考慮したクリープ損傷率は、ボイラ運転時間50,000時間では0.1となり、クリープ寿命(クリープ損傷率=1.0)に達するボイラ運転時間は96,000時間と推定することができる。これに対して従来の方法(特性曲線J、K)では、クリープ寿命に達するボイラ運転時間が96,000時間と推定することができず、誤った推定となる可能性がある。   As is apparent from the characteristic curve I, the creep damage rate considering the temperature rise becomes 0.1 at a boiler operation time of 50,000 hours, and the boiler operation time to reach the creep life (creep damage rate = 1.0) is It can be estimated as 96,000 hours. On the other hand, in the conventional method (characteristic curves J and K), the boiler operation time reaching the creep life cannot be estimated as 96,000 hours, which may be erroneously estimated.

前述のように本発明の特徴は、ガス上流側ならびにガス下流側伝熱管の管内面水蒸気酸化スケール厚さを測定することのみで、熱負荷が高いガス上流側伝熱管のメタル温度を推定することであり、簡便かつ汎用性のあるメタル温度推定方法である。また、このメタル温度推定方法を応用することで、メタル温度変化を考慮したクリープ寿命評価を正確に行なうことができる。   As described above, the feature of the present invention is to estimate the metal temperature of the gas upstream side heat transfer tube having a high heat load only by measuring the thickness of the steam oxidation scale inside the tube of the gas upstream side and the gas downstream side heat transfer tube. It is a simple and versatile metal temperature estimation method. In addition, by applying this metal temperature estimation method, it is possible to accurately perform a creep life evaluation considering the metal temperature change.

前述のメタル温度の推定に必要な管内面水蒸気酸化スケールの厚さ測定は、装置を用いることで抜管調査をしなくても、定期点検などのボイラ装置の停止中に実施することができる。従ってガス上流側とガス下流側伝熱管のスケール厚さを同時に測定し、かつ伝熱管の材質およびボイラ運転時間を入力することで、瞬時にガス上流側とガス下流側伝熱管のメタル温度を推定できるメタル温度評価や寿命推定機能が付いたUTスケール厚さ測定装置を活用することで、大量にデータが取得でき、ボイラ装置の信頼性向上に寄与することができる。   The above-described thickness measurement of the pipe inner surface steam oxidation scale necessary for the estimation of the metal temperature can be performed while the boiler apparatus is stopped, such as periodic inspection, without using the apparatus to conduct an extubation investigation. Therefore, by simultaneously measuring the scale thickness of the gas upstream and downstream gas heat transfer tubes and inputting the heat transfer tube material and boiler operating time, the metal temperatures of the gas upstream and gas downstream heat transfer tubes can be estimated instantaneously. By utilizing a UT scale thickness measurement device with a metal temperature evaluation and life estimation function, a large amount of data can be acquired, which can contribute to improving the reliability of the boiler device.

図9は、UTスケール厚さ測定装置を用いた伝熱管のメタル温度および寿命推定システムを説明するための概略構成図である。
図中の符号12は熱負荷、13は酸化スケール除去部、14は探触子部、15はUTスケール厚さ測定装置、16はメタル温度・クリープ寿命計算装置である。なお、熱負荷12の矢印の大小で熱負荷の高低を表している。
FIG. 9 is a schematic configuration diagram for explaining a metal temperature and life estimation system for a heat transfer tube using a UT scale thickness measuring apparatus.
In the figure, reference numeral 12 denotes a thermal load, 13 denotes an oxide scale removing unit, 14 denotes a probe unit, 15 denotes a UT scale thickness measuring device, and 16 denotes a metal temperature / creep life calculating device. The magnitude of the arrow of the heat load 12 indicates the level of the heat load.

同図に示すように、ガス上流側および下流側伝熱管6の管外面に形成された高温酸化スケール8を部分的に除去して酸化スケール除去部13を形成し、その酸化スケール除去部13にUTスケール厚さ測定装置15の探触子部14を当てて、高温酸化スケール8の肉厚を算出する。   As shown in the figure, the high-temperature oxide scale 8 formed on the outer surface of the gas upstream and downstream heat transfer tubes 6 is partially removed to form an oxide scale removal unit 13. The thickness of the high-temperature oxidation scale 8 is calculated by applying the probe unit 14 of the UT scale thickness measuring device 15.

UTスケール厚さ測定装置15で算出したデータは肉厚測定データとして、メタル温度・クリープ寿命計算装置16に送信する。このメタル温度・クリープ寿命計算装置16には、ボイラ運転時間、伝熱管6の管内圧、管外径、管肉厚などのメタル温度およびクリープ寿命の計算に必要な外的データが予め格納されている。そして、前記高温酸化スケールの肉厚測定データとメタル温度およびクリープ寿命の計算に必要な外的データに基づいて、当該伝熱管6のメタル温度およびクリープ寿命の計算が行なわれ、その計算結果がメタル温度・クリープ寿命計算装置16の表示部(図示せず)に表示されるシステムになっている。   The data calculated by the UT scale thickness measurement device 15 is transmitted to the metal temperature / creep life calculation device 16 as thickness measurement data. The metal temperature / creep life calculator 16 stores in advance external data necessary for calculating the metal temperature and creep life, such as the boiler operating time, the pipe internal pressure, the pipe outer diameter, and the pipe wall thickness. Yes. The metal temperature and creep life of the heat transfer tube 6 are calculated based on the thickness measurement data of the high-temperature oxide scale and the external data necessary for calculating the metal temperature and creep life. The system is displayed on a display unit (not shown) of the temperature / creep life calculator 16.

前記実施例では、伝熱管の内面に生成、堆積する水蒸気酸化スケールの厚さを測定して伝熱管のメタル温度の推定などを行なったが、伝熱管の外面に生成、堆積する高温酸化スケールの厚さを測定して伝熱管のメタル温度の推定などを行うことも可能である。   In the above embodiment, the thickness of the steam oxidation scale generated and deposited on the inner surface of the heat transfer tube was measured to estimate the metal temperature of the heat transfer tube, but the high temperature oxidation scale generated and deposited on the outer surface of the heat transfer tube. It is also possible to estimate the metal temperature of the heat transfer tube by measuring the thickness.

1・・・ボイラ本体、
2・・・バーナ、
3・・・煙道、
4・・・過熱器、
5・・・再熱器、
6・・・伝熱管、
7・・・水蒸気酸化スケール、
8・・・高温酸化スケール、
9・・・過熱蒸気、
10・・・スケール生成前の温度分布、
11・・・スケール生成後の温度分布、
12・・・熱負荷、
13・・・酸化スケール除去部、
14・・・探触子部、
15・・・UTスケール厚さ測定装置、
16・・・メタル温度・クリープ寿命計算装置。
1 ... Boiler body,
2 ... Burner,
3 ... Flue,
4 ... Superheater,
5 ... Reheater,
6 ... Heat transfer tube,
7 ... Steam oxidation scale,
8 ... High temperature oxidation scale,
9 ... superheated steam,
10 ... Temperature distribution before scale generation,
11 ... Temperature distribution after scale generation,
12 ... heat load,
13 ... Oxide scale removing part,
14 ... Probe part,
15 ... UT scale thickness measuring device,
16: Metal temperature / creep life calculator.

Claims (4)

燃焼ガス流れ方向の上流側と下流側伝熱管のメタル温度を推定する方法において、
伝熱管のメタル温度とボイラ運転時間と伝熱管の内面あるいは外面に形成される酸化スケールの厚さとの関係式を予め求めておき、
前記ガス下流側伝熱管の前記酸化スケールの実測厚さと実測ボイラ運転時間から、前記関係式を用いて当該ガス下流側伝熱管のメタル温度を推定し、
その推定したメタル温度を、前記ガス上流側伝熱管の初期メタル温度として、その初期メタル温度と当該ガス上流側伝熱管の酸化スケールの実測厚さと実測ボイラ運転時間から前記関係式を用いて、当該ガス上流側伝熱管の酸化スケールによるメタル温度上昇を求めて、当該ガス上流側伝熱管のメタル温度を推定することを特徴とする伝熱管のメタル温度推定方法。
In the method of estimating the metal temperature of the upstream and downstream heat transfer tubes in the combustion gas flow direction,
Obtain a relational expression in advance between the metal temperature of the heat transfer tube, the boiler operation time, and the thickness of the oxide scale formed on the inner surface or outer surface of the heat transfer tube,
From the measured thickness of the oxide scale of the gas downstream heat transfer tube and the measured boiler operation time, the metal temperature of the gas downstream heat transfer tube is estimated using the relational expression,
The estimated metal temperature is used as the initial metal temperature of the gas upstream heat transfer tube, from the initial metal temperature, the measured thickness of the oxide scale of the gas upstream heat transfer tube, and the measured boiler operation time, using the relational expression, A method for estimating a metal temperature of a heat transfer tube, wherein a metal temperature increase due to an oxide scale of a gas upstream heat transfer tube is obtained and a metal temperature of the gas upstream heat transfer tube is estimated.
請求項1に記載の伝熱管のメタル温度推定方法において、前記酸化スケールが伝熱管の内面に生成した水蒸気酸化スケールであることを特徴とする伝熱管のメタル温度推定方法。   2. The metal temperature estimation method for a heat transfer tube according to claim 1, wherein the oxidation scale is a steam oxidation scale generated on an inner surface of the heat transfer tube. 燃焼ガス流れ方向の上流側と下流側伝熱管の寿命を推定する方法において、
伝熱管のメタル温度とボイラ運転時間と伝熱管の内面あるいは外面に形成される酸化スケールの厚さとの関係式を予め求めておき、
前記ガス下流側伝熱管の前記酸化スケールの実測厚さと実測ボイラ運転時間から、前記関係式を用いて当該ガス下流側伝熱管のメタル温度を推定し、
その推定したメタル温度を、前記ガス上流側伝熱管の初期メタル温度として、その初期メタル温度と当該ガス上流側伝熱管の酸化スケールの実測厚さと実測ボイラ運転時間から前記関係式を用いて、当該ガス上流側伝熱管の酸化スケールによるメタル温度上昇を求めて、当該ガス上流側伝熱管のメタル温度を推定し、
予め求めておいた伝熱管のメタル温度とクリープ破断時間と応力との関係式を用いて、前記推定したガス上流側伝熱管のメタル温度と応力と実測ボイラ運転時間から、当該ガス上流側伝熱管のクリープ寿命を推定することを特徴とする伝熱管の寿命推定方法。
In the method of estimating the life of the upstream and downstream heat transfer tubes in the combustion gas flow direction,
Obtain a relational expression in advance between the metal temperature of the heat transfer tube, the boiler operation time, and the thickness of the oxide scale formed on the inner surface or outer surface of the heat transfer tube,
From the measured thickness of the oxide scale of the gas downstream heat transfer tube and the measured boiler operation time, the metal temperature of the gas downstream heat transfer tube is estimated using the relational expression,
The estimated metal temperature is used as the initial metal temperature of the gas upstream heat transfer tube, from the initial metal temperature, the measured thickness of the oxide scale of the gas upstream heat transfer tube, and the measured boiler operation time, using the relational expression, Obtain the metal temperature rise due to the oxide scale of the gas upstream heat transfer tube, estimate the metal temperature of the gas upstream heat transfer tube,
Using the relationship between the metal temperature, creep rupture time and stress of the heat transfer tube obtained in advance, the gas upstream heat transfer tube is calculated from the estimated metal temperature and stress of the gas upstream heat transfer tube and the measured boiler operation time. Estimating the creep life of a heat transfer tube,
請求項3に記載の伝熱管の寿命推定方法において、前記酸化スケールが伝熱管の内面に生成した水蒸気酸化スケールであることを特徴とする伝熱管の寿命推定方法。   4. The heat transfer tube life estimation method according to claim 3, wherein the oxidation scale is a steam oxidation scale generated on an inner surface of the heat transfer tube.
JP2009214697A 2009-09-16 2009-09-16 Method for estimating metal temperature and life of boiler heat transfer tubes Active JP5380219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009214697A JP5380219B2 (en) 2009-09-16 2009-09-16 Method for estimating metal temperature and life of boiler heat transfer tubes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009214697A JP5380219B2 (en) 2009-09-16 2009-09-16 Method for estimating metal temperature and life of boiler heat transfer tubes

Publications (2)

Publication Number Publication Date
JP2011064381A true JP2011064381A (en) 2011-03-31
JP5380219B2 JP5380219B2 (en) 2014-01-08

Family

ID=43950825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009214697A Active JP5380219B2 (en) 2009-09-16 2009-09-16 Method for estimating metal temperature and life of boiler heat transfer tubes

Country Status (1)

Country Link
JP (1) JP5380219B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102444885A (en) * 2011-12-19 2012-05-09 上海望特能源科技有限公司 Method for avoiding overheat tube burst in tubular boiler of power station boiler
JP2013542077A (en) * 2010-10-01 2013-11-21 ローズマウント インコーポレイテッド Method for certifying a welding process on a test block and production workpiece for use in the welding process
CN103672846A (en) * 2013-12-03 2014-03-26 广东电网公司电力科学研究院 Method for monitoring wall temperature of heating surface and thickness of scale cinder of boiler superheater or reheater
CN104749211A (en) * 2013-12-27 2015-07-01 川崎重工业株式会社 Heat transfer tube life estimating system
CN105202522A (en) * 2015-09-30 2015-12-30 广州特种承压设备检测研究院 Once-through boiler corrosion and scaling risk diagnosis method
CN112014539A (en) * 2020-07-23 2020-12-01 安徽中煊锅炉有限公司 Method for monitoring service life loss state of boiler tube
CN112326658A (en) * 2020-10-30 2021-02-05 西安热工研究院有限公司 Method for confirming parameters during equivalent temperature calculation of boiler tube
CN114169105A (en) * 2021-12-06 2022-03-11 天津国华盘山发电有限责任公司 Method for predicting temperature of outer side pipe wall of 12Cr18Ni12Ti austenitic heat-resistant steel for thermal power plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090506A (en) * 2001-09-13 2003-03-28 Babcock Hitachi Kk Method and device to diagnose damage of boiler heat transfer pipe different material joint welding part
JP2005156086A (en) * 2003-11-28 2005-06-16 Mitsubishi Heavy Ind Ltd Scale state prediction method, boiler heat transfer pipe state prediction method, and device for the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003090506A (en) * 2001-09-13 2003-03-28 Babcock Hitachi Kk Method and device to diagnose damage of boiler heat transfer pipe different material joint welding part
JP2005156086A (en) * 2003-11-28 2005-06-16 Mitsubishi Heavy Ind Ltd Scale state prediction method, boiler heat transfer pipe state prediction method, and device for the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013542077A (en) * 2010-10-01 2013-11-21 ローズマウント インコーポレイテッド Method for certifying a welding process on a test block and production workpiece for use in the welding process
CN102444885A (en) * 2011-12-19 2012-05-09 上海望特能源科技有限公司 Method for avoiding overheat tube burst in tubular boiler of power station boiler
CN102444885B (en) * 2011-12-19 2014-03-19 上海望特能源科技有限公司 Method for avoiding overheat tube burst in tubular boiler of power station boiler
CN103672846A (en) * 2013-12-03 2014-03-26 广东电网公司电力科学研究院 Method for monitoring wall temperature of heating surface and thickness of scale cinder of boiler superheater or reheater
CN103672846B (en) * 2013-12-03 2015-04-15 广东电网公司电力科学研究院 Method for monitoring wall temperature of heating surface and thickness of scale cinder of boiler superheater or reheater
WO2015098179A1 (en) * 2013-12-27 2015-07-02 川崎重工業株式会社 Heat transfer tube life estimating system
CN104749211A (en) * 2013-12-27 2015-07-01 川崎重工业株式会社 Heat transfer tube life estimating system
JPWO2015098179A1 (en) * 2013-12-27 2017-03-23 川崎重工業株式会社 Heat transfer tube life estimation system
AU2014371824B2 (en) * 2013-12-27 2018-02-15 Kawasaki Jukogyo Kabushiki Kaisha Heat transfer tube life estimating system
CN105202522A (en) * 2015-09-30 2015-12-30 广州特种承压设备检测研究院 Once-through boiler corrosion and scaling risk diagnosis method
CN105202522B (en) * 2015-09-30 2019-01-11 广州特种承压设备检测研究院 A kind of diagnostic method of direct current cooker corrosion and scaling risk
CN112014539A (en) * 2020-07-23 2020-12-01 安徽中煊锅炉有限公司 Method for monitoring service life loss state of boiler tube
CN112326658A (en) * 2020-10-30 2021-02-05 西安热工研究院有限公司 Method for confirming parameters during equivalent temperature calculation of boiler tube
CN114169105A (en) * 2021-12-06 2022-03-11 天津国华盘山发电有限责任公司 Method for predicting temperature of outer side pipe wall of 12Cr18Ni12Ti austenitic heat-resistant steel for thermal power plant
CN114169105B (en) * 2021-12-06 2024-05-28 天津国华盘山发电有限责任公司 Method for predicting temperature of outer pipe wall of 12Cr18Ni12Ti austenitic heat-resistant steel for thermal power plant

Also Published As

Publication number Publication date
JP5380219B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5380219B2 (en) Method for estimating metal temperature and life of boiler heat transfer tubes
JP4630745B2 (en) Calculation method of flow accelerated corrosion thinning rate and remaining life diagnosis method
JP4367408B2 (en) Pipe thickness reduction management system
Purbolaksono et al. Prediction of oxide scale growth in superheater and reheater tubes
JP2011058933A (en) Apparatus and method for evaluating remaining life of boiler
Purbolaksono et al. Failure case studies of SA213-T22 steel tubes of boiler through computer simulations
JP2003090506A (en) Method and device to diagnose damage of boiler heat transfer pipe different material joint welding part
WO2018092259A1 (en) Method for estimating operating temperature of cu (copper)-containing austenitic heat-resistant steel, method for estimating creep damage life of cu-containing austenitic heat-resistant steel, method for estimating operating temperature of heat-conductive tube made of cu-containing austenitic heat-resistant steel, and method for estimating creep damage life of heat-conductive tube made of cu-containing austenitic heat-resistant steel
JP3171285B2 (en) Creep damage evaluation method for heat transfer tubes.
JP2007205692A (en) Thermal fatigue crack damage diagnosis method of boiler heat transfer tube
JP2013122411A (en) Pipe creep life evaluation method
JP5592685B2 (en) Hematite scale adhesion diagnostic method
Huang et al. On the failure of steam-side oxide scales in high temperature components of boilers during unsteady thermal processes
JP2007064675A (en) Damage diagnosis method of giga-domain by laminated oxidation thinning
Salman et al. Determination of correlation functions of the oxide scale growth and the temperature increase
JP4464548B2 (en) Method for analyzing surface crack depth of metal members
JP2010191494A (en) System and method for diagnosing remaining life of high temperature plant equipment
CN115712984A (en) Method for evaluating residual life of boiler heating surface tube
JP4688096B2 (en) Thermal history estimation method for heat-resistant members
JP2009036670A (en) Working temperature estimating method of austenitic steel
JPH11294708A (en) Life judging method of heat transfer tube
JP5900888B2 (en) Operating temperature estimation method and life evaluation method of Ni-based alloy
JP4767184B2 (en) Soundness evaluation method for boiler pipes and attached pipes
Purbolaksono et al. Iterative technique and finite element simulation for supplemental condition monitoring of water-tube boiler
Tahami et al. Effect of sediment thickness on the remaining creep lifetime of 9Cr1Mo refinery furnace tubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130924

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130930

R150 Certificate of patent or registration of utility model

Ref document number: 5380219

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350