JP5900888B2 - Operating temperature estimation method and life evaluation method of Ni-based alloy - Google Patents

Operating temperature estimation method and life evaluation method of Ni-based alloy Download PDF

Info

Publication number
JP5900888B2
JP5900888B2 JP2012139585A JP2012139585A JP5900888B2 JP 5900888 B2 JP5900888 B2 JP 5900888B2 JP 2012139585 A JP2012139585 A JP 2012139585A JP 2012139585 A JP2012139585 A JP 2012139585A JP 5900888 B2 JP5900888 B2 JP 5900888B2
Authority
JP
Japan
Prior art keywords
temperature
based alloy
estimating
surface temperature
internal oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012139585A
Other languages
Japanese (ja)
Other versions
JP2014006048A (en
Inventor
大 清水
大 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2012139585A priority Critical patent/JP5900888B2/en
Publication of JP2014006048A publication Critical patent/JP2014006048A/en
Application granted granted Critical
Publication of JP5900888B2 publication Critical patent/JP5900888B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、火力発電用ボイラ等の高温部に使用されるNi基合金のメタル使用温度の推定方法及び寿命評価方法に関する。   The present invention relates to a method for estimating a metal use temperature and a life evaluation method of a Ni-based alloy used in a high temperature part such as a boiler for thermal power generation.

近年、CO排出低減及び発電効率向上のため、700℃級A−USCボイラの開発が推進されている。700℃級A−USCボイラの高温部過熱器や再熱器等には、現用鋼に比べて高強度であるNi基合金が採用される。過熱器及び再熱器等の高温部の伝熱管の余寿命診断は、メタル温度や燃料性状等に基づき、クリープ寿命や腐食量評価により実施されている。クリープ寿命や腐食量に与えるメタル温度の影響は、高温になるほど大きくなるため、現用鋼に比べて高温で使用されるNi基合金の余寿命診断にはメタル温度はより重要な因子となる。 In recent years, development of 700 ° C. class A-USC boilers has been promoted in order to reduce CO 2 emissions and improve power generation efficiency. Ni-based alloys having higher strength than current steel are used for high-temperature part superheaters, reheaters, etc. of 700 ° C. class A-USC boilers. The remaining life diagnosis of the heat transfer tubes in the high temperature part such as the superheater and the reheater is performed by the creep life and the corrosion amount evaluation based on the metal temperature, the fuel property and the like. Since the influence of the metal temperature on the creep life and the amount of corrosion becomes larger as the temperature becomes higher, the metal temperature becomes a more important factor for the remaining life diagnosis of the Ni-based alloy used at a higher temperature than the current steel.

ボイラ高温部伝熱管の実機メタル温度は、負荷変動による温度変化や管内面スケールの伝熱阻害による温度上昇のため、部位により異なる。このため、設計メタル温度を用いた余寿命診断では実機を正確に予測できない可能性がある。また、実機メタル温度の測定は、稼動中のボイラ炉内で多数の管のメタル温度を簡単に計測する方法がないため、非常に困難である。
以上のことから、Ni基合金のクリープ寿命や腐食量評価による余寿命診断を高精度に行うためには、実機メタル温度を高精度に評価する必要があった。
The actual metal temperature of the boiler high-temperature section heat transfer tube varies depending on the site because of temperature changes due to load fluctuations and temperature rise due to heat transfer inhibition on the inner surface scale of the tube. For this reason, there is a possibility that the actual machine cannot be accurately predicted by the remaining life diagnosis using the design metal temperature. In addition, measurement of the actual metal temperature is very difficult because there is no simple method for measuring the metal temperature of a large number of tubes in an operating boiler furnace.
From the above, it was necessary to evaluate the actual metal temperature with high accuracy in order to perform the remaining life diagnosis with the creep life and corrosion amount evaluation of the Ni-based alloy with high accuracy.

この課題を解決するため、以下に示すNi基合金のメタル温度の推定方法が提案されている。下記特許文献1では、断面ミクロ組織から測定される炭化物の幅や径がメタル温度や運転時間の増加により粗大化することに着目し、メタル温度を推定する方法が考案されている。しかしながら、この手法は材料毎に炭化物の幅、径とメタル温度や運転時間との関係式を求めておく必要があり、また、同材料でも炭化物構成元素である炭素(C)やクロム(Cr)等の含有量の違いにより、推定温度が異なる可能性がある。   In order to solve this problem, a method for estimating the metal temperature of the Ni-based alloy shown below has been proposed. In Patent Document 1 below, a method for estimating the metal temperature has been devised by paying attention to the fact that the width and diameter of the carbide measured from the cross-sectional microstructure becomes coarse due to the increase in the metal temperature and operation time. However, in this method, it is necessary to obtain a relational expression between the width and diameter of the carbide, the metal temperature, and the operation time for each material, and carbon (C) and chromium (Cr) which are carbide constituent elements even in the same material. The estimated temperature may be different due to the difference in the content.

また、下記特許文献2では、Ni基合金中のγ’相(NiAl)の粗大化程度から温度を推定する手法が提案されているが、γ’相は1μm以下のサイズであるため、SEMやTEMなどの電子顕微鏡を用いた観察が必要であり、簡便でない。従って、Ni基合金の実機メタル温度を幅広く簡便に推定する有効な手段がないのが現状である。 In Patent Document 2 below, a method for estimating the temperature from the degree of coarsening of the γ ′ phase (Ni 3 Al) in the Ni-based alloy has been proposed, but the γ ′ phase has a size of 1 μm or less. Observation using an electron microscope such as SEM or TEM is necessary and is not simple. Therefore, at present, there is no effective means for estimating the actual metal temperature of the Ni-based alloy widely and simply.

なお、下記特許文献3には高温環境下又は高温高圧環境下で使用される炭素含有金属材料の炭素濃度の測定値と、予め求めておいた炭素含有金属材料の高温環境下又は高温高圧環境下における炭素濃度LMPとの相関関係から、炭素濃度含有金属材料に対する加熱温度及び加熱時間の関係を求め、この関係に基づいて加熱温度及び加熱時間を推定する方法が開示されている。   In Patent Document 3 below, the measured value of the carbon concentration of the carbon-containing metal material used in a high-temperature environment or a high-temperature and high-pressure environment, and the previously determined high-temperature environment or high-temperature and high-pressure environment of the carbon-containing metal material. Has disclosed a method of obtaining a relationship between a heating temperature and a heating time for a carbon concentration-containing metal material from a correlation with a carbon concentration LMP in, and estimating the heating temperature and the heating time based on this relationship.

特許文献3記載の方法は比較的強度でかつ組織変化しやすいフェライト鋼には有効であるが、Ni基合金などのオーステナイト鋼は組織を安定化させるために様々な元素が添加されているので、炭素濃度変化によって過熱温度及び時間を推定するには困難であった。   The method described in Patent Document 3 is effective for ferritic steels that are relatively strong and easily change in structure, but since austenitic steels such as Ni-based alloys have various elements added to stabilize the structure, It was difficult to estimate the superheat temperature and time by changing the carbon concentration.

特許第3794943号公報Japanese Patent No. 3779443 特許第4440124号公報Japanese Patent No. 4440124 特開平7−280798号公報JP-A-7-280798

本発明の課題は、上述した従来技術の問題を解決し、汎用性のある簡便なNi基合金からなる伝熱管の表面温度を推定する手法を提供し、また前記得られたNi基合金からなる表面温度の推定値からボイラ伝熱管を含む鋼材部品に使用されるNi基合金のクリープ破断寿命を推定する方法を提供することである。    An object of the present invention is to solve the above-mentioned problems of the prior art, provide a method for estimating the surface temperature of a heat transfer tube made of a versatile and simple Ni-base alloy, and also made of the obtained Ni-base alloy The object is to provide a method for estimating the creep rupture life of a Ni-based alloy used in steel parts including boiler heat transfer tubes from the estimated value of the surface temperature.

上記本発明の課題は次の解決手段により達成される。
請求項1記載の発明は、ボイラ伝熱管を含む鋼材部品に使用されるNi基合金の表面温度を推定する方法において、アルミニウム(Al)とチタン(Ti)の酸化物からなる内部酸化深さ及び材料中のAlとTiの含有量から定義される内部酸化指数と、温度と時間の関数であるLMP(ラーソンミラーパラメータ)との関係を予め実験により定め、この関係式を用いて、実機の累積運転時間と内部酸化指数からNi基合金の表面温度を推定する方法である。
The object of the present invention is achieved by the following means.
The invention according to claim 1 is a method for estimating a surface temperature of a Ni-based alloy used in a steel part including a boiler heat transfer tube, and has an internal oxidation depth composed of oxides of aluminum (Al) and titanium (Ti), and The relationship between the internal oxidation index defined by the contents of Al and Ti in the material and LMP (Larson Miller parameter), which is a function of temperature and time, is determined in advance by experiment, In this method, the surface temperature of the Ni-based alloy is estimated from the operating time and the internal oxidation index.

請求項2記載の発明は、ボイラ伝熱管を含む鋼材部品に使用されるNi基合金の表面温度を推定する方法において、実機管の内表面に予め拡散浸透処理によりAl拡散層を形成させ、温度推定に利用することを特徴とする請求項1記載の温度推定方法である。   The invention according to claim 2 is a method for estimating the surface temperature of a Ni-based alloy used in a steel part including a boiler heat transfer tube, wherein an Al diffusion layer is formed in advance on the inner surface of the actual pipe by diffusion permeation treatment, The temperature estimation method according to claim 1, wherein the temperature estimation method is used for estimation.

請求項3記載の発明は、実機管の外表面に予め拡散浸透処理等によりAl拡散層を形成させ、温度推定に利用することを特徴とする請求項1記載のNi基合金の表面温度を推定する方法である。   The invention according to claim 3 estimates the surface temperature of the Ni-based alloy according to claim 1, wherein an Al diffusion layer is formed in advance on the outer surface of the actual pipe by diffusion permeation or the like, and is used for temperature estimation. It is a method to do.

請求項4記載の発明は、請求項1から3のいずれかに記載のNi基合金の表面温度を推定する方法により求めた表面温度を用いて、ボイラ伝熱管を含む鋼材部品に使用されるNi基合金のクリープ破断寿命を推定することを特徴としたNi基合金の寿命評価方法である。
なお、本発明で使用されるNi基合金にはアルミニウム(Al)、チタン(Ti)、モリブデン(Mo)、クロム(Cr)、ニッケル(Ni)などの金属成分が含まれる。
The invention according to claim 4 is the Ni used for the steel material part including the boiler heat transfer tube using the surface temperature obtained by the method for estimating the surface temperature of the Ni-based alloy according to any one of claims 1 to 3. This is a method for evaluating the life of a Ni-base alloy characterized by estimating the creep rupture life of the base alloy.
The Ni-based alloy used in the present invention includes metal components such as aluminum (Al), titanium (Ti), molybdenum (Mo), chromium (Cr), nickel (Ni).

(作用)
本発明の表面温度推定は材料中のAlとTiの含有量、内部酸化深さ及び累積運転時間のみで評価できるので、汎用性のある簡便な方法である。
また、本発明により、ボイラの定期点検時に測定される評価部位の内部酸化深さと累積運転時間から運転時の実機メタル温度を推定することができ、材料の寿命評価に適用できる。さらに、異常な表面温度など不適合がある部位を早期に発見することが可能となり、伝熱管の墳破などのトラブルを未然に防ぐことができる。
(Function)
Since the surface temperature estimation of the present invention can be evaluated only by the contents of Al and Ti in the material, the internal oxidation depth, and the cumulative operation time, it is a versatile and simple method.
In addition, according to the present invention, the actual metal temperature during operation can be estimated from the internal oxidation depth of the evaluation site measured during the periodic inspection of the boiler and the accumulated operation time, and can be applied to the life evaluation of materials. In addition, it is possible to detect an incompatible part such as an abnormal surface temperature at an early stage, and it is possible to prevent troubles such as breakage of the heat transfer tube.

本発明によれば、実機管の表面温度を推定することが可能となり、寿命評価を行うことができるので、ボイラの予防保全に貢献できる。また、高価な装置も必要なく、経済的で汎用性がある。   According to the present invention, it is possible to estimate the surface temperature of an actual machine pipe and perform life evaluation, which can contribute to preventive maintenance of boilers. Moreover, an expensive apparatus is not required, and it is economical and versatile.

本発明に係る経年使用後のNi基合金の伝熱管表面近傍の模式図である。It is a schematic diagram of the heat transfer tube surface vicinity of the Ni-based alloy after aged use concerning the present invention. 本発明の効果を説明するための内部酸化指数DiとLMPとの関係を示す図 である。It is a figure which shows the relationship between the internal oxidation index Di and LMP for demonstrating the effect of this invention. 本発明の効果を説明するための使用時間及び内部酸化指数からの温度推定を するための内部酸化指数と温度の関係図である。FIG. 5 is a diagram showing the relationship between the internal oxidation index and temperature for estimating the temperature from the use time and the internal oxidation index for explaining the effect of the present invention. 本発明の効果を説明するための応力σとLMPとの関係図である。FIG. 6 is a relationship diagram between stress σ and LMP for explaining the effect of the present invention.

以下、本発明の具体的実施例を図面により説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

まず、Ni基合金(Alloy617(22Cr−12Co−9Mo−Ti−Al−bal.Ni))の伝熱管3の表面に生成する内部酸化について説明する。図1は高温で使用された後のNi基合金の管表面を表した模式図である。管表面には合金中のCrが酸化してできる酸化スケール1と合金中のAlとTiが酸化してできるAlやTiOなどからなる内部酸化物2が生成する。酸化スケール1の厚さと管内部に形成される内部酸化物2の管表面からの深さ(内部酸化の深さ)Diは温度及び時間の増加とともに生成量は増加する。特に内部酸化物2の温度依存性は酸化スケール1内よりも顕著である傾向にある。 First, the internal oxidation produced | generated on the surface of the heat exchanger tube 3 of Ni-based alloy (Alloy617 (22Cr-12Co-9Mo-Ti-Al-bal.Ni)) is demonstrated. FIG. 1 is a schematic diagram showing a tube surface of a Ni-based alloy after being used at a high temperature. On the tube surface, an oxide scale 1 formed by oxidizing Cr in the alloy and an internal oxide 2 made of Al 2 O 3 or TiO 2 formed by oxidizing Al and Ti in the alloy are generated. The amount of oxide scale 1 and the depth of internal oxide 2 formed inside the tube from the tube surface (depth of internal oxidation) Di increase with increasing temperature and time. In particular, the temperature dependence of the internal oxide 2 tends to be more prominent than in the oxide scale 1.

なお、図1の矢印はHO,O,Cr,O,TiおよびAlの移動を示している。また、内部酸化物2は輪郭線のはっきりしない塗りつぶし部分で示している。そして内部酸化物2の先の実線は粒界を示している。
また、鋭意研究を重ねた結果、内部酸化物2の深さDiはAlとTiの含有量に相関があることが分かった。
Arrows in FIG. 1 shows the movement of H 2 O, O 2, Cr , O, Ti and Al. Further, the inner oxide 2 is indicated by a filled portion with an unclear outline. The solid line before the internal oxide 2 indicates the grain boundary.
Further, as a result of extensive research, it was found that the depth Di of the internal oxide 2 has a correlation with the contents of Al and Ti.

そこで、材料中の単位AlとTi当たりの内部酸化物2の深さDiを表す指標として下式に示す内部酸化指数を定義した。
Fi=Di/f(Al,Ti) (1)
ここで、Fiは内部酸化指数、Diは前記内部酸化物の深さ(μm)、Alは材料中のAl(質量%)、Tiは材料中のTi(質量%)であり、上記式(1)は本発明者らが見出した内部酸化指数Fiが材料中のAl,Tiの質量%の関数であることを示している。
Therefore, an internal oxidation index represented by the following equation was defined as an index representing the depth Di of the internal oxide 2 per unit Al and Ti in the material.
Fi = Di / f (Al, Ti) (1)
Here, Fi is the internal oxidation index, Di is the depth (μm) of the internal oxide, Al is Al (mass%) in the material, Ti is Ti (mass%) in the material, and the above formula (1 ) Indicates that the internal oxidation index Fi found by the present inventors is a function of the mass% of Al and Ti in the material.

なお、上記Ni基合金中のAlの含有量は0〜1.5質量%、Tiは0〜2.5質量%程度であり、AlもTiも5質量%以下が望ましく、Al,Tiの含有量が高くなるとNi基合金の耐食性は向上するが、強度や溶接で不利となり実用性が無くなる。
本実施例により、内部酸化指数Fiを用いることで、材料中のAlやTiの含有量が異なる材料においても温度推定が可能となり幅広く適用できる。
The content of Al in the Ni-based alloy is 0 to 1.5% by mass, Ti is about 0 to 2.5% by mass, both Al and Ti are preferably 5% by mass or less, and the contents of Al and Ti are included. When the amount is high, the corrosion resistance of the Ni-based alloy is improved, but it is disadvantageous in terms of strength and welding, and practicality is lost.
According to the present embodiment, by using the internal oxidation index Fi, temperature estimation is possible even for materials having different contents of Al and Ti in the material, which can be widely applied.

本実施例では、同条件下で生成した複数(例えば、約45個)のNi基合金材料中のAlとTiの含有量が明確なNi基合金の内部酸化深さDiを比較、検討し、内部酸化指数Fiを下式とし、評価した。
Fi=Di/(Al+0.5Ti) (2)
上記Ni基合金としては次の3種類のNi基合金を用いた。
Alloy617(22Cr−12Co−9Mo−Ti−Al−bal.Ni), Alloy263(20Cr−20Co−6Mo−2Ti−Al−bal.Ni)およびAlloy141(20Cr−10Mo−2Ti−Al−bal.Ni)である。
なお、内部酸化深さDiは光学顕微鏡を用いて断面厚さを測定する周知な手法で測定した。
In this example, the internal oxidation depth Di of Ni-based alloys with a clear content of Al and Ti in a plurality (for example, about 45) of Ni-based alloy materials produced under the same conditions was compared and examined, The internal oxidation index Fi was evaluated using the following formula.
Fi = Di / (Al + 0.5Ti) (2)
As the Ni-based alloy, the following three types of Ni-based alloys were used.
Alloy 617 (22Cr-12Co-9Mo-Ti-Al-bal.Ni), Alloy263 (20Cr-20Co-6Mo-2Ti-Al-bal.Ni) and Alloy141 (20Cr-10Mo-2Ti-Al-bal.Ni). .
The internal oxidation depth Di was measured by a well-known method of measuring the cross-sectional thickness using an optical microscope.

図2に時間、温度および材料が明確な複数(約45個)のNi基合金の内部酸化深さDiを測定し、下式に示される温度と時間の関数で表されるLMP(ラーソンミラーパラメータ)と式(2)から算出される内部酸化指数Fiをプロットした結果を示す。
LMP=T×(logt+C) (3)
ここで、Tは温度(K)、tは時間(h)、Cは定数である。
なお、上記の定数Cは一般的に20とされるが、必ずしも20である必要はない。
FIG. 2 shows the internal oxidation depth Di of a plurality (about 45) of Ni-base alloys with clear time, temperature and material, and LMP (Larson Miller parameters expressed as a function of temperature and time shown in the following equation. ) And the internal oxidation index Fi calculated from the equation (2) are plotted.
LMP = T × (logt + C) (3)
Here, T is temperature (K), t is time (h), and C is a constant.
The constant C is generally 20 but need not necessarily be 20.

図2で示した関係を累乗近似した結果、下式で表される。
LMP=2.25×10×Fi0.036 (4)
本結果では、LMPと酸化指数Fiの関係は累乗近似式で示すと良い相関を示したので採用した。しかし、データ数の変化等により関係式も変化する可能性があり、対数近似式や多項近似式等の他の関数を使用してもよい。
As a result of power approximation of the relationship shown in FIG.
LMP = 2.25 × 10 4 × Fi 0.036 (4)
In this result, the relationship between LMP and oxidation index Fi was adopted because it showed a good correlation when expressed by a power approximation formula. However, the relational expression may change due to a change in the number of data, and other functions such as a logarithmic approximation expression and a polynomial approximation expression may be used.

次に、実機で調査対象となる管を切断・抜管し、光学顕微鏡による断面観察から内部酸化深さDiを測定する。伝熱管の場合、切断・復旧工事は定期点検期間中に比較的容易に行うことができる。例として、Al量が0.5質量%、Ti量が1.0質量%のNi基合金(20Cr−10Co−10Mo−0.5Al−1.0Ti−bal.Ni)が累計50,000時間使用され、内部酸化深さの測定結果が10μmであった場合の温度推定結果を図3に示す。(2)式から内部酸化指数は10となり、推定メタル温度は720℃と評価できる。
このようにして、本発明により、累積運転時間と材質および内部酸化深さから実機管表面の温度を推定することができる。
Next, the tube to be investigated is cut and extracted with an actual machine, and the internal oxidation depth Di is measured from cross-sectional observation with an optical microscope. In the case of heat transfer tubes, cutting and restoration work can be done relatively easily during the regular inspection period. As an example, a Ni-based alloy (20Cr-10Co-10Mo-0.5Al-1.0Ti-bal.Ni) having an Al content of 0.5 mass% and a Ti content of 1.0 mass% is used for a total of 50,000 hours. FIG. 3 shows the temperature estimation result when the internal oxidation depth measurement result is 10 μm. From the equation (2), the internal oxidation index is 10, and the estimated metal temperature can be evaluated as 720 ° C.
In this way, the present invention, it is possible to estimate the temperature of the accumulated operation time and material and internal oxidation depth or al actual tube surface.

ここでは、温度と時間の関数にLMP(ラーソンミラーパラメータ)を使用して説明したが、これに特に限定するものではなく、OSD(Orr−Sherby―Dorn)パラメータやMH(Manson−Haferd)パラメータを使用してもよい。
なお、各パラメータは次式を用いる。式の形が異なるのみでデータは変わらない。
LMP=T(C+logt),
OSD=(logt−logta)/(T−Ta),
(ta,Taは定数)
MH=logT−Q/RT (Qは定数、Rはガス定数)
Here, LMP (Larson Miller parameter) is used as a function of temperature and time, but the present invention is not particularly limited to this. OSD (Orr-Sherby-Dorn) parameters and MH (Manson-Haferd) parameters are used. May be used.
Each parameter uses the following equation. The data does not change, only the form of the formula is different.
LMP = T (C + logt),
OSD = (logt-logta) / (T-Ta),
(Ta and Ta are constants)
MH = logT-Q / RT (Q is a constant, R is a gas constant)

[参考例]
実施例1では、AlとTiを含有するNi基合金について温度推定方法を示したが、本参考例では、AlとTiを含有しないNi基合金(20Cr−10Co−10Mo−bal.Ni)についても、管の内表面あるいは外表面に予め拡散浸透処理等によりAl拡散層を形成させて、温度推定を実施することも可能である。
なお、Al拡散層の形成法は一般的に用いられる拡散浸透処理(カロライズ処理)を使用した。
[Reference example]
In Example 1, the temperature estimation method was shown for the Ni-based alloy containing Al and Ti, but in this reference example, the Ni-based alloy (20Cr-10Co-10Mo-bal.Ni) not containing Al and Ti was also used. It is also possible to estimate the temperature by previously forming an Al diffusion layer on the inner surface or outer surface of the tube by diffusion permeation treatment or the like.
The Al diffusion layer was formed by a generally used diffusion permeation process (calorization process).

本実施例では上記実施例1記載のNi基合金(20Cr−10Co−10Mo−0.5Al−1.0Ti−bal.Ni)の温度推定方法により求めた表面温度(720℃)を用いたNi基合金の寿命評価方法について説明する。 In this example, the Ni base using the surface temperature (720 ° C.) obtained by the temperature estimation method of the Ni base alloy (20Cr-10Co-10Mo-0.5Al-1.0Ti-bal.Ni) described in Example 1 above. An alloy life evaluation method will be described.

Ni基合金が使用される高温部伝熱管の寿命評価は、クリープ破断寿命に基づいて行われる。図4は応力(σ)とクリープ破断データを温度(T)と時間(t)を一元化したLMPとの関係を表したものである。   The life evaluation of the high-temperature part heat transfer tube in which the Ni-based alloy is used is performed based on the creep rupture life. FIG. 4 shows the relationship between the stress (σ) and the creep rupture data and the LMP in which the temperature (T) and the time (t) are unified.

管の円周方向の応力(σ)は、下式で示す平均径の式より算出できる。
σ=P×(OD−d)/(2d) (5)
ここで、Pは内圧(MPa)、ODは外径(mm)、dは管厚(mm)である。
円周方向の応力(σ)は設計データから求めることができるので、この応力(σ)においてクリープ破断するLMPは図4から算出できる。
The stress (σ) in the circumferential direction of the tube can be calculated from the average diameter equation shown below.
σ = P × (OD−d) / (2d) (5)
Here, P is the internal pressure (MPa), OD is the outer diameter (mm), and d is the tube thickness (mm).
Since the circumferential stress (σ) can be obtained from the design data, the LMP that undergoes creep rupture at this stress (σ) can be calculated from FIG.

LMPは(3)式で示したように温度(T)と時間(t)の関数であるので、Ni基合金の温度推定方法により求めた表面温度を用いることで、応力(δ)から算出したLMPと表面温度と図4の関係によりクリープ破断時間が算定できる。
このようにして、本発明により推定した表面温度を用いて、Ni基合金のクリープ破断寿命を推定することも可能である。
Since LMP is a function of temperature (T) and time (t) as shown in equation (3), it was calculated from stress (δ) by using the surface temperature obtained by the temperature estimation method of the Ni-based alloy. The creep rupture time can be calculated from the relationship between LMP, surface temperature and FIG.
In this way, it is also possible to estimate the creep rupture life of the Ni-based alloy using the surface temperature estimated according to the present invention.

1 酸化スケール(Cr
2 内部酸化物(TiO,Al
3 Ni基合金の伝熱管
1 Oxide scale (Cr 2 O 3 )
2 Internal oxide (TiO 2 , Al 2 O 3 )
3 Ni-base alloy heat transfer tube

Claims (4)

ボイラ伝熱管を含む鋼材部品に使用されるNi基合金の表面温度を推定する方法において、アルミニウム(Al)とチタン(Ti)の酸化物からなる内部酸化深さ及び材料中のAlとTiの含有量から定義される内部酸化指数と、温度と時間の関数であるLMP(ラーソンミラーパラメータ)との関係を予め実験により定め、この関係式を用いて、実機の累積運転時間と内部酸化指数からNi基合金の表面温度を推定する方法。   In a method for estimating the surface temperature of a Ni-based alloy used for steel parts including boiler heat transfer tubes, the internal oxidation depth composed of oxides of aluminum (Al) and titanium (Ti) and the inclusion of Al and Ti in the material The relationship between the internal oxidation index defined from the quantity and the LMP (Larson Miller parameter), which is a function of temperature and time, is determined in advance by experiment, and using this relational expression, the cumulative operating time and the internal oxidation index of the actual machine are used to calculate Ni. A method for estimating the surface temperature of a base alloy. ボイラ伝熱管を含む鋼材部品に使用されるNi基合金の表面温度を推定する方法において、実機管の内表面に予め拡散浸透処理によりAl拡散層を形成させ、温度推定に利用することを特徴とする請求項1記載の温度推定方法。   In the method for estimating the surface temperature of the Ni-based alloy used for steel parts including boiler heat transfer tubes, an Al diffusion layer is formed in advance on the inner surface of the actual pipe by diffusion permeation treatment, and is used for temperature estimation. The temperature estimation method according to claim 1. 実機管の外表面に予め拡散浸透処理によりAl拡散層を形成させ、温度推定に利用することを特徴とする請求項1記載のNi基合金の表面温度を推定する方法。   2. The method for estimating the surface temperature of a Ni-based alloy according to claim 1, wherein an Al diffusion layer is formed in advance on the outer surface of the actual pipe by diffusion permeation treatment and used for temperature estimation. 請求項1から3のいずれかに記載のNi基合金の表面温度を推定する方法により求めた表面温度を用いて、ボイラ伝熱管を含む鋼材部品に使用されるNi基合金のクリープ破断寿命を推定することを特徴とするNi基合金の寿命評価方法。   The creep rupture life of a Ni-based alloy used in steel parts including a boiler heat transfer tube is estimated using the surface temperature obtained by the method for estimating the surface temperature of the Ni-based alloy according to any one of claims 1 to 3. A method for evaluating the life of a Ni-based alloy, comprising:
JP2012139585A 2012-06-21 2012-06-21 Operating temperature estimation method and life evaluation method of Ni-based alloy Expired - Fee Related JP5900888B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012139585A JP5900888B2 (en) 2012-06-21 2012-06-21 Operating temperature estimation method and life evaluation method of Ni-based alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012139585A JP5900888B2 (en) 2012-06-21 2012-06-21 Operating temperature estimation method and life evaluation method of Ni-based alloy

Publications (2)

Publication Number Publication Date
JP2014006048A JP2014006048A (en) 2014-01-16
JP5900888B2 true JP5900888B2 (en) 2016-04-06

Family

ID=50103920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012139585A Expired - Fee Related JP5900888B2 (en) 2012-06-21 2012-06-21 Operating temperature estimation method and life evaluation method of Ni-based alloy

Country Status (1)

Country Link
JP (1) JP5900888B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6448724B1 (en) * 2017-08-10 2019-01-09 九州電力株式会社 Remaining life evaluation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105910921B (en) * 2016-04-11 2018-08-10 沈阳工业大学 A method of prediction DZ125 alloy creep curves

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08105882A (en) * 1994-10-07 1996-04-23 Hitachi Ltd Method for evaluating remaining life of hightemperature member
JP3416101B2 (en) * 2000-06-27 2003-06-16 株式会社岡崎製作所 Double metal tube sheath

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6448724B1 (en) * 2017-08-10 2019-01-09 九州電力株式会社 Remaining life evaluation method
JP2019035597A (en) * 2017-08-10 2019-03-07 九州電力株式会社 Residual lifetime evaluation method

Also Published As

Publication number Publication date
JP2014006048A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP6189657B2 (en) Remaining life diagnosis method for heat-resistant steel members
JP5919980B2 (en) Ni-base heat-resistant alloy
JP2010223624A (en) Method for assessing remaining lifespan of bolt used at high temperatures
JP5380219B2 (en) Method for estimating metal temperature and life of boiler heat transfer tubes
JP6680900B2 (en) Method for estimating operating temperature of austenitic heat-resistant steel containing Cu (copper), method for estimating creep damage life of austenitic heat-resistant steel containing Cu, method for estimating operating temperature of austenitic heat-resistant steel tube containing Cu, and Cu Method for Estimating Creep Damage Life of Heat Transfer Tube Made of Austenitic Heat Resisting Steel Containing Carbon
JP5900888B2 (en) Operating temperature estimation method and life evaluation method of Ni-based alloy
JP5592685B2 (en) Hematite scale adhesion diagnostic method
Shingledecker Creep-rupture performance of Inconel Alloy 740 and welds
JP2018059142A (en) Ni-based heat-resistant alloy
JP5506771B2 (en) Long-term creep strength estimation method, remaining life estimation method, and remaining life evaluation apparatus for precipitation strengthened heat resistant alloys
JP4968734B2 (en) Operating temperature estimation method for austenitic steel
JP2013148540A (en) METHOD FOR EVALUATING CREEP DAMAGE SUITED TO STRESS CONCENTRATION PART OF HIGH Cr STEEL
JP2006258621A (en) Creep damage estimation method of ferritic heat resisting steel
JP6469386B2 (en) Method for estimating operating temperature of member and apparatus for estimating operating temperature of member
JP2014228196A (en) Method for estimating service temperature of heat transfer pipe and method for maintaining heat transfer pipe
JP4688096B2 (en) Thermal history estimation method for heat-resistant members
JP2012137242A (en) Temperature estimation method and life determination method of high-temperature member
JP4831624B2 (en) Graphitization damage diagnosis method for carbon steel and Mo steel for boilers
Almazrouee et al. Role of oxide notching and degraded alloy microstructure in remarkably premature failure of steam generator tubes
JP3998053B2 (en) Damage estimation method for austenitic heat transfer tube
Ilman et al. Analysis of a failed primary superheater tube and life assessment in a coal-fired powerplant
JP5868685B2 (en) Structural member temperature estimation method and structural member maintenance method
JP4522828B2 (en) Remaining life diagnosis method for Cr-Mo heat resistant steel
Akbar et al. High-temperature failure of steel boiler tube secondary superheater in a power plant
JP6371234B2 (en) Weld temperature estimation method

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140616

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20141219

A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20141226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160301

R150 Certificate of patent or registration of utility model

Ref document number: 5900888

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees