JP2008267696A - Exhaust heat utilization type cooling and heating machine with flow sensor function - Google Patents

Exhaust heat utilization type cooling and heating machine with flow sensor function Download PDF

Info

Publication number
JP2008267696A
JP2008267696A JP2007111334A JP2007111334A JP2008267696A JP 2008267696 A JP2008267696 A JP 2008267696A JP 2007111334 A JP2007111334 A JP 2007111334A JP 2007111334 A JP2007111334 A JP 2007111334A JP 2008267696 A JP2008267696 A JP 2008267696A
Authority
JP
Japan
Prior art keywords
numerical value
sensor
monitoring sensor
flow meter
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007111334A
Other languages
Japanese (ja)
Other versions
JP5122175B2 (en
Inventor
Kenichi Saito
健一 齊藤
Kazushi Hiromasa
一志 広政
Kazuyuki Makita
和志 牧田
Yosuke Goshima
洋介 五嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Thermal Engineering Co Ltd
Original Assignee
Kawasaki Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Thermal Engineering Co Ltd filed Critical Kawasaki Thermal Engineering Co Ltd
Priority to JP2007111334A priority Critical patent/JP5122175B2/en
Publication of JP2008267696A publication Critical patent/JP2008267696A/en
Application granted granted Critical
Publication of JP5122175B2 publication Critical patent/JP5122175B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • Y02A30/274Relating to heating, ventilation or air conditioning [HVAC] technologies using waste energy, e.g. from internal combustion engine

Abstract

<P>PROBLEM TO BE SOLVED: To easily perform system management of a cooling and heating machine, comprising an exhaust heat utilization type absorption chiller and heater and to monitor the energy-saving effect, in addition to a heating value and an operating state. <P>SOLUTION: In the cooling and heating machine that is the exhaust heat utilization type absorption chiller and heater, a monitoring sensor is provided near to a flowmeter used for evaluating the performance of a heating and cooling machine body, a control board 62 for heating value calculation/performance evaluation is connected to this monitoring sensor, and an operation/control board 64 is connected to the control board. A signal transmitted from the monitoring sensor is converted into a numerical value, and the capability of the heating and cooling machine is monitored on a steady basis by use of the temperature measured by a temperature sensor of the cooling and heating machine body and the value of the flow rate signal converted to the numerical value. By providing the function of converting the signal from the monitoring sensor to a numerical value used for flow rate calculation, the monitoring and evaluation of the capability during operation can be performed. The flowmeter is at least one among an exhaust heat hot water flowmeter 72, an exhaust gas flowmeter or a fuel flowmeter to an exhaust gas generating source. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、流量センサー機能付き排熱利用型冷暖房機、詳しくは、吸収器、低温再生器、高温再生器、蒸発器、凝縮器、溶液熱交換器などを有する排熱利用型の吸収式冷温水機からなる冷暖房機の本体自身が、常時運転中の能力を計算し、外部計測機器から直接信号を受ける手段などを装備しなくても、冷暖房機本体自身が運転時の能力、不具合などを評価できるようにした簡易計測方式による装置を備えた冷暖房機に関するものである。   The present invention relates to a waste heat utilization type air conditioner with a flow sensor function, and more specifically, an exhaust heat utilization type absorption cold temperature having an absorber, a low temperature regenerator, a high temperature regenerator, an evaporator, a condenser, a solution heat exchanger, and the like. Even if the main body of the air conditioning unit consisting of a water machine calculates the capacity during normal operation and does not have a means for receiving a signal directly from an external measuring device, the main body of the air conditioning unit itself will be able to check the capacity and malfunction during operation. The present invention relates to an air conditioner equipped with an apparatus based on a simple measurement method that can be evaluated.

吸収式冷温水機からなる冷暖房機は自身の運転状態を監視し、制御するために、通常は冷温水、冷却水、熱源の温度を計測する温度センサーを装備している。また、運転する条件によっては、圧力センサーや電流計を装備する機械もある。しかし、運転時の能力(熱量)を計算するのに必要となる排熱流量や燃料流量を計測する装置を装備している冷温水機は皆無である。このために、従来は、冷温水機とは別に独立した流量計、温度計、熱量計、電力量などを装備し、冷温水機単独の能力評価とは別に、システム側又はプラント側からの能力評価を行っていた。   An air conditioner consisting of an absorption chiller / heater is usually equipped with a temperature sensor that measures the temperature of the chilled / warm water, cooling water, and heat source in order to monitor and control its own operating state. Some machines are equipped with pressure sensors and ammeters depending on the operating conditions. However, there is no chiller / heater equipped with a device for measuring the exhaust heat flow and the fuel flow required to calculate the capacity (heat amount) during operation. For this purpose, a flow meter, thermometer, calorimeter, electric energy, etc., which are independent from the chiller / heater, have been installed in the past. We were evaluating.

このため、冷温水機自身の運転中の能力は間接的にしか確認できず、直接機械の運転データで能力を評価したり、運転中の各部位の温度データと比較して運転中の能力が妥当な値か、各部位の温度が運転中の負荷能力に比べて妥当な温度かどうかを判断することができなかった。したがって、機械自身が不調で効率の悪い運転をしていても、客観的に容易に発見することが困難で、機械トラブルによる冷温水機停止又は設備停止が起きるまで、不調を発見できないケースもあった。   For this reason, the capacity of the chiller / heater itself during operation can only be confirmed indirectly, and the capacity during operation compared to the temperature data of each part during operation can be evaluated directly with the operation data of the machine. It was not possible to judge whether it was a reasonable value or whether the temperature of each part was a reasonable temperature compared to the load capacity during operation. Therefore, even if the machine itself is malfunctioning and inefficient, it is difficult to detect it objectively, and there are cases in which malfunction cannot be detected until the chilled water heater or equipment stops due to machine trouble. It was.

従来、吸収式冷温水機として、図6に例示したようなものが知られている。この吸収式冷温水機は、吸収液(例えば、臭化リチウム水溶液)が吸収器10から低温再生器14を経て高温再生器18に流されるというリバースサイクルを構成している。この吸収式冷温水機における吸収サイクルを説明すると、まず、吸収器10で多量の冷媒蒸気を吸収して濃度が薄められた吸収液(稀吸収液)が吸収器10から低温熱交換器12に送給され、この低温熱交換器12により加熱された後に低温再生器14に送給される。前記稀吸収液は、この低温再生器14において低温再生され、吸収している冷媒の一部を放出し濃度がその分高くなって中間濃度の吸収液(中間吸収液)となる。つぎに、この中間吸収液は、低温再生器14から高温熱交換器16に送給され、この高温熱交換器16により加熱された後に高温再生器18に送給される。   Conventionally, as an absorption-type cold / hot water machine, what was illustrated in FIG. 6 is known. This absorption chiller / heater constitutes a reverse cycle in which an absorbing liquid (for example, an aqueous solution of lithium bromide) flows from the absorber 10 through the low temperature regenerator 14 to the high temperature regenerator 18. The absorption cycle in this absorption chiller / heater will be described. First, an absorption liquid (rare absorption liquid) whose concentration has been reduced by absorbing a large amount of refrigerant vapor in the absorber 10 is transferred from the absorber 10 to the low-temperature heat exchanger 12. After being supplied and heated by the low-temperature heat exchanger 12, it is supplied to the low-temperature regenerator 14. The rare absorbing liquid is regenerated at a low temperature in the low temperature regenerator 14, and a part of the absorbed refrigerant is released, and the concentration is increased by that amount to become an intermediate concentration absorbing liquid (intermediate absorbing liquid). Next, the intermediate absorbent is fed from the low temperature regenerator 14 to the high temperature heat exchanger 16, heated by the high temperature heat exchanger 16, and then fed to the high temperature regenerator 18.

前記中間吸収液は、この高温再生器18において高温再生され、吸収している冷媒(例えば、水蒸気)の一部を放出し濃度がさらに高くなって高濃度の吸収液(濃吸収液)となる。そして、この濃吸収液が前記高温熱交換器16の加熱側に前記中間吸収液を加熱する加熱源として戻され、さらに、低温熱交換器12の加熱側に前記稀吸収液を加熱する加熱源として戻された後、前記吸収器10に帰還する。この帰還した濃吸収液は吸収器10において伝熱管上に散布され、冷却水により冷却されながら再び冷媒蒸気を吸収して前記稀吸収液となる。32、34は吸収液ポンプ、36は冷媒ポンプ、38は冷却水ポンプ、40は冷温水ポンプ、42は冷暖切替弁である。   The intermediate absorbing liquid is regenerated at a high temperature in the high temperature regenerator 18, and a part of the refrigerant (for example, water vapor) absorbed is discharged to further increase the concentration to become a high concentration absorbing liquid (concentrated absorbing liquid). . And this concentrated absorption liquid is returned to the heating side of the high temperature heat exchanger 16 as a heating source for heating the intermediate absorption liquid, and further, the heating source for heating the rare absorption liquid to the heating side of the low temperature heat exchanger 12 Is returned to the absorber 10. The returned concentrated absorbent is sprayed on the heat transfer tube in the absorber 10 and again absorbs the refrigerant vapor while being cooled by the cooling water to become the rare absorbent. 32 and 34 are absorption liquid pumps, 36 is a refrigerant pump, 38 is a cooling water pump, 40 is a cold / hot water pump, and 42 is a cooling / heating switching valve.

このような吸収式冷温水機においては、前記高温再生器18に燃焼部20が設けられており、中間吸収液が加熱されて吸収していた冷媒が放出され、この放出された冷媒蒸気は、低温再生器14に送給され、この低温再生器14での加熱源として利用された後、凝縮器22に戻されて凝縮する。例えば冷水運転の場合には、凝縮器22からの冷媒液(例えば、水)は蒸発器24に入り、この凝縮した冷媒液が冷媒ポンプ36により蒸発器24の伝熱管(水が流通している)に散布され蒸発潜熱により冷却されて冷水が得られる。なお、高温再生器に燃焼部を設ける代りに、ボイラーから発生した水蒸気(スチーム)又は温水を高温再生器に導入するように構成されることもある。低温再生器14からの吸収液配管26と、高温熱交換器16と低温熱交換器12との間の加熱側の吸収液配管28とを接続するバイパス管30が設けられ、低温再生器14を出て高温再生器18へ供給される中間濃縮吸収液の一部を、吸収器10へ戻る濃吸収液配管にバイパスさせるように構成されている。このように、従来の吸収式冷温水機の一例として、図6に示すものが知られている(例えば、特許文献1参照)。
また、本出願人は、吸収式冷温水機からなる冷暖房機本体の性能評価に利用する冷却水流量計、冷温水流量計及び加熱用燃料流量計の少なくとも1つに近接して監視用センサーを設け、該監視用センサーに熱流量計算・性能評価用管理盤を接続して、監視用センサーから送られる信号を数値に変換し、冷暖房機本体の温度センサーで計測した温度と、数値に変換した流量信号の値を用いて、冷暖房機の能力を常時監視するようにして、監視用センサーからの信号を流量計算に用いられるような数値に変換する機能を備え、運転中の能力監視及び評価をすることができるようにした流量センサー機能付き冷暖房機を提案している(例えば、特許文献2参照)。
特開2002−39643号公報(第4頁、図2) 特開2005−114302号公報(第2頁、図1)
In such an absorption chiller / heater, the high-temperature regenerator 18 is provided with a combustion unit 20, and the refrigerant absorbed by the heating of the intermediate absorption liquid is released. After being supplied to the low temperature regenerator 14 and used as a heating source in the low temperature regenerator 14, it is returned to the condenser 22 and condensed. For example, in the case of cold water operation, the refrigerant liquid (for example, water) from the condenser 22 enters the evaporator 24, and the condensed refrigerant liquid is circulated by the refrigerant pump 36 through the heat transfer tube (water flows through the evaporator 24). ) And cooled by latent heat of evaporation to obtain cold water. Instead of providing the combustion section in the high temperature regenerator, steam (steam) or hot water generated from the boiler may be introduced into the high temperature regenerator. A bypass pipe 30 is provided to connect the absorption liquid pipe 26 from the low temperature regenerator 14 and the heating side absorption liquid pipe 28 between the high temperature heat exchanger 16 and the low temperature heat exchanger 12. A part of the intermediate concentrated absorbent that comes out and is supplied to the high-temperature regenerator 18 is bypassed to the concentrated absorbent pipe that returns to the absorber 10. Thus, what is shown in FIG. 6 is known as an example of the conventional absorption-type cold / hot water machine (for example, refer patent document 1).
In addition, the applicant of the present invention has installed a monitoring sensor in proximity to at least one of a cooling water flow meter, a cold / hot water flow meter, and a heating fuel flow meter used for performance evaluation of an air conditioner body composed of an absorption chiller / heater. Provided, connected to a monitoring panel for heat flow calculation and performance evaluation to the monitoring sensor, converted the signal sent from the monitoring sensor into a numerical value, converted to a temperature measured by the temperature sensor of the air conditioner main body, and converted into a numerical value Using the value of the flow rate signal, the capacity of the air conditioner is constantly monitored, and the signal from the monitoring sensor is converted into a numerical value that can be used for flow rate calculation. An air conditioner with a flow sensor function that can be used has been proposed (see, for example, Patent Document 2).
JP 2002-39643 A (page 4, FIG. 2) Japanese Patent Laying-Open No. 2005-114302 (second page, FIG. 1)

従来の冷暖房機、例えば吸収式冷温水機においては、冷温水機自身が、運転中の能力を自身で評価しようとすると、冷温水機本体に流量計を装備するか、外部の流量計から流量信号を直接取り込んで演算するしか方法がなかった。しかし、これでは冷温水機自身に膨大な装置を付属することになり、取付け位置や価格の面で現実的ではない。
また、流量信号を取り込む場合には、客先設備毎に異なる信号の種類や条件により、冷温水機側で準備する信号変換装置が複雑となり、仕様条件の対応や価格面で現実的ではない。さらに、既設設備を用いてこのような計測をしようとすると、さらに複雑になり、割高になってしまうという問題がある。
In a conventional air conditioner, for example, an absorption chiller / heater, if the chiller / heater itself tries to evaluate the capacity during operation, the chiller / heater itself is equipped with a flow meter or the flow rate is measured from an external flow meter. The only way to do this is to capture the signal directly and perform the calculation. However, this requires an enormous amount of equipment attached to the chiller / heater itself, which is not realistic in terms of mounting position and price.
In addition, when a flow rate signal is captured, the signal conversion device prepared on the chiller / heater side becomes complicated due to the types and conditions of signals that differ for each customer facility, which is not practical in terms of compliance with the specification conditions and price. Furthermore, there is a problem that if such measurement is performed using existing facilities, the measurement becomes more complicated and expensive.

本発明は、排熱利用型の吸収式冷温水機からなる冷暖房機本体の運転中の能力監視及び評価をするために、流量センサーから送られる信号を数値に変換し、冷暖房機本体の温度センサーで計測した温度と、数値に変換した流量信号の値を用いて冷暖房機の能力を常時監視できるようにした、流量センサーからの信号を流量計算に用いられるような数値に変換する機能を装備したことを最も主要な特徴としている。また、本発明は、冷暖房機本体が計測する温度の他に、外部の流量計測器のカウント数値を読み取り、自身の演算データに利用する機能を設けたことを特徴としている。   The present invention converts a signal sent from a flow sensor into a numerical value in order to monitor and evaluate the capacity during operation of an air conditioner main body composed of an absorption chiller / heater using exhaust heat, and a temperature sensor of the air conditioner main body Equipped with a function to convert the signal from the flow sensor into a numerical value that can be used for flow calculation, so that the temperature of the air conditioner can be constantly monitored using the temperature measured in step 1 and the flow signal value converted into a numerical value. This is the main feature. Further, the present invention is characterized in that, in addition to the temperature measured by the main body of the air conditioner, a function of reading the count value of an external flow rate measuring device and using it for its own calculation data is provided.

本発明においては、従来の信号伝達手段とは異なり、既設の流量計の表示数値を画像センサー(監視用センサー)により数値を画像で取り込み、それを予め登録した数値の画像と対比して一致した画像の数値をデジタル信号に変換し、データとして演算器に取り込む機能を持つ制御装置を備える制御システムを備えた冷暖房機を特徴としている。なお、画像センサーや、画像データを数値データや文字データに変換するような機器はすでに良く知られているが、それらを利用して排熱利用型の吸収式冷温水機からなる冷暖房機の能力、熱量管理に利用した例はない。   In the present invention, unlike the conventional signal transmission means, the numerical value displayed by the existing flow meter is captured by the image sensor (monitoring sensor) as an image, and is compared with the image of the numerical value registered in advance. It is characterized by an air conditioner equipped with a control system having a control device having a function of converting a numerical value of an image into a digital signal and taking it into a calculator as data. Image sensors and devices that convert image data into numerical data and text data are already well known, but the capacity of an air conditioner consisting of an absorption chiller / heater that uses waste heat using them is already known. There are no examples of heat management.

このように、画像センサーで一旦数値を読み取り、それをデジタル信号に変換する機能を持つ制御装置を備えると、既設の機器、新説の機器、信号の種類などにとらわれることなく、容易に冷暖房機側で演算処理を行うことができるので、システム管理が容易になる。
本発明の目的は、これら既存の機器を利用して容易にデータ管理を行えるようにした制御機能と、これらを用いて冷暖房機の運転状態、能力を管理する制御機器とを装備した排熱利用型の冷暖房機を提供することにある。
In this way, once equipped with a control device that has the function of reading numerical values with an image sensor and converting them into digital signals, the air conditioning unit can be easily connected without being constrained by existing equipment, new equipment, signal types, etc. Since it is possible to perform arithmetic processing in the system, system management becomes easy.
The object of the present invention is to use exhaust heat equipped with a control function that makes it easy to manage data using these existing devices, and a control device that uses these to manage the operating state and capacity of the air conditioner. The purpose is to provide a mold air conditioner.

本発明の流量センサー機能付き排熱利用型冷暖房機は、冷暖房機本体の性能評価に利用する流量計に近接して監視用センサーを設け、該監視用センサーに熱量計算・性能評価用管理盤を接続し、この管理盤に運転・制御盤を接続して、監視用センサーから送られる信号を数値に変換し、冷暖房機本体の温度センサーで計測した温度と、数値に変換した流量信号の値を用いて、冷暖房機の能力を常時監視するようにして、監視用センサーからの信号を流量計算に用いられるような数値に変換する機能を備え、運転中の能力監視及び評価をすることができるようにした流量センサー機能付き冷暖房機において、冷暖房機が排熱利用型の吸収式冷温水機であり、流量計が排熱温水流量計、排ガス流量計及び排ガス発生源への燃料流量計の少なくともいずれかであることを特徴としている。   The exhaust heat utilization type air conditioner with a flow sensor function of the present invention is provided with a monitoring sensor in the vicinity of a flow meter used for performance evaluation of the air conditioning body, and the monitoring sensor has a management panel for calorific value calculation and performance evaluation. Connect the operation and control panel to this control panel, convert the signal sent from the monitoring sensor into a numerical value, and measure the temperature measured by the temperature sensor of the main body of the air conditioning unit and the value of the flow signal converted into a numerical value It is possible to constantly monitor the capacity of the air conditioner and to convert the signal from the monitoring sensor into a numerical value that can be used for the flow rate calculation so that the capacity can be monitored and evaluated during operation. The air conditioner with a flow rate sensor function is an absorption chiller / heater using exhaust heat, and the flowmeter is at least a waste heat / warm water flow meter, an exhaust gas flow meter, and a fuel flow meter to the exhaust gas generation source. It is characterized in that at or misalignment.

この冷暖房機において、監視用センサーが、流量計の表示盤の図形を読み取るための図形読取手段と、読み取った図形をデジタル数値に変換するためのデジタル数値変換手段と、このデジタル数値を流量データ信号として演算するための演算手段とを有するように構成される。   In this air conditioner, the monitoring sensor includes a graphic reading means for reading a graphic on the display panel of the flow meter, a digital numerical value converting means for converting the read graphic into a digital numerical value, and the digital numerical value is converted into a flow data signal. And calculating means for calculating as follows.

排熱利用型の吸収式冷温水機において、吸収式冷温水機が持つ温度センサーの温度信号と外部情報である排熱流量が判ると、排熱から回収した熱量が評価できる。排熱を投入しない状態での燃料消費熱量をデータとして、吸収式冷温水機制御盤内に予めインプットしておけば、排熱利用による燃料消費熱量の削減量(省エネルギー効果)が判る。すなわち、〔排熱を投入しない状態での燃料消費熱量−燃料消費熱量=排熱利用による燃料消費熱量の削減量〕となる。
排熱を投入しない状態での燃料消費熱量は、上記の方法以外に冷温水機が持つ温度センサーの温度信号と外部情報である冷温水流量、冷却水流量から演算するという方法を用いることの可能である。排熱利用型の吸収式冷温水機では、〔加熱源の熱量=燃料消費熱量+排熱から回収した熱量〕であるので、この式を使えば、他の冷暖房機と同様に熱収支を求めることも可能である。これらにより、熱量監視、運転状態の監視に加えて省エネルギー効果も監視することが可能となる。
In an absorption chiller / heater using an exhaust heat type, if the temperature signal of the temperature sensor of the absorption chiller / heater and the exhaust heat flow as external information are known, the amount of heat recovered from the exhaust heat can be evaluated. If the heat consumption of fuel without exhaust heat input is input as data into the absorption chiller / heater control panel in advance, the amount of reduction in the heat consumption of fuel by using exhaust heat (energy saving effect) can be determined. That is, [the amount of heat consumed by fuel in a state in which exhaust heat is not input−the amount of heat consumed by fuel = the amount of reduction in the amount of heat consumed by fuel by using exhaust heat]
In addition to the above method, it is possible to use the method of calculating the fuel consumption heat amount without exhaust heat from the temperature signal of the temperature sensor of the chiller / heater and the cold / hot water flow rate and cooling water flow rate that are external information It is. In the absorption chiller / heater using exhaust heat, [heat amount of heat source = fuel consumption heat amount + heat amount recovered from exhaust heat], if this equation is used, the heat balance is obtained in the same way as other air conditioners. It is also possible. As a result, it is possible to monitor the energy saving effect in addition to the heat amount monitoring and the operation state monitoring.

前記画像センサー(監視用センサー)としては、0から9までの数値を識別するセンサー、又は0から9までの数値が回転して表示が次々に反転する回数をカウントするセンサーを用いることが好ましい。
流量計には、0から9までのデジタル数値を4〜8桁表示するものや、又は0から9までの数値が回転して表示が次々に反転し4〜8桁を表示するカウント式のものなどがある。画像センサーでこれらの数値を識別し読み取る方法(パターン認識)としては、予め設定する桁数とそれぞれの桁の数値を読み、全体を数値データに置きかえ瞬時値を演算する方式と、最終桁の数値が回転するのを読み取りカウントして積算する方式がある。
As the image sensor (monitoring sensor), it is preferable to use a sensor that identifies a numerical value from 0 to 9, or a sensor that counts the number of times the numerical value from 0 to 9 is rotated and the display is sequentially inverted.
The flow meter displays digital values from 0 to 9 in 4 to 8 digits, or count type to display 4 to 8 digits by rotating the numerical values from 0 to 9 and rotating the display one after another. and so on. As a method of identifying and reading these values with the image sensor (pattern recognition), the number of digits set in advance and the value of each digit are read, the whole is replaced with numerical data, and the instantaneous value is calculated. There is a method of reading and counting the rotation of the.

本発明の流量センサー付き排熱利用型冷暖房機は、流量計の数値を監視用センサーで一旦読み取り、これをデジタル信号に変換し、流量データ信号として演算する機能を備えているので、既設の冷暖房機、新設の冷暖房機、信号の種類などにとらわれることなく、容易に冷暖房機側で演算処理を行うことができ、このためシステム管理が容易になり、かつ、熱量監視、運転状態の監視に加えて省エネルギー効果をも監視することができる。   The exhaust heat utilization type air conditioner with a flow rate sensor of the present invention has a function of once reading the numerical value of the flow meter with a monitoring sensor, converting it into a digital signal, and calculating it as a flow rate data signal. Without being constrained by the air conditioner, new air conditioner, signal type, etc., it is possible to easily perform arithmetic processing on the air conditioner side, thus facilitating system management, and in addition to monitoring the heat quantity and operating status The energy saving effect can also be monitored.

排熱利用型冷暖房機のシステム管理を容易に行えるようにするという目的を、流量計の表示数値を監視用センサーにより画像で取り込み、これを予め登録した数値の画像と対比して一致した画像の数値をデジタル信号に変換しデータとして演算手段に取り込む機能を持つ制御装置を備えることにより実現した。   For the purpose of facilitating the system management of a waste heat utilization type air conditioner, the display numerical value of the flow meter is captured by the monitoring sensor as an image, and this is compared with the pre-registered numerical value image. This is realized by providing a control device having a function of converting a numerical value into a digital signal and taking it into the arithmetic means as data.

以下、本発明の実施の形態について説明するが、本発明は下記の実施の形態に何ら限定されるものではなく、適宜変更して実施できるものである。図1は、本発明の実施の第1形態による流量センサー機能付き排熱利用型冷暖房機を示し、一例として排熱利用型の吸収式冷温水機の系統的概略構成図、図2は流量計及び監視用センサーの説明図、図3は監視用センサーの構成の一例を示す説明図である。なお、図1における機器番号10〜42は、図6に示す従来例における機器番号10〜42をそのまま使用している。   Embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications. FIG. 1 shows a waste heat utilization type air conditioner with a flow rate sensor function according to a first embodiment of the present invention. As an example, a systematic schematic configuration diagram of an exhaust heat utilization type absorption chiller / heater is shown, and FIG. 2 is a flow meter. FIG. 3 is an explanatory diagram showing an example of the configuration of the monitoring sensor. Note that the device numbers 10 to 42 in FIG. 1 are the same as the device numbers 10 to 42 in the conventional example shown in FIG.

図1に示すように、蒸発器24からの冷温水ラインに冷温水流量計50が設けられ、この流量計50に近接して監視用センサー52が設けられている。また、高温再生器18への燃料供給ラインに加熱燃料流量計54が設けられ、この流量計54に近接して監視用センサー56が設けられている。さらに、凝縮器22からの冷却水ラインに冷却水流量計58が設けられ、この流量計58に近接して監視用センサー60が設けられている。
そして、これらの監視用センサー52、56、60は熱量計算・性能評価用管理盤62に接続され、この管理盤62は吸収式冷温水機運転・制御盤64に接続されている。図示を省略しているが、蒸発器入口冷温水温度センサー、蒸発器出口冷温水温度センサー、冷媒ポンプ出口冷媒温度センサー、凝縮器出口冷媒温度センサー、吸収器入口冷却水温度センサー、吸収器出口冷却水温度センサー、凝縮器出口冷却水温度センサー、排ガス温度センサーが設けられており、これらの温度センサーは吸収式冷温水機運転・制御盤64に接続されている。
As shown in FIG. 1, a cold / hot water flow meter 50 is provided in the cold / hot water line from the evaporator 24, and a monitoring sensor 52 is provided in the vicinity of the flow meter 50. A heated fuel flow meter 54 is provided in the fuel supply line to the high temperature regenerator 18, and a monitoring sensor 56 is provided in the vicinity of the flow meter 54. Further, a cooling water flow meter 58 is provided in the cooling water line from the condenser 22, and a monitoring sensor 60 is provided in the vicinity of the flow meter 58.
These monitoring sensors 52, 56, 60 are connected to a calorific value calculation / performance evaluation management panel 62, and this management panel 62 is connected to an absorption chiller / heater operation / control panel 64. Although not shown, evaporator inlet cold / hot water temperature sensor, evaporator outlet cold / hot water temperature sensor, refrigerant pump outlet refrigerant temperature sensor, condenser outlet refrigerant temperature sensor, absorber inlet cooling water temperature sensor, absorber outlet cooling A water temperature sensor, a condenser outlet cooling water temperature sensor, and an exhaust gas temperature sensor are provided, and these temperature sensors are connected to the absorption chiller heater / control panel 64.

さらに、低温熱交換器12出口の吸収液ラインに排熱温水を熱源とする排熱回収再生器70が接続され、この再生器70の出口の排熱温水ラインに排熱温水流量計72が設けられ、この流量計72に近接して監視用センサー74が設けられている。76は排熱温水三方弁である。排熱回収再生器70からの吸収液及び蒸発した水蒸気は再生器4へ流れる。   Further, an exhaust heat recovery regenerator 70 using exhaust hot water as a heat source is connected to the absorption liquid line at the outlet of the low temperature heat exchanger 12, and an exhaust heat hot water flow meter 72 is provided in the exhaust heat hot water line at the outlet of the regenerator 70. In addition, a monitoring sensor 74 is provided in the vicinity of the flow meter 72. Reference numeral 76 denotes a waste heat hot water three-way valve. Absorbed liquid and evaporated water vapor from the exhaust heat recovery regenerator 70 flow to the regenerator 4.

図2は流量計と監視用センサーを示すイメージ図である。監視用センサー74で、流量計72の表示盤78に表示される数値を、図形(陰影)として読み取る。すなわち、パターン認識する。この場合、下一桁の数値が回転するのをカウントして積算する方式と、一桁づつ全体を読み取り、瞬時値を演算する方式がある。   FIG. 2 is an image diagram showing a flow meter and a monitoring sensor. The monitoring sensor 74 reads the numerical value displayed on the display board 78 of the flow meter 72 as a figure (shadow). That is, pattern recognition is performed. In this case, there are a method of counting and integrating the rotation of the numerical value of the last one digit, and a method of calculating the instantaneous value by reading the whole digit by digit.

図3は画像読取用の監視用センサーの構成の一例を示している。監視用センサー74は、図3に示すように、流量計の表示盤の図形(陰影)を読み取るための図形(陰影)読取手段80と、読み取った図形(陰影)をデジタル数値に変換するためのデジタル数値変換手段82と、このデジタル数値を流量データ信号として演算するための演算手段84とを有している。そして、演算手段84で演算された信号は熱量計算・性能評価用管理盤62へ送られ、能力(熱量)評価用データとして利用される。なお、図形(陰影)を読み取るための図形読取手段80として、光センサー、CCDカメラ、変位センサー、パターンセンサー、反射光センサー、レーザーなどの手段が用いられる。   FIG. 3 shows an example of the configuration of a monitoring sensor for image reading. As shown in FIG. 3, the monitoring sensor 74 has a graphic (shadow) reading means 80 for reading a graphic (shadow) on the display board of the flow meter, and a digital graphic value for converting the read graphic (shadow). The digital numerical value conversion means 82 and the calculation means 84 for calculating this digital numerical value as a flow rate data signal are provided. Then, the signal calculated by the calculation means 84 is sent to the heat amount calculation / performance evaluation management panel 62 and used as data for capacity (heat amount) evaluation. As the figure reading means 80 for reading a figure (shadow), means such as an optical sensor, a CCD camera, a displacement sensor, a pattern sensor, a reflected light sensor, and a laser are used.

上記のような構成であるから、監視用センサー74から送られる信号を数値に変換し、冷温水機本体の温度センサーの少なくともいずれかで計測した温度と、数値に変換した流量信号の値を用いて、冷温水機の能力を常時監視するようにして、監視用センサーからの信号を流量計算に用いられるような数値に変換することができる。なお、流量計及び監視用センサーとして、冷温水ライン、燃料供給ライン及び冷却水ラインの少なくとも1組と組み合わせることも可能である。   Since it is the above configuration, the signal sent from the monitoring sensor 74 is converted into a numerical value, and the temperature measured by at least one of the temperature sensors of the chiller / heater body and the value of the flow signal converted into the numerical value are used. Thus, the signal from the monitoring sensor can be converted into a numerical value that can be used for flow rate calculation by constantly monitoring the capacity of the chiller / heater. The flow meter and the monitoring sensor can be combined with at least one set of a cold / hot water line, a fuel supply line, and a cooling water line.

図1では、一例として三重効用形吸収式冷温水機の場合について説明したが、二重効用形吸収式冷温水機など多重効用形吸収式冷温水機、又は単効用形(一重効用形)吸収式冷温水機にも本発明を勿論適用することができる。   In FIG. 1, the case of a triple effect type absorption chiller / hot water machine has been described as an example, but a double effect type absorption chiller / heater such as a double effect type absorption chiller / heater, or a single effect type (single effect type) absorption. Of course, the present invention can also be applied to a type of hot and cold water heater.

図4は、本発明の実施の第2形態による流量センサー機能付き排熱利用型冷暖房機を示している。86は排ガス熱回収器であり、高温再生器18から排出される燃焼排ガス等の排ガスが導入されて、高温熱交換器16からの吸収液が加熱されるように構成されている。排ガス熱回収器86からの排ガスラインに排ガス流量計88が設けられ、この流量計88に近接して監視用センサー90が設けられている。92は排ガス三方弁、94は排ガス二方弁である。
図4においても、図1と同様に排熱回収再生器、排熱温水流量計、その監視用センサーを設けることも可能である。他の構成及び作用は、実施の第1形態の場合と同様である。
FIG. 4 shows an exhaust heat utilization type air conditioner with a flow rate sensor function according to a second embodiment of the present invention. Reference numeral 86 denotes an exhaust gas heat recovery unit, which is configured such that exhaust gas such as combustion exhaust gas discharged from the high temperature regenerator 18 is introduced and the absorbing liquid from the high temperature heat exchanger 16 is heated. An exhaust gas flow meter 88 is provided in the exhaust gas line from the exhaust gas heat recovery device 86, and a monitoring sensor 90 is provided in the vicinity of the flow meter 88. 92 is an exhaust gas three-way valve, and 94 is an exhaust gas two-way valve.
Also in FIG. 4, it is possible to provide an exhaust heat recovery regenerator, an exhaust hot water flow meter, and a monitoring sensor thereof as in FIG. Other configurations and operations are the same as those in the first embodiment.

図5は、本発明の実施の第3形態による流量センサー機能付き排熱利用型冷暖房機を示している。86は排ガス熱回収器、96はガスエンジンやガスタービンなどの排ガス発生源で、この排ガス発生源96から排出される排ガスが排ガス熱回収器86に導入されて、高温熱交換器16からの吸収液が加熱されるように構成されている。排ガス発生源96への燃料供給ラインに燃料流量計98が設けられ、この流量計98に近接して監視用センサー100が設けられている。他の構成及び作用は、実施の第2形態の場合と同様である。   FIG. 5 shows an exhaust heat utilization type air conditioner with a flow rate sensor function according to a third embodiment of the present invention. Reference numeral 86 denotes an exhaust gas heat recovery unit, and reference numeral 96 denotes an exhaust gas generation source such as a gas engine or a gas turbine. The exhaust gas discharged from the exhaust gas generation source 96 is introduced into the exhaust gas heat recovery unit 86 and absorbed from the high temperature heat exchanger 16. The liquid is configured to be heated. A fuel flow meter 98 is provided in the fuel supply line to the exhaust gas generation source 96, and a monitoring sensor 100 is provided in the vicinity of the flow meter 98. Other configurations and operations are the same as those in the second embodiment.

本発明の実施の第1形態による流量センサー機能付き排熱利用型冷暖房機の系統的概略構成図である。It is a systematic schematic block diagram of the waste heat utilization type | formula air conditioning machine with a flow sensor function by 1st Embodiment of this invention. 図1における流量計及び監視用センサーの説明図である。It is explanatory drawing of the flowmeter and monitoring sensor in FIG. 図1、図2に示す監視用センサーの構成の一例を示す説明図である。It is explanatory drawing which shows an example of a structure of the monitoring sensor shown in FIG. 1, FIG. 本発明の実施の第2形態による流量センサー機能付き排熱利用型冷暖房機の系統的概略構成図である。It is a systematic schematic block diagram of the exhaust-heat utilization type | formula air conditioning machine with a flow sensor function by the 2nd Embodiment of this invention. 本発明の実施の第3形態による流量センサー機能付き排熱利用型冷暖房機の系統的概略構成図である。It is a systematic schematic block diagram of the exhaust-heat utilization type | formula air conditioner with a flow sensor function by 3rd Embodiment of this invention. 従来の吸収式冷温水機の一例を示す系統的概略構成図である。It is a systematic schematic block diagram which shows an example of the conventional absorption-type cold water heater.

符号の説明Explanation of symbols

10 吸収器
12 低温熱交換器
14 低温再生器
16 高温熱交換器
18 高温再生器
20 燃焼部
22 凝縮器
24 蒸発器
26、28 吸収液配管
30 バイパス管
32、34 吸収液ポンプ
36 冷媒ポンプ
38 冷却水ポンプ
40 冷温水ポンプ
42 冷暖切換弁
50 冷温水流量計
52、56、60、74、90、100 監視用センサー
54 加熱燃料流量計
58 冷却水流量計
62 熱量計算・性能評価用管理盤
64 吸収式冷温水機運転・制御盤
70 排熱回収再生器
72 排熱温水流量計
76 排熱温水三方弁
78 表示盤
80 図形(陰影)読取手段
82 デジタル数値変換手段
84 演算手段
86 排ガス熱回収器
88 排ガス流量計
92 排ガス三方弁
94 排ガス二方弁
96 排ガス発生源
98 燃料流量計
DESCRIPTION OF SYMBOLS 10 Absorber 12 Low temperature heat exchanger 14 Low temperature regenerator 16 High temperature heat exchanger 18 High temperature regenerator 20 Combustion part 22 Condenser 24 Evaporator 26, 28 Absorption liquid piping 30 Bypass pipe 32, 34 Absorption liquid pump 36 Refrigerant pump 38 Cooling Water pump 40 Cold / hot water pump 42 Cooling / heating switching valve 50 Cold / hot water flow meter 52, 56, 60, 74, 90, 100 Monitoring sensor 54 Heated fuel flow meter 58 Cooling water flow meter 62 Control panel for calorie calculation / performance evaluation 64 Absorption Operation / control panel of the chiller / heater 70 Waste heat recovery regenerator 72 Flow meter for waste heat hot water 76 Three-way valve for waste heat hot water 78 Display panel 80 Graphic (shadow) reading means 82 Digital numerical value conversion means 84 Calculation means 86 Exhaust gas heat recovery device 88 Exhaust gas flow meter 92 Exhaust gas three-way valve 94 Exhaust gas two-way valve 96 Exhaust gas generation source 98 Fuel flow meter

Claims (2)

冷暖房機本体の性能評価に利用する流量計に近接して監視用センサーを設け、該監視用センサーに熱量計算・性能評価用管理盤を接続し、この管理盤に運転・制御盤を接続して、監視用センサーから送られる信号を数値に変換し、冷暖房機本体の温度センサーで計測した温度と、数値に変換した流量信号の値を用いて、冷暖房機の能力を常時監視するようにして、監視用センサーからの信号を流量計算に用いられるような数値に変換する機能を備え、運転中の能力監視及び評価をすることができるようにした流量センサー機能付き冷暖房機において、冷暖房機が排熱利用型の吸収式冷温水機であり、流量計が排熱温水流量計、排ガス流量計及び排ガス発生源への燃料流量計の少なくともいずれかであることを特徴とする流量センサー機能付き排熱利用型冷暖房機。   A monitoring sensor is installed close to the flow meter used to evaluate the performance of the air conditioner main unit, and a management panel for calorie calculation and performance evaluation is connected to the monitoring sensor, and an operation / control panel is connected to this management panel. , By converting the signal sent from the monitoring sensor into a numerical value, using the temperature measured by the temperature sensor of the main body of the air conditioning unit and the value of the flow signal converted into the numerical value, constantly monitoring the capacity of the air conditioning unit, In a cooling / heating machine with a flow sensor function that has a function to convert the signal from the monitoring sensor into a numerical value that can be used for flow rate calculation, and that can monitor and evaluate capacity during operation, It is a use type absorption chiller / heater with a flow sensor function, characterized in that the flow meter is at least one of a waste heat hot water flow meter, an exhaust gas flow meter, and a fuel flow meter to an exhaust gas generation source. Heat-using air conditioners. 監視用センサーが、流量計の表示盤の図形を読み取るための図形読取手段と、読み取った図形をデジタル数値に変換するためのデジタル数値変換手段と、このデジタル数値を流量データ信号として演算するための演算手段とを有している請求項1記載の流量センサー機能付き排熱利用型冷暖房機。   The monitoring sensor has a graphic reading means for reading a graphic on the display panel of the flow meter, a digital numerical value converting means for converting the read graphic into a digital numerical value, and a digital numerical value for calculating the digital numerical value as a flow data signal The exhaust heat utilization type air conditioner with a flow rate sensor function according to claim 1, further comprising a calculation means.
JP2007111334A 2007-04-20 2007-04-20 Exhaust heat type air conditioner with flow sensor function Active JP5122175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007111334A JP5122175B2 (en) 2007-04-20 2007-04-20 Exhaust heat type air conditioner with flow sensor function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007111334A JP5122175B2 (en) 2007-04-20 2007-04-20 Exhaust heat type air conditioner with flow sensor function

Publications (2)

Publication Number Publication Date
JP2008267696A true JP2008267696A (en) 2008-11-06
JP5122175B2 JP5122175B2 (en) 2013-01-16

Family

ID=40047432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007111334A Active JP5122175B2 (en) 2007-04-20 2007-04-20 Exhaust heat type air conditioner with flow sensor function

Country Status (1)

Country Link
JP (1) JP5122175B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033497A (en) * 2009-09-24 2011-04-27 富士通株式会社 Air condition control device and controlling method
US10648712B1 (en) 2017-08-16 2020-05-12 Florida A&M University Microwave assisted hybrid solar vapor absorption refrigeration systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280383A (en) * 1994-04-12 1995-10-27 Tokyo Gas Co Ltd Method and apparatus for starting warm water heated single-effect absorption refrigerator
JPH08158814A (en) * 1994-11-30 1996-06-18 Toshiba Corp Intake air cooling system for combined cycle plant
JP2002039643A (en) * 2000-07-27 2002-02-06 Kawasaki Thermal Engineering Co Ltd Absorptive water cooler-heater, and its control method
JP2004124852A (en) * 2002-10-03 2004-04-22 Mitsubishi Heavy Ind Ltd Evaluation method and evaluation device for exhaust heat recovery equipment
JP2005114302A (en) * 2003-10-10 2005-04-28 Kawasaki Thermal Engineering Co Ltd Heating and cooling machine with flow sensor function

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280383A (en) * 1994-04-12 1995-10-27 Tokyo Gas Co Ltd Method and apparatus for starting warm water heated single-effect absorption refrigerator
JPH08158814A (en) * 1994-11-30 1996-06-18 Toshiba Corp Intake air cooling system for combined cycle plant
JP2002039643A (en) * 2000-07-27 2002-02-06 Kawasaki Thermal Engineering Co Ltd Absorptive water cooler-heater, and its control method
JP2004124852A (en) * 2002-10-03 2004-04-22 Mitsubishi Heavy Ind Ltd Evaluation method and evaluation device for exhaust heat recovery equipment
JP2005114302A (en) * 2003-10-10 2005-04-28 Kawasaki Thermal Engineering Co Ltd Heating and cooling machine with flow sensor function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102033497A (en) * 2009-09-24 2011-04-27 富士通株式会社 Air condition control device and controlling method
US10648712B1 (en) 2017-08-16 2020-05-12 Florida A&M University Microwave assisted hybrid solar vapor absorption refrigeration systems

Also Published As

Publication number Publication date
JP5122175B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
CN202471131U (en) System for carrying out real-time monitoring on performance of steam condenser for power plants
CN101576518B (en) Experimental device for evaporation, absorption and mass transferring of falling film of vertical tube
CN101303273A (en) Method and apparatus for detecting heat pump machine unit malfunction
CN102313471B (en) The function of cooling system monitors and/or control method and corresponding cooling system
CN108645524A (en) A kind of indirect air cooling system temperature field on-Line Monitor Device and method
JP5122175B2 (en) Exhaust heat type air conditioner with flow sensor function
JP4301085B2 (en) Deterioration diagnosis system for heat source equipment
Rong et al. Experimental study on a multi-evaporator mutual defrosting system for air source heat pumps
KR101962920B1 (en) Apparatus and method for monitoring cooling system
CN108645523A (en) A kind of Direct Air-Cooled temperature field on-Line Monitor Device and method
JP4223917B2 (en) Air conditioner with flow sensor function
CN110602927B (en) Cold quantity distribution unit for liquid cooling system of data communication equipment center
CN208476415U (en) A kind of indirect air cooling system temperature field on-Line Monitor Device
JP2018044701A (en) Capacity diagnosis system and capacity diagnosis method for absorptive refrigerator
JP2002257667A (en) Method and device for abnormality diagnosis of heat transfer member, thermal power plant, and absorption type refrigerator
WO2021100760A1 (en) Information processing device
KR200361542Y1 (en) Equipment of Error Checking and Correcting for Heat and Flow Meter
JP2018204920A (en) Performance diagnostic device and performance diagnostic method for absorption type refrigerator
JP2771600B2 (en) Control panel of absorption refrigerator
CN106441461A (en) Device and method for measuring circulation flow and heat-collecting capacity of solar water heating system in real time
CN219714074U (en) Double-backpressure condenser steam side air leakage monitoring system
CN219104363U (en) Dehumidifier regeneration steam heating performance detection device
JP7022658B2 (en) Performance diagnosis system for absorption chillers
CN208547420U (en) A kind of Direct Air-Cooled temperature field on-Line Monitor Device
CN212409998U (en) Boiler air preheater air leakage monitoring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121024

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5122175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150