JPH08338697A - Repair time determining method of heat exchanger for heating furnace - Google Patents

Repair time determining method of heat exchanger for heating furnace

Info

Publication number
JPH08338697A
JPH08338697A JP7163842A JP16384295A JPH08338697A JP H08338697 A JPH08338697 A JP H08338697A JP 7163842 A JP7163842 A JP 7163842A JP 16384295 A JP16384295 A JP 16384295A JP H08338697 A JPH08338697 A JP H08338697A
Authority
JP
Japan
Prior art keywords
exhaust gas
heat exchanger
stack
inlet
pressure loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7163842A
Other languages
Japanese (ja)
Inventor
Hisashi Morisaka
久志 森坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7163842A priority Critical patent/JPH08338697A/en
Publication of JPH08338697A publication Critical patent/JPH08338697A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Abstract

PURPOSE: To make it possible to grasp a repair time of a heat exchanger with high accuracy by determining when to repair a multiple pipe heat exchanger for combustion air-preheating installed in an exhaust gas duct of a heating furnace based on a comparison between a stack draft force and a total of a pressure loss of an exhaust gas up to the inlet of the stack. CONSTITUTION: The pressure loss of various exhaust gases in a gas duct 24 and a stack 23 is calculated from the input of combustion gas of a heating furnace 21 under combustion load and exhaust gas pressure on the inlet and outlet sides of a combustion air preheating multiple pipe heat exchanger and exhaust gas components and the temperature of a furnace bottom 22 of the exhaust gas. Furthermore, the total of the exhaust gas pressure from the draft force of the stack 23 including the resistance in the stack 23 up to the inlet of the stack 23 is calculated based on the result of the pressure loss calculation. When the comparison between the total loss of the exhaust gas pressure up to the draft force of the stack 23 and the inlet of the stack 23 is smaller than a predetermined value, it is judged that no draft allowance exists so that the heat exchanger must be repaired. This construction makes it possible to grasp when to repair the heat exchanger 25 with high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、加熱炉の排ガス煙道
に設けられた燃焼空気予熱用多管式熱交換器の補修時期
を、煙突通風力と煙突入口までの排ガス圧力損失の総計
との比から決定する方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the repair time of a multi-tube heat exchanger for preheating combustion air provided in the exhaust gas flue of a heating furnace, with the sum of exhaust gas pressure loss up to the chimney passing wind force and the chimney inlet. It is a method of determining from the ratio of.

【0002】[0002]

【従来の技術】一般に、加熱炉は図5の側面図および図
6の平面図に示すように、加熱炉21の炉尻22と煙突
23とを煙道24で連結し、煙突23の通風力によっ
て、被加熱物を加熱するために燃焼した燃料の燃焼排ガ
スを、吸引排出するように構成されている。
2. Description of the Related Art Generally, in a heating furnace, as shown in a side view of FIG. 5 and a plan view of FIG. 6, a furnace bottom 22 and a chimney 23 of a heating furnace 21 are connected by a flue 24, and a ventilation force of the chimney 23 is passed. The combustion exhaust gas of the fuel burned to heat the object to be heated is sucked and discharged.

【0003】加熱炉21の炉尻22から煙道24中に排
出される燃焼排ガスの温度は高温であり、大量の熱エネ
ルギを保有しているので、煙道24には空気予熱器、例
えば多管式空気予熱用熱交換器25を設置し、この多管
式空気予熱用熱交換器25の内側に常温の燃焼用空気を
流して、外側を流れる燃焼排ガスと熱交換を行い、高温
の燃焼用空気を得るようにしている。
Since the temperature of the combustion exhaust gas discharged from the furnace bottom 22 of the heating furnace 21 into the flue 24 is high and contains a large amount of heat energy, the flue 24 has an air preheater, for example, a large number. A tube-type air preheating heat exchanger 25 is installed, normal temperature combustion air is flown inside the multi-tube type air preheating heat exchanger 25, and heat is exchanged with the combustion exhaust gas flowing outside, and high temperature combustion is performed. I try to get the air for me.

【0004】このような熱交換器25においては、長期
間使用していると、高温の燃焼排ガスにより、熱交換器
を形成するチューブや風箱に亀裂が生じたり、燃焼排ガ
ス中の不純物により、チューブが腐食したり、孔が開い
たり、また、燃焼排ガス中のダストが熱交換器を形成す
る機器に付着する。このような状態になると、熱交換器
25の亀裂部や孔開き部から空気が煙道24中に洩れる
ことになり、煙道24内の排ガス流量が増加するので、
煙道24内の圧力損失が増大する。
In such a heat exchanger 25, when it is used for a long period of time, high temperature combustion exhaust gas causes cracks in the tubes and wind box forming the heat exchanger, and impurities in the combustion exhaust gas cause Tubes corrode, holes open, and dust in the flue gas adheres to the equipment forming the heat exchanger. In such a state, air leaks into the flue 24 from the cracks and perforations of the heat exchanger 25, and the exhaust gas flow rate in the flue 24 increases.
The pressure loss in the flue 24 increases.

【0005】そして、煙道24および煙突23内の全圧
力損失に対して、煙突23の通風力の余裕がなくなるの
で、特に高燃焼負荷時には、炉圧調整ダンパ−26を全
開にしても、炉内圧力が異常に高まり、燃焼を継続する
ことが困難となる。すなわち、このようになると、加熱
炉の加熱能力が低下することになる。なお、図5および
図6中符号27は、熱交換器25に入る燃焼排ガスの流
れが偏るのを防止するための偏流防止ダンパーである。
Since there is no room for the wind force passing through the chimney 23 with respect to the total pressure loss in the flue 24 and the chimney 23, even when the furnace pressure adjusting damper 26 is fully opened, the furnace can be opened even when the combustion pressure is high. The internal pressure rises abnormally, making it difficult to continue combustion. That is, in this case, the heating capacity of the heating furnace is lowered. Reference numeral 27 in FIGS. 5 and 6 is a drift prevention damper for preventing uneven flow of the combustion exhaust gas entering the heat exchanger 25.

【0006】上述のようにして劣化していく熱交換器の
従来の保全方法としては、チューブや風箱の目視による
劣化の確認、チューブの肉厚測定等の煙道内点検、熱交
換器の清掃の実施等の方法が採用されている。
As a conventional maintenance method of the heat exchanger which deteriorates as described above, the deterioration of the tube and the wind box is visually confirmed, the inside of the flue is checked such as measuring the wall thickness of the tube, and the heat exchanger is cleaned. Is adopted.

【0007】上述した多管式空気予熱用熱交換器の保全
方法のうち、煙道内点検や熱交換器の清掃は、加熱炉の
休止をともなうため、約半年毎に行う加熱炉内堆積スケ
ール搬出作業時を利用して行われるのが一般的である。
Among the above-mentioned methods for maintaining the heat exchanger for multi-tube air preheating, the inspection of the flue and the cleaning of the heat exchanger involve the suspension of the heating furnace. It is generally performed at the time of work.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、上述し
た従来の多管式空気予熱用熱交換器の保全方法は、空気
予熱用チューブ群の内、排ガス進行方向の最前列及び後
列以外のチューブの点検が極めて困難であり、かつ亀
裂、腐食及び汚れの各々の点検結果から、機器全体の劣
化度合を定量的に判定することができないため、適切な
補修が実施できない上に、過剰保全を施してしまうとい
う問題点がある。
However, the above-mentioned conventional method for maintaining the heat exchanger for multi-tube air preheating is to check the tubes other than the front row and the rear row of the air preheating tube group in the exhaust gas advancing direction. Is extremely difficult to perform, and since it is not possible to quantitatively determine the degree of deterioration of the entire equipment from the inspection results for cracks, corrosion, and dirt, proper repair cannot be performed and excessive maintenance will be performed. There is a problem.

【0009】また、点検周期が長期間にならざるを得な
いため、急速に劣化が進展して大規模の漏風が発生した
場合、補修または取替え工事を行うために、加熱炉の運
転を休止する必要があり、生産を阻害するという問題点
もある。
Further, since the inspection cycle is inevitably long, if the deterioration rapidly progresses and a large-scale leak occurs, the operation of the heating furnace is stopped for repair or replacement work. It is necessary and there is also a problem that it hinders production.

【0010】この発明は、従来技術の上述のような問題
点を解消するためになされたものであり、運転を停止す
ることなく、定量的に熱交換器全体およびパス毎の劣化
度合いを判定することができ、したがって、補修時期が
決定できる加熱炉用熱交換器の補修時期決定方法を提供
することを目的としている。
The present invention has been made in order to solve the above-mentioned problems of the prior art, and quantitatively determines the degree of deterioration of the entire heat exchanger and each pass without stopping the operation. Therefore, it is an object of the present invention to provide a method for determining the repair time of a heat exchanger for a heating furnace, which can determine the repair time.

【0011】[0011]

【課題を解決するための手段】この発明に係る加熱炉用
熱交換器の補修時期決定方法は、加熱炉の排ガス煙道に
設けられた燃焼空気予熱用多管式熱交換器の補修時期を
決定する方法であって、燃焼負荷中の加熱炉の燃焼ガス
投入量、熱交換器入側および出側の排ガス圧力と排ガス
成分、および排ガスの炉尻温度から煙道および煙突内に
おける諸排ガス圧力損失を計算し、この圧力損失計算結
果に基づき煙突内抵抗を含めた煙突通風力(DC)と煙
突入口までの排ガス圧力損失の総計(PT)とを計算
し、煙突通風力(DC)と煙突入口までの排ガス圧力損
失の総計(PT)との比A=DC/PTが設定値よりも
小さくなったときに、通風余裕がないとして熱交換器の
補修を行うものである。
A method for determining a repair time of a heat exchanger for a heating furnace according to the present invention determines a repair time of a multi-tube heat exchanger for preheating combustion air provided in an exhaust gas flue of a heating furnace. It is a method of determining the exhaust gas pressure in the flue and chimney from the combustion gas input amount of the heating furnace under combustion load, exhaust gas pressure and exhaust gas components on the inlet and outlet sides of the heat exchanger, and furnace bottom temperature of the exhaust gas. The loss is calculated, and the chimney through wind force (DC) including the resistance inside the chimney and the total exhaust gas pressure loss (PT) up to the chimney inlet are calculated based on this pressure loss calculation result, and the chimney through wind force (DC) and the chimney are calculated. When the ratio A = DC / PT to the total exhaust gas pressure loss to the inlet (PT) becomes smaller than the set value, the heat exchanger is repaired because there is no ventilation margin.

【0012】[0012]

【作用】劣化が進行する燃焼空気予熱用多管式熱交換器
を除いて、加熱炉の炉尻から煙突までの圧力損失特性
は、加熱炉の設計条件によってほぼ決定される。したが
って、一度その特性を実測ないし計算しておけば、その
特性値は長期的にさほど変化しない。
With the exception of the multi-tube heat exchanger for preheating combustion air where deterioration progresses, the pressure loss characteristics from the bottom of the heating furnace to the stack are almost determined by the design conditions of the heating furnace. Therefore, once the characteristic is actually measured or calculated, the characteristic value does not change much in the long term.

【0013】一方、熱交換器の漏洩率と圧力損失は、熱
交換器の熱交換用配管の亀裂やダスト付着によって、比
較的短期的に変化する。この熱交換器の漏洩率と圧力損
失は、熱交換器の入出側で排ガス成分と圧力を実測する
ことにより、正しく求めることができる。
On the other hand, the leakage rate and the pressure loss of the heat exchanger change in a relatively short period of time due to cracks and dust adhesion of the heat exchange pipe of the heat exchanger. The leak rate and the pressure loss of the heat exchanger can be correctly obtained by actually measuring the exhaust gas component and the pressure on the inlet and outlet sides of the heat exchanger.

【0014】これらの特性値および実測値を用い、かつ
任意の燃焼条件における一定期間の燃料の使用量、平均
炉尻温度の実測値を用いることによって、炉圧ダンパー
が全開の場合に炉尻から煙突前までに発生する排ガスの
圧力損失を正確に計算できる。すなわち、煙突前までに
最小限発生する排ガス圧力損失の総計(PT)が求めら
れる。また、煙突の通風力(DC)は、計算によって求
めた煙突前排ガス温度と煙突内の抵抗値を用いて求める
ことができる。
By using these characteristic values and actual measured values, and the measured values of the amount of fuel used and the average furnace bottom temperature for a certain period under arbitrary combustion conditions, the furnace bottom damper is fully opened when the furnace pressure damper is fully opened. The pressure loss of exhaust gas generated before the chimney can be calculated accurately. That is, the total amount (PT) of exhaust gas pressure loss that occurs at least before the chimney is required. Further, the ventilation force (DC) of the chimney can be obtained by using the exhaust gas temperature before the chimney and the resistance value inside the chimney obtained by calculation.

【0015】そして、上述した通風力(DC)と煙突入
口までの排ガス圧力損失の総計(PT)とから、実際に
通風できる有効通風力(P)が、(1)式のようにして
求められる。
Then, from the above-mentioned ventilation force (DC) and the total exhaust gas pressure loss (PT) up to the chimney inlet, the effective ventilation force (P) that can actually be ventilated is obtained by the equation (1). .

【0016】P=DC−PT…………(1) 上記(1)式は、(2)式のように変換できる。P = DC-PT (1) The above equation (1) can be converted into equation (2).

【0017】 P=PT{(DC/PT)−1}…………(2) (DC/PT)=Aとすると、(2)式は(3)式のよ
うに表せる。
If P = PT {(DC / PT) -1} (2) (DC / PT) = A, then equation (2) can be expressed as equation (3).

【0018】P=PT(A−1)…………(3) (3)式より、A>1の場合、すなわち(DC/PT)
>1の場合、P>0となり、有効通風力はあると判断で
きるが、A<1の場合、すなわち(DC/PT)<1の
場合、P<0となり、有効通風力は無いと判断される。
P = PT (A-1) (3) From the equation (3), when A> 1, that is, (DC / PT)
In the case of> 1, it becomes P> 0, and it can be judged that there is effective wind force. However, in the case of A <1, that is, (DC / PT) <1, P <0, and it is judged that there is no effective wind force. It

【0019】したがって、本発明においては、A<1の
場合、通風力が無いとして、A<1となる以前に熱交換
器の補修を行うのである。
Therefore, in the present invention, when A <1, it is assumed that there is no passing wind force, and the heat exchanger is repaired before A <1.

【0020】[0020]

【実施例】本発明の実施例の加熱炉用熱交換器の補修時
期決定方法を、図1、図2および図3により説明する。
図1は、この熱交換器の補修時期決定方法を実施する際
に使用する測定機器の配置を示す側面図、図2は、同じ
くこの熱交換器の補修時期決定方法を実施する際に使用
する測定機器の配置を示す平面図、図3は、この熱交換
器の補修時期決定方法を示すブロック図、図4は計算の
概要を示すグラフである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method for determining a repair time of a heat exchanger for a heating furnace according to an embodiment of the present invention will be described with reference to FIGS. 1, 2 and 3.
FIG. 1 is a side view showing the arrangement of measuring instruments used when carrying out the method for determining the repair time of this heat exchanger, and FIG. 2 is also used when carrying out the method for determining the repair time of this heat exchanger. FIG. 3 is a plan view showing the arrangement of measuring devices, FIG. 3 is a block diagram showing a method for determining the repair time of this heat exchanger, and FIG. 4 is a graph showing an outline of calculation.

【0021】この熱交換器の補修時期決定方法において
は、炉尻22を出た煙道24入口部分に、排ガスの炉尻
温度(T0) を測定する温度計1を、ダイリューション装
置の付いた多管式空気予熱用熱交換器25の前後に、多
管式空気予熱用熱交換器25の入出側の排ガス成分を分
析する排ガス成分分析装置2および3を、同じく多管式
空気予熱用熱交換器25の入出側の排ガス圧力を検出す
る排ガス圧力検出器4および5を配置している。また、
炉圧調整ダンパーは熱交換器の後の煙道内に設置するタ
イプのもので、燃料は成分が既知のガス、一定空燃比で
操業する炉についての例である。
In this method for determining the repair time of the heat exchanger, the thermometer 1 for measuring the furnace bottom temperature (T0) of the exhaust gas is attached to the inlet of the flue 24 that exits the furnace bottom 22, and is equipped with a dilution device. Before and after the multi-tube air preheating heat exchanger 25, exhaust gas component analyzers 2 and 3 for analyzing exhaust gas components on the inlet and outlet sides of the multi-tube air preheating heat exchanger 25 are also provided for the multi-tube air preheating, respectively. Exhaust gas pressure detectors 4 and 5 for detecting the exhaust gas pressure on the inlet and outlet sides of the heat exchanger 25 are arranged. Also,
The furnace pressure adjusting damper is of the type installed in the flue after the heat exchanger, and the fuel is an example of a gas of known composition and a furnace operating at a constant air-fuel ratio.

【0022】図3により、この熱交換器の補修時期決定
方法の手順を説明すると、次のとおりである。
The procedure of the method for determining the repair timing of the heat exchanger will be described with reference to FIG. 3 as follows.

【0023】 前記排ガス成分分析装置2および3に
より多管式空気予熱用熱交換器25の入出側の排ガス成
分が分析される。
The exhaust gas component analyzers 2 and 3 analyze the exhaust gas components on the inlet and outlet sides of the heat exchanger 25 for preheating air in a tubular type.

【0024】 排ガス成分の分析結果に基づき、多管
式空気予熱用熱交換器25入出側の理論酸素量、理論炭
酸ガス量が、(4)式および(5)式により算出され
る。
Based on the analysis result of the exhaust gas component, the theoretical oxygen amount and the theoretical carbon dioxide gas amount on the inlet and outlet sides of the multi-tube air preheating heat exchanger 25 are calculated by the equations (4) and (5).

【0025】[0025]

【数1】 [Equation 1]

【0026】[0026]

【数2】 [Equation 2]

【0027】 算出された多管式空気予熱用熱交換器
25入出側の理論酸素量、理論炭酸ガス量を用いて、多
管式空気予熱用熱交換器25入出側の空気比が、(6)
式および(7)式により求められる。
Using the calculated theoretical oxygen amount and theoretical carbon dioxide amount on the inlet and outlet sides of the multi-tube type air preheating heat exchanger 25, the air ratio on the inlet and outlet sides of the multi-tubular type air preheating heat exchanger 25 is (6 )
It is obtained by the equation and the equation (7).

【0028】[0028]

【数3】 (Equation 3)

【0029】[0029]

【数4】 [Equation 4]

【0030】 入出側の空気比me およびmd から、
多管式空気予熱用熱交換器25の漏洩率(R)が(8)
式により求められる。
From the air ratios m e and m d on the inlet and outlet sides,
The leakage rate (R) of the heat exchanger 25 for multi-tube air preheating is (8)
Calculated by the formula.

【0031】[0031]

【数5】 (Equation 5)

【0032】 定常操業状態において所定時間内に投
入された燃料ガス投入量(VM )が入力される。
The fuel gas input amount (V M ) input within a predetermined time in the steady operation state is input.

【0033】 入力された燃料ガス投入量(VM )、
で求めた熱交換器入側空気比(me)、(9)式で示
される理論空気量(LO )および(10)式で示される
空気水分(Z)により、燃焼空気量(VA )が、(1
1)式により求められる。
The fuel gas input amount that has been input (V M),
The combustion air amount ( VA ) is calculated by the heat exchanger inlet air ratio (m e ), the theoretical air amount (L o ) shown by the equation (9), and the air moisture (Z) shown by the equation (10). ), But (1
It is calculated by the equation (1).

【0034】[0034]

【数6】 (Equation 6)

【0035】[0035]

【数7】 (Equation 7)

【0036】[0036]

【数8】 (Equation 8)

【0037】 入力された燃料ガス投入量(VM )を
使用して(12)式で求められる乾排ガス量(VGd
と、同じく、入力された燃料ガス投入量(VM )を使用
して(13)式で求められる水分量(VGw)とから、正
味排ガス量(VG )が、(14)式により求められる。
[0037] Using the fuel gas input amount input (V M) (12) dry exhaust gas amount obtained by the equation (V Gd)
When asked again, since the fuel gas input amount inputted by using the (V M) (13) the amount of water obtained by the formula (V Gw), the net amount of exhaust gas (V G) is, by (14) To be

【0038】[0038]

【数9】 [Equation 9]

【0039】[0039]

【数10】 [Equation 10]

【0040】[0040]

【数11】 [Equation 11]

【0041】 で求めた漏洩率(R)と、で求め
た燃焼空気量(VA )とから、漏洩空気量(VL )が、
(15)式により求められる。
From the leakage rate (R) obtained in step (1) and the combustion air amount (V A ) obtained in step (2), the leakage air amount ( VL ) becomes
It is calculated by the equation (15).

【0042】[0042]

【数12】 (Equation 12)

【0043】 炉尻温度(TO )が測定される。The furnace bottom temperature (T O ) is measured.

【0044】まる10 測定された炉尻温度(TO )か
ら、熱交換器入口希釈前排ガス温度(T 1 )が、T1
(TO −10)として求められる。
Total 10 measured furnace bottom temperature (TO)
Exhaust gas temperature before dilution (T 1) Is T1
(TO−10) is required.

【0045】まる11 熱交換器入口希釈前排ガス温度
(T1 )と熱交換器を熱損傷から保護するために定めら
れた排ガス許容温度とが比較される。
A total of 11 exhaust gas temperatures before dilution at the heat exchanger inlet (T 1 ) are compared with the exhaust gas permissible temperature determined to protect the heat exchanger from thermal damage.

【0046】まる12 ダイリューション装置の動作を考
慮して、想定された熱交換器入口希釈前排ガス温度(T
1 )が、排ガス許容温度と比較して高い場合には、熱交
換器入口希釈前排ガス温度(T1 )と、で求められた
正味排ガス量(VG )とから、熱交換器入側において煙
道24から投入する希釈空気量(VD )が、(16)式
により求められる。
Considering the operation of the whole 12 dilution device, the assumed exhaust gas temperature before dilution (T
When 1 ) is higher than the allowable exhaust gas temperature, the exhaust gas temperature before dilution at the heat exchanger inlet (T 1 ) and the net exhaust gas amount (V G ) obtained at The amount (V D ) of dilution air introduced from the flue 24 is calculated by the equation (16).

【0047】そうでない場合には、希釈空気量(VD
は0となる。
Otherwise, the amount of dilution air (V D )
Is 0.

【0048】[0048]

【数13】 (Equation 13)

【0049】まる13 希釈空気が投入される場合、熱交
換器入口希釈後排ガス温度(T2 )は、排ガス許容温度
(TGa)と等しくなる。希釈空気量(VD )が0の場合
には、T2 =T1 となる。
When a total of 13 dilution air is fed, the exhaust gas temperature (T 2 ) after dilution at the heat exchanger inlet becomes equal to the allowable exhaust gas temperature (T Ga ). When the amount of diluted air (V D ) is 0, T 2 = T 1 .

【0050】まる14 求められた熱交換器入口希釈後排
ガス温度(T2 )と、で求められた多管式空気予熱用
熱交換器25の漏洩率(R)およびで求められた正味
排ガス量(VG )の値を用いて、熱交換器出口排ガス温
度(T3)が、熱交換器性能線図に従い決定される。
Total 14 Determined exhaust gas temperature after dilution at heat exchanger inlet (T 2 ), leak rate (R) of shell-and-tube type air preheating heat exchanger 25 determined by and net exhaust gas amount determined by using the value of (V G), the heat exchanger outlet exhaust gas temperature (T 3) is determined in accordance with the heat exchanger performance diagram.

【0051】まる15 煙突前排ガス温度(T4 )がT4
=T3 として求められる。
Maru 15 Exhaust gas temperature before chimney (T 4 ) is T 4
= T 3 .

【0052】まる16 熱交換器入出側排ガス圧力(pi,
p o ) が測定される。
Total 16 heat exchanger inlet / outlet side exhaust gas pressure (p i,
p o ) is measured.

【0053】まる17 排ガス圧力損失が、次のようにし
て求められる。
The total 17 exhaust gas pressure loss is determined as follows.

【0054】1)煙道内上向き浮力(DU )が、炉尻温
度(TO )を用いて、(17)式により求められる。
1) Upward buoyancy (D U ) in the flue is determined by the equation (17) using the furnace bottom temperature (T O ).

【0055】[0055]

【数14】 [Equation 14]

【0056】2)煙道内下向き浮力(DD )が、熱交換
器入口希釈前排ガス温度(T1 )を用いて、(18)式
により求められる。
2) The downward buoyancy (D D ) in the flue is determined by the equation (18) using the exhaust gas temperature before dilution (T 1 ) at the heat exchanger inlet.

【0057】[0057]

【数15】 (Equation 15)

【0058】3)煙道内摩擦抵抗(PM )が、(19)
式により求められる。
3) The flue friction resistance (P M ) is (19)
Calculated by the formula.

【0059】[0059]

【数16】 [Equation 16]

【0060】4)煙道内渦流抵抗(PK )が、(20)
式により求められる。
4) The eddy current resistance (P K ) in the flue is (20)
Calculated by the formula.

【0061】[0061]

【数17】 [Equation 17]

【0062】5)熱交換器が複数パスで構成されてお
り、偏流防止ダンパーが付いている場合には、偏流防止
ダンパー抵抗(PH )が、(20)式と同じ式により求
められる。
5) When the heat exchanger has a plurality of paths and is equipped with a non-uniform flow prevention damper, the non-uniform flow prevention damper resistance (P H ) is obtained by the same equation as the equation (20).

【0063】6)炉圧調整ダンパー抵抗(PR )が、
(20)式と同じ式により求められる。
6) The furnace pressure adjusting damper resistance (P R ) is
It is obtained by the same equation as the equation (20).

【0064】但し、ここで言う抵抗は炉圧調整ダンパー
が全開の場合についてその入出側に発生する圧力損失で
ある。
However, the resistance referred to here is the pressure loss generated on the inlet and outlet sides of the furnace pressure adjusting damper when it is fully opened.

【0065】7)熱交換器抵抗(PRE)が、まる16で求
めた熱交換器入出側排ガス圧力(p i,p o ) を用い、
(21)式として求められる。
7) Heat exchanger resistance (PRE), But with 16
Exhaust gas pressure (p i,po),
It is calculated as the equation (21).

【0066】[0066]

【数18】 (Equation 18)

【0067】8)煙突内抵抗(PF )が、(19)およ
び(20)式と同じ式により求められる。
8) The in-chimney resistance (P F ) is obtained by the same equations as the equations (19) and (20).

【0068】まる18 まる17で求められた煙突内抵抗
(PF )およびまる15で求められた煙突前排ガス温度
(T4 )を用いて、煙突通風力(DC )が、(22)式
として求められる。
[0068] Using the full 18 in chimneys obtained by full 17 resistance (P F) and circle 15 in the obtained stack before the exhaust gas temperature (T 4), a chimney draft force (D C) is, (22) Is required as.

【0069】[0069]

【数19】 [Formula 19]

【0070】まる19 煙突入口までの排ガス圧力損失の
総計(PT )が、まる17で求めた諸抵抗を用いて、PT
=(DD −DU +PM +PK +PH +PR +PRE)とし
て求められる。
Total 19 The total exhaust gas pressure loss (P T ) to the chimney inlet is P T
= Is determined as (D D -D U + P M + P K + P H + P R + P RE).

【0071】まる20 まる18で求めた煙突通風力
(DC )と、まる19で求めた煙突入口までの排ガス圧力
損失の総計(PT )との比(A)を、A=(DC
T ) として求める。
Round 20 The ratio (A) of the chimney through wind force (D C ) obtained in Round 18 to the total exhaust gas pressure loss (P T ) to the stack inlet determined in Round 19 is A = (D C /
P T ).

【0072】まる21 Aが設定値より大きいか否かを判
断する。
It is determined whether the whole 21 A is larger than the set value.

【0073】まる22 Aが設定値より小さいとき、通風
余裕無しとして、補修を実施する。
When the total 22 A is smaller than the set value, it is determined that there is no ventilation margin, and repair is performed.

【0074】まる23 Aが設定値より大きいとき、通風
余裕有りとして、操業を続行する。
When the total 23 A is larger than the set value, it is determined that there is a ventilation margin, and the operation is continued.

【0075】図4は、一定の漏風がある熱交換器で、上
記の計算過程の状態を図示するものであり、分かりやす
くするためにダイリューション装置は作動せず、偏流ダ
ンパーは用いられない場合を示している。図4(a)は
炉尻から煙突までの排ガスの流れる経路を直線上に示し
たものであって、Aは炉尻、Bは熱交換器入口、Cは熱
交換器出口、Dは炉圧ダンパー、Eは煙突入口、Fは煙
突出口を示している。
FIG. 4 is a heat exchanger having a constant air leak, and illustrates the state of the above calculation process. For the sake of clarity, the dilution device is not operated and the drift damper is not used. The case is shown. FIG. 4 (a) is a straight line showing the flow path of the exhaust gas from the furnace bottom to the chimney, where A is the furnace bottom, B is the heat exchanger inlet, C is the heat exchanger outlet, and D is the furnace pressure. A damper, E is a chimney inlet, and F is a smoke outlet.

【0076】図4(b)は、図4(a)で示した排ガス
流出経路A〜Fの各位置に於ける排ガスの温度を示した
図である。炉尻の排ガス温度T0は実測値であり、熱熱
交換器前後における熱交換および漏風による温度降下
(T2−T3)はそれぞれ計算および実測により求めら
れるから、煙突入口における排ガス温度T4が正確に求
められる。これによって煙突入口における通風力DCが
煙突内の圧力損失PFを補正して求められる。
FIG. 4 (b) is a diagram showing the temperature of the exhaust gas at each position of the exhaust gas outflow passages A to F shown in FIG. 4 (a). The exhaust gas temperature T0 at the bottom of the furnace is an actual measurement value, and the temperature drop (T2-T3) due to heat exchange before and after the heat heat exchanger and leakage air are obtained by calculation and actual measurement respectively, so the exhaust gas temperature T4 at the chimney inlet is accurately obtained. To be Thereby, the wind force DC at the chimney inlet is obtained by correcting the pressure loss PF in the chimney.

【0077】また、図4(d)は煙道各部(A〜F)を
流れる排ガスの量を標準状態で示した図である。熱交換
器における漏風による流量の増加は熱交換器前後の成分
測定によって正確に求められる。
FIG. 4 (d) is a diagram showing the amount of exhaust gas flowing through each part of the flue (A to F) in a standard state. The increase in flow rate due to air leakage in the heat exchanger can be accurately obtained by measuring the components before and after the heat exchanger.

【0078】図4(c)は炉尻から煙突出口までの各部
(A〜F)における排ガスの圧力損失を加算して示した
図である。煙道内の各部における摩擦・渦流損失PM,
PKは、煙道の形状・寸法とそこを流れる排ガスの温度
・流量によって計算でき、比較的時間変化が少ない。ま
た炉圧ダンパーが全開における炉圧ダンパー部分の圧力
損失PR、煙突内の通風抵抗PFも同様である。一方、
熱交換器における圧力損失PREは比較的変化が大きい
が、実測値を用いるから正確である。したがってこれら
の加算である圧力損失の総計PTが正確に求められる。
実際の操業状態では炉圧ダンパーが自動制御されて、図
4(c)の破線で示すように圧力損失の総計が通風力と
釣り合う状態となっている。したがって、このようにし
て計算した圧力の比A=DC/PTは、炉尻の圧力(炉
圧)を維持できるかどうかの余裕を直接示す指数であ
る。熱交換器の劣化がすすめば、定期的な測定によって
A=1.5,A=1.2,...と指数が低下していく
ので、A=1.0となる前に熱交換器の補修を行えばよ
い。
FIG. 4 (c) is a diagram in which the pressure loss of the exhaust gas in each portion (A to F) from the furnace bottom to the smoke outlet is added and shown. Friction and eddy current loss PM in each part of the flue,
The PK can be calculated by the shape and size of the flue and the temperature and flow rate of the exhaust gas flowing therethrough, and the time change is relatively small. The same applies to the pressure loss PR in the furnace pressure damper portion and the ventilation resistance PF in the chimney when the furnace pressure damper is fully opened. on the other hand,
The pressure loss PRE in the heat exchanger has a relatively large change, but is accurate because the measured value is used. Therefore, the total pressure loss PT, which is the sum of these, can be accurately obtained.
In an actual operating state, the furnace pressure damper is automatically controlled, and the total pressure loss is in a state of being balanced with the passing wind force, as shown by the broken line in FIG. 4 (c). Therefore, the pressure ratio A = DC / PT calculated in this way is an index that directly indicates a margin of whether or not the pressure at the furnace bottom (furnace pressure) can be maintained. If deterioration of the heat exchanger is promoted, A = 1.5, A = 1.2 ,. . . Since the index decreases, it is sufficient to repair the heat exchanger before A = 1.0.

【0079】本発明の実施例の加熱炉用熱交換器の補修
時期決定方法は、上述したようにして行われるので、熱
交換器の補修時期を正確に把握することができ、補修時
期が遅れて操業不能になって加熱炉を長期間休止した
り、補修時期が早過ぎてオーバーメンテナンスになった
りすることがない。
Since the method for determining the repair time of the heat exchanger for the heating furnace according to the embodiment of the present invention is performed as described above, the repair time of the heat exchanger can be accurately grasped and the repair time is delayed. Therefore, there is no possibility that the heating furnace becomes inoperable and the heating furnace is shut down for a long time, or the maintenance time is too early to cause over-maintenance.

【0080】[0080]

【発明の効果】この発明により、加熱炉の運転を停止す
ることなく、定量的に熱交換器全体およびパス毎の劣化
度合いを判定することができるので、熱交換器の補修時
期が正確に決定でき、熱交換器劣化にともなう突発的な
加熱炉の操業停止を防止できるとともに、熱交換器の補
修費を低減することができる。
According to the present invention, since the deterioration degree of the entire heat exchanger and each pass can be quantitatively determined without stopping the operation of the heating furnace, the repair time of the heat exchanger can be accurately determined. Therefore, it is possible to prevent the sudden shutdown of the heating furnace due to deterioration of the heat exchanger, and reduce the repair cost of the heat exchanger.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱交換器の補修時期決定方法を実施する際に使
用する測定機器の配置を示す側面図である。
FIG. 1 is a side view showing an arrangement of measuring devices used when implementing a method for determining a repair time of a heat exchanger.

【図2】熱交換器の補修時期決定方法を実施する際に使
用する測定機器の配置を示す平面図である。
FIG. 2 is a plan view showing an arrangement of measuring devices used when performing a method for determining a repair time of a heat exchanger.

【図3】熱交換器の補修時期決定方法を示すブロック図
である。
FIG. 3 is a block diagram showing a method for determining a repair time of a heat exchanger.

【図4】(a)は排ガス流出経路における計器配置点を
示す説明図、(b)は各位置における温度を示すグラ
フ、(c)は各位置における累積圧力損失を示すグラ
フ、(d)は各位置における排ガス流量を示すグラフで
ある。
4A is an explanatory diagram showing instrument arrangement points in an exhaust gas outflow route, FIG. 4B is a graph showing temperature at each position, FIG. 4C is a graph showing accumulated pressure loss at each position, and FIG. It is a graph which shows the exhaust gas flow rate in each position.

【図5】加熱炉の構造を示す側面図である。FIG. 5 is a side view showing the structure of a heating furnace.

【図6】加熱炉の構造を示す平面図である。FIG. 6 is a plan view showing the structure of a heating furnace.

【符号の説明】[Explanation of symbols]

1 温度計 2 排ガス成分分析装置 3 排ガス成分分析装置 4 排ガス圧力検出器 5 排ガス圧力検出器 1 Thermometer 2 Exhaust gas component analyzer 3 Exhaust gas component analyzer 4 Exhaust gas pressure detector 5 Exhaust gas pressure detector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 加熱炉の排ガス煙道に設けられた燃焼空
気予熱用多管式熱交換器の補修時期を決定する方法であ
って、燃焼負荷中の加熱炉の燃焼ガス投入量、熱交換器
入側および出側の排ガス圧力と排ガス成分、および排ガ
スの炉尻温度から煙道および煙突内における諸排ガス圧
力損失を計算し、この圧力損失計算結果に基づき煙突内
抵抗を含めた煙突通風力(DC)と煙突入口までの排ガ
ス圧力損失の総計(PT)とを計算し、煙突通風力(D
C)と煙突入口までの排ガス圧力損失の総計(PT)と
の比A=DC/PTが設定値よりも小さくなったとき
に、通風余裕がないとして熱交換器の補修を行うことを
特徴とする加熱炉用熱交換器の補修時期決定方法。
1. A method for deciding a repair time of a multi-tube heat exchanger for preheating combustion air, which is provided in an exhaust gas flue of a heating furnace, comprising the combustion gas input amount and heat exchange of the heating furnace under combustion load. The exhaust gas pressure loss and the exhaust gas components on the inlet and outlet sides, and the exhaust gas pressure loss in the flue and the stack are calculated from the furnace bottom temperature of the exhaust gas, and the stack wind force including the resistance in the stack is calculated based on this pressure loss calculation result. (DC) and total exhaust gas pressure loss to the chimney inlet (PT) are calculated, and the chimney through wind force (D)
When the ratio A = DC / PT between C) and the total exhaust gas pressure loss to the chimney inlet (PT) becomes smaller than the set value, the heat exchanger is repaired because there is no ventilation margin. Method for determining repair time of heat exchanger for heating furnace.
JP7163842A 1995-04-13 1995-06-29 Repair time determining method of heat exchanger for heating furnace Withdrawn JPH08338697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7163842A JPH08338697A (en) 1995-04-13 1995-06-29 Repair time determining method of heat exchanger for heating furnace

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-88419 1995-04-13
JP8841995 1995-04-13
JP7163842A JPH08338697A (en) 1995-04-13 1995-06-29 Repair time determining method of heat exchanger for heating furnace

Publications (1)

Publication Number Publication Date
JPH08338697A true JPH08338697A (en) 1996-12-24

Family

ID=26429802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7163842A Withdrawn JPH08338697A (en) 1995-04-13 1995-06-29 Repair time determining method of heat exchanger for heating furnace

Country Status (1)

Country Link
JP (1) JPH08338697A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281506A (en) * 2009-06-04 2010-12-16 Jfe Steel Corp Method of deciding maintenance and repair time of heat exchanger for preheating combustion air
JP2011208877A (en) * 2010-03-30 2011-10-20 Jfe Steel Corp Method of determining time of maintenance and repair and update for recuperator
JP2014190671A (en) * 2013-03-28 2014-10-06 Kobe Steel Ltd Heating furnace and heating furnace control method
CN112200451A (en) * 2020-10-09 2021-01-08 华润电力技术研究院有限公司 Maintenance period calculation method and maintenance period calculation device for air preheater
CN112200451B (en) * 2020-10-09 2024-05-14 深圳市出新知识产权管理有限公司 Maintenance period calculation method and maintenance period calculation device for air preheater

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281506A (en) * 2009-06-04 2010-12-16 Jfe Steel Corp Method of deciding maintenance and repair time of heat exchanger for preheating combustion air
JP2011208877A (en) * 2010-03-30 2011-10-20 Jfe Steel Corp Method of determining time of maintenance and repair and update for recuperator
JP2014190671A (en) * 2013-03-28 2014-10-06 Kobe Steel Ltd Heating furnace and heating furnace control method
CN112200451A (en) * 2020-10-09 2021-01-08 华润电力技术研究院有限公司 Maintenance period calculation method and maintenance period calculation device for air preheater
CN112200451B (en) * 2020-10-09 2024-05-14 深圳市出新知识产权管理有限公司 Maintenance period calculation method and maintenance period calculation device for air preheater

Similar Documents

Publication Publication Date Title
US7890197B2 (en) Dual model approach for boiler section cleanliness calculation
JPH0211811B2 (en)
JP4466232B2 (en) Boiler deterioration diagnosis method, apparatus, system, and recording medium recording program
CA2479238A1 (en) Method for detecting heat exchanger tube failures and their location when using input/loss performance monitoring of a power plant
CN103728339B (en) A kind of real-time identification method for average heat resistance of heat-exchange equipment on thermal power boiler side
JPS60108611A (en) Soot blowing work system by decision of model parameter
JPH08338697A (en) Repair time determining method of heat exchanger for heating furnace
JP2002267159A (en) Air-fuel ratio control method and device
US20160245516A1 (en) Gas outlet monitoring system
US7647204B2 (en) Method for estimating the impact of fuel distribution and furnace configuration on fossil fuel-fired furnace emissions and corrosion responses
CN106501015A (en) A kind of multitubular bundles integrated form radiant tube combustion experimental system and method
JP2703548B2 (en) Air preheater performance diagnostic device
CN110243557A (en) Pipe detection system, boiler components and method for detecting pipeline
JP5268561B2 (en) Daily combustion management method in oil fired boiler facilities
CN111594862A (en) Flue gas waste heat recovery evaluation system and method
CN110873462B (en) Carbon deposition reminding control method for gas water heater with carbon deposition reminding function
KR100376926B1 (en) Control method of bypass valve in heat exchange facility for blast furnace
CN103206943A (en) Method and device for detecting radiant tube deformation outside furnace
CN212456933U (en) Flue gas waste heat recovery evaluation system
US5902926A (en) Method to identify gas combustion integrity in fan assisted equipment
JPH0351641Y2 (en)
JP2821985B2 (en) Combustible gas combustion control method for coke dry fire extinguishing equipment
JP2002235921A (en) Boiler
JP3264152B2 (en) Air blowing method in coke dry fire extinguishing equipment
JPH0587333A (en) Diagnosing method of state of combustion

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020903