JP2002267159A - Air-fuel ratio control method and device - Google Patents

Air-fuel ratio control method and device

Info

Publication number
JP2002267159A
JP2002267159A JP2001069119A JP2001069119A JP2002267159A JP 2002267159 A JP2002267159 A JP 2002267159A JP 2001069119 A JP2001069119 A JP 2001069119A JP 2001069119 A JP2001069119 A JP 2001069119A JP 2002267159 A JP2002267159 A JP 2002267159A
Authority
JP
Japan
Prior art keywords
air
fuel
amount
fuel ratio
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001069119A
Other languages
Japanese (ja)
Inventor
Masao Morohoshi
征夫 諸星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2001069119A priority Critical patent/JP2002267159A/en
Publication of JP2002267159A publication Critical patent/JP2002267159A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an air-fuel ratio control method and device capable of effectively obtaining a combustion state for getting the maximum heat generation rate of a supplied fuel quantity by controlling the air-fuel ratio while the mass flow rate of each of air quantity and fuel quantity is always monitored and grasped. SOLUTION: In the air-fuel ratio control method and device, at least one of the mass flow rate of air quantity and the mass flow rate of fuel quantity is measured to control combustion on the basis of the mass flow rate and increase or decrease at least one of the air quantity and the fuel quantity during the combustion. At least one of the air quantity and the fuel quantity is increased or decreased to burn air or fuel on the basis of the change of the combustion state due to the above-described increase or decrease so that the air fuel ratio becomes a theoretical air-fuel ratio.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、例えばガス燃焼
式ボイラーや燃焼炉などの燃焼器に用いられ、最大燃焼
効率を得られるように燃焼制御するための空燃比制御方
法及び空燃比制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air-fuel ratio control method and an air-fuel ratio control apparatus for use in a combustor such as a gas-fired boiler or a combustion furnace for controlling combustion so as to obtain maximum combustion efficiency. Things.

【0002】[0002]

【従来の技術】(1)従来より、ファンモータからの燃
焼用空気とガス(都市ガス、プロパンガス等の燃料ガ
ス)とを混合してバーナで燃焼させるとき、燃焼状態が
最適になるように空気量と燃料量とを調整してバーナに
送り込む制御(以下、空燃比制御と称する)を行うもの
が知られている。空気量を、ダンパやインバータ制御等
による送風量制御(空気量調整系)で調整し、燃料量
を、モータバルブや比例弁と称する開度調節型バルブ等
(燃料量調整系)で調節している。例えば、(a)空気
量調整系と燃料量調整系との連携を機械的リンク機構で
調整したり、(b)空気圧力を燃料圧力に反映させる均
圧比例方式や、(c)空気量調節系と燃料量調整系とを
独立させて個別に流量調節する方法等が知られている。
2. Description of the Related Art (1) Conventionally, when combustion air from a fan motor and gas (fuel gas such as city gas, propane gas, etc.) are mixed and burned by a burner, the combustion state is optimized. 2. Description of the Related Art There is known an apparatus that performs control for adjusting the amount of air and the amount of fuel to feed the burner (hereinafter, referred to as air-fuel ratio control). The amount of air is adjusted by air flow control (air amount adjustment system) by damper, inverter control, etc., and the amount of fuel is adjusted by a motor valve or an opening adjustment type valve called a proportional valve (fuel amount adjustment system). I have. For example, (a) the coordination between the air amount adjustment system and the fuel amount adjustment system is adjusted by a mechanical link mechanism, (b) an equalization proportional method in which the air pressure is reflected on the fuel pressure, and (c) the air amount adjustment. There is known a method of independently controlling the flow rate independently of the system and the fuel amount adjusting system.

【0003】(2)上述の燃焼制御における流量の検出
は、例えば、(a)空気量または燃料量自体や、空気量
と燃料量の比(空燃比)を流量計や圧力計による差圧に
基づいたり、(b)上記ダンパや調節弁の開度位置から
流量値を割り出して得られた流量値で、空燃比制御を行
う方法等が知られている。
[0003] (2) The detection of the flow rate in the above-described combustion control includes, for example, (a) converting the air amount or the fuel amount itself or the ratio of the air amount and the fuel amount (air-fuel ratio) to a differential pressure by a flow meter or a pressure gauge. There is known a method of performing air-fuel ratio control based on (b) a flow value obtained by calculating a flow value from an opening position of the damper or the control valve.

【0004】(3) また、空燃比制御の結果を、
(a)燃焼後の排気ガスの組成で判断する方法として
は、酸素の過不足即ち理論空気比(燃料量に対する理論
上の空気量の比率)からのずれを、酸素センサ、一酸化
炭素センサや二酸化炭素センサ等で検出し、最適な燃焼
が行われたか否かを判断して空気量または燃料量を調節
する空燃比制御や、(b)燃焼装置の出力する熱風の温
度、温水温度や発生蒸気量等の燃焼生成物が最大値とな
ったかどうかにより判断することも知られている。酸素
センサを使用する例では、前記空気量調整系または燃料
量調整系により、バーナに空気と燃料を送り込んだとき
に、排気ガス中に含まれる酸素量が最小になるよう制
御、即ち、燃料の燃え残りが無いように空気量過多にな
らないように制御したり、酸素不足による一酸化炭素や
煤の発生を極力抑えるため、空気量不足とならなくする
空燃比制御も知られている。即ち、理論空気量より空気
量(酸素量)が不足すれば、不完全燃焼となり、発生熱
量は下がる。一方、理論空気量より空気量が過多になれ
ば、余剰空気が熱を奪い、有効発熱量は下がることにな
る。これは、理論空気量で燃焼させることが、熱交換で
得られる熱量を最大にすることになるからである。例え
ば、温水ボイラーであれば、理論空気量で燃焼させるこ
とで、発生する温水温度や温水量が最大になり、蒸気ボ
イラー等であれば、発生蒸発量が同様に最大になる。
(3) The result of the air-fuel ratio control is
(A) As a method of judging from the composition of exhaust gas after combustion, an excess or deficiency of oxygen, that is, a deviation from a stoichiometric air ratio (a ratio of a theoretical air amount to a fuel amount) is determined by an oxygen sensor, a carbon monoxide sensor, or the like. Air-fuel ratio control that adjusts the amount of air or fuel by detecting whether optimal combustion has been performed by detecting with a carbon dioxide sensor or the like, or (b) the temperature of hot air, the temperature of hot water, and the generation of hot air output from the combustion device It is also known to make a determination based on whether or not a combustion product such as a steam amount has reached a maximum value. In the example using an oxygen sensor, the air amount control system or the fuel amount control system controls the amount of oxygen contained in exhaust gas to be minimized when air and fuel are sent to the burner, that is, the fuel amount is controlled. There is also known an air-fuel ratio control for controlling the amount of air so that there is no unburned portion and preventing the amount of air from becoming excessive, and for minimizing the generation of carbon monoxide and soot due to lack of oxygen. That is, if the amount of air (the amount of oxygen) is less than the theoretical amount of air, incomplete combustion occurs and the amount of generated heat decreases. On the other hand, if the amount of air exceeds the theoretical amount of air, the surplus air takes away heat and the effective calorific value decreases. This is because burning with the theoretical amount of air maximizes the amount of heat obtained by heat exchange. For example, in the case of a hot water boiler, the generated hot water temperature and the amount of hot water are maximized by burning with the theoretical amount of air. In the case of a steam boiler and the like, the amount of generated evaporation is similarly maximized.

【0005】[0005]

【発明が解決しようとする課題】前述のように、従来の
空燃比制御装置は構成されているが、空気量や燃料量の
測定が、質量流量値そのものを測定していないため、ボ
イル・シャルルの法則に則り、温度変化に伴う空気や燃
料の密度変化があるため、最大発熱量が得られる空燃比
を一義的に求めることができなかった。即ち、基準温度
における空気や燃料の密度を前提に、空燃比制御をして
いたため、様々な運転条件下での温度や、気圧の違いに
より、必ずしも最大発熱量が得られる燃焼制御を行なう
ことができなかった。また、周囲温度に合わせて体積流
量を補正計算する必要があり、また、従来から質量流量
計は知られているものの、高価であったり、熱容量が大
きいため応答速度が遅いなどして前記空燃比制御には使
えなかった。
As described above, the conventional air-fuel ratio control device is constituted, but since the measurement of the air amount and the fuel amount does not measure the mass flow rate itself, the boiling fuel is used. According to the law, there is a change in the density of air and fuel due to a change in temperature, so that the air-fuel ratio at which the maximum calorific value can be obtained cannot be uniquely obtained. That is, since the air-fuel ratio control is performed on the premise of the density of air and fuel at the reference temperature, it is not always possible to perform the combustion control that can obtain the maximum calorific value depending on the temperature and the pressure under various operating conditions. could not. In addition, it is necessary to correct the volume flow rate in accordance with the ambient temperature.Although mass flow meters are conventionally known, they are expensive and have a large heat capacity, so that the air-fuel ratio is low. It could not be used for control.

【0006】例えば、都市ガス(天然ガス)でも発熱量
は一定の規格範囲に入るように調整して供給されている
が、例えば、天然ガスの13Aでは、基準温度、基準圧
力下での単位体積当たりの発熱量は、42000KJ/m3
〜46000KJ/m3の範囲である。しかし、上記発熱量に
するため、メタンの含有比が変わるなどして燃料の組成
が変える場合がある。上記発熱量の範囲内であっても、
燃料の単位当たりの質量が変わるので、正確な空燃比を
維持できないこととなる。また、応答が遅い流量センサ
では、燃料の圧力変化により時々刻々流量が変化する
と、質量流量を空燃比制御に使える程度に正確に測定す
ることが出来なかった。一方、空気及び燃料の質量はボ
イルシャルルの法則に則り、温度、圧力で変化する。こ
のため、圧力検知手段や、空気量調節手段や燃料量調節
手段の一定値開度を、一定値流量とみなす制御方式で
は、空気や燃料の温度や圧力が変化する場合には、正確
な空気量や燃料量が把握できず、空燃比ずれが生じるこ
とがあった。従って、特に、連続的に燃焼量を可変にす
る燃焼装置においては、小燃焼量から大燃焼量のあらゆ
る燃焼位置の個々において最大発熱量を得るようにする
ことは出来なかった。
For example, even in the case of city gas (natural gas), the calorific value is supplied so as to be within a certain standard range. For example, in the case of 13 A of natural gas, the unit volume at a standard temperature and a standard pressure is provided. The calorific value per unit is 42000KJ / m3
446000 KJ / m3. However, the composition of the fuel may change due to a change in the content ratio of methane or the like in order to achieve the above-mentioned heat generation value. Even within the above calorific value range,
Since the mass per unit of fuel changes, an accurate air-fuel ratio cannot be maintained. Further, with a flow rate sensor having a slow response, when the flow rate changes every moment due to a change in fuel pressure, the mass flow rate cannot be measured accurately enough to be used for air-fuel ratio control. On the other hand, the masses of air and fuel vary with temperature and pressure in accordance with Boyle-Charles law. For this reason, in a control method in which the constant value opening of the pressure detecting means, the air amount adjusting means and the fuel amount adjusting means is regarded as a constant value flow rate, when the temperature or pressure of air or fuel changes, accurate air In some cases, the amount or fuel amount could not be determined, and an air-fuel ratio deviation sometimes occurred. Therefore, in particular, in a combustion apparatus in which the combustion amount is continuously varied, it was not possible to obtain the maximum calorific value in each combustion position from a small combustion amount to a large combustion amount.

【0007】例えば、最大燃焼量位置(100%)では空
燃比が最適に保持されても、75%位置や65%位置、
45%位置等のそれぞれにおいて空燃比を最適に維持す
ることは出来なかった。また、特に、燃料量の調整にお
いて、燃料量を80%になるように燃料量調節弁の開度
を調節しても、バーナに送り込んだ燃料量が80%にな
ったかどうかを確認する手段がなかった。燃料の量は、
燃料調節弁が最大燃料位置方向から(例えば左回り方向
に)燃料量を調節したか(図7(a)のX方向)、最小
燃料量位置方向から(例えば右回り方向)調節したか
(図7(b)のY方向)により、燃料調節弁の開度が遊
びの範囲で変化する。
For example, at the maximum combustion amount position (100%), even if the air-fuel ratio is optimally maintained, the 75% position, the 65% position,
The air-fuel ratio could not be maintained optimally at each of the 45% position and the like. In particular, in adjusting the fuel amount, even if the opening of the fuel amount adjusting valve is adjusted so that the fuel amount becomes 80%, there is provided a means for confirming whether the fuel amount sent to the burner has become 80%. Did not. The amount of fuel is
Whether the fuel control valve has adjusted the fuel amount from the direction of the maximum fuel position (for example, in the counterclockwise direction) (X direction in FIG. 7A) or adjusted from the direction of the minimum fuel amount position (for example, the clockwise direction). 7 (b) (Y direction), the opening of the fuel control valve changes within the range of play.

【0008】これは、モータのシャフトMSと燃料調節
弁のシャフトVSとの間に隙間が開度の遊びの原因とな
っているためである(図7(c)参照)。さらに、この
遊びが経時変化により大きくなるので、定期的なメンテ
ナンスを必要とする。具体的には、80%の燃料量位置
に調整しても、82%や78%の燃料量であることがあ
りうる。よって、燃焼温度や蒸気量等の燃焼により得ら
れるエネルギーが80%の燃料量において最大になると
考えた場合、実際の燃料量は例えば82%となることが
あり、空燃比としてまだ改善の余地が残る場合がある。
さらに、気温や、気圧の影響が加わり、最適な空燃比を
維持することは難しい。以上の問題は、燃料の質量流量
を正確に把握していないことに起因する問題である。
This is because a gap between the shaft MS of the motor and the shaft VS of the fuel control valve causes play of the opening (see FIG. 7C). Furthermore, since this play increases with the aging, periodic maintenance is required. Specifically, even if the fuel amount is adjusted to the 80% fuel amount position, the fuel amount may be 82% or 78%. Therefore, when it is considered that the energy obtained by the combustion such as the combustion temperature and the steam amount is maximized at the fuel amount of 80%, the actual fuel amount may be, for example, 82%, and there is still room for improvement in the air-fuel ratio. May remain.
Furthermore, it is difficult to maintain an optimum air-fuel ratio due to the influence of temperature and atmospheric pressure. The above problems are caused by the fact that the mass flow rate of the fuel is not accurately grasped.

【0009】具体的には、気圧や、気温を測定して、燃
料の密度を補正計算して、質量流量を算出することで解
決できるが、燃焼制御装置自体に圧力センサ、温度セン
サや、補正計算手段を備える必要があり、構成が複雑に
なる。即ち、燃料量の入力量に対する、最大発熱量を求
めようとしても、上述した理由により、正確な燃料量の
入力値が計測出来ない。よって、従来は、入力(実効)
発熱量から最大発熱状態にする燃焼制御が出来なかっ
た。この発明は上述のような問題点を解消するためにな
されたもので、空気量、燃料量の質量流量を常時監視把
握しながら空燃比制御を行うことにより、供給した燃料
量の最大発熱量が得られる燃焼状態にすることが出来る
空燃比制御方法及び空燃比制御装置を提供することを目
的としている。
More specifically, the problem can be solved by measuring the atmospheric pressure and air temperature, correcting and calculating the density of the fuel, and calculating the mass flow rate. However, the combustion control device itself includes a pressure sensor, a temperature sensor, and a correction sensor. It is necessary to provide calculation means, and the configuration becomes complicated. That is, even if an attempt is made to obtain the maximum heat generation amount with respect to the input amount of the fuel amount, an accurate input value of the fuel amount cannot be measured for the above-described reason. Therefore, conventionally, input (effective)
Combustion control to make the maximum heat generation state from the heat generation amount could not be performed. The present invention has been made in order to solve the above-described problems, and by performing air-fuel ratio control while constantly monitoring and grasping the mass flow of the air amount and the fuel amount, the maximum heat generation amount of the supplied fuel amount can be reduced. It is an object of the present invention to provide an air-fuel ratio control method and an air-fuel ratio control device capable of achieving an obtained combustion state.

【0010】[0010]

【課題を解決するための手段】上述した課題を解決する
ために、本発明の請求項1、請求項5に記載された空燃
比制御方法及び装置は、空気量の質量流量と燃料量の質
量流量の少なくともいずれか一方の質量流量を測定し、
当該質量流量に基づいて燃焼を制御し、燃焼制御中に空
気量と燃料量の少なくともいずれか一方を増減し、この
増減による燃焼状態の変化に基づき、空燃比が理論空燃
比となるように空気量と燃料量の少なくともいずれか一
方を加減して燃焼させている。空気量や燃料量の質量流
量を測定しているので、空気や燃料の質量を確実に検出
することができる。また、質量流量を測定することで、
最小燃料量位置から最大燃料位置のどの燃焼量位置でも
最適な空燃比が得られる。
In order to solve the above-mentioned problems, the air-fuel ratio control method and apparatus according to the first and fifth aspects of the present invention provide a method for controlling the mass flow of the air amount and the mass flow of the fuel amount. Measuring at least one of the mass flow rates,
Combustion is controlled based on the mass flow rate, and at least one of the air amount and the fuel amount is increased or decreased during the combustion control.Based on the change in the combustion state due to the increase or decrease, the air is adjusted so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. At least one of the fuel amount and the fuel amount is adjusted for combustion. Since the mass flow rate of the air amount or the fuel amount is measured, the mass of the air or the fuel can be reliably detected. Also, by measuring the mass flow rate,
An optimum air-fuel ratio is obtained at any combustion amount position from the minimum fuel amount position to the maximum fuel position.

【0011】また、燃焼制御中に空気量または燃料量の
少なくともいずれか一方を増減し、この増減による燃焼
状態の変化に基づき、空燃比が理論空燃比となるように
空気量や燃料量の少なくともいずれか一方を加減して燃
焼させることで、最適空燃比による燃焼を常に行なうこ
とができる。また、空気量や燃焼量調節手段の計時変化
による制御量の変動を修正して、常に最適な空燃比状態
を得ることができる。また、本発明の請求項2、請求項
6に記載された空燃比制御方法及び装置は、マイクロフ
ローセンサを用いて質量流量を測定している。マイクロ
フローセンサを用いることで、正確な質量流量を測定す
ることを可能にする。また、本発明の請求項3に記載さ
れた空燃比制御方法は、燃焼時の発熱量に基づいて燃焼
状態の変化を判断し、空燃比が理論空燃比状態にあるか
否かを評価している。
Further, at least one of the air amount and the fuel amount is increased or decreased during the combustion control, and based on a change in the combustion state due to the increase or decrease, at least the air amount or the fuel amount is adjusted so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. Combustion with the optimum air-fuel ratio can be always performed by controlling the combustion by adjusting either one. Further, it is possible to correct the fluctuation of the control amount due to the time change of the air amount and the combustion amount adjusting means, and to always obtain the optimum air-fuel ratio state. In the air-fuel ratio control method and apparatus according to the second and sixth aspects of the present invention, the mass flow rate is measured using a micro flow sensor. By using a micro flow sensor, it is possible to measure an accurate mass flow rate. Further, the air-fuel ratio control method according to claim 3 of the present invention determines a change in the combustion state based on the amount of heat generated during combustion and evaluates whether the air-fuel ratio is in the stoichiometric air-fuel ratio state. I have.

【0012】燃焼時の発熱量に基づいて燃焼状態の変化
を容易に判断することができ、空燃比の評価を確実に行
なうことができる。また、本発明の請求項4に記載され
た空燃比制御方法は、燃焼時の最大発熱量を、燃焼温度
または被加熱対象物の加熱状態に基づいて決定してい
る。燃焼時の最大発熱量を、燃焼温度自体又は温水温
度、発生蒸気量や蒸気温度等の様々な被加熱対象物を利
用して容易に決定することができる。
A change in the combustion state can be easily determined based on the amount of heat generated during combustion, and the evaluation of the air-fuel ratio can be reliably performed. In the air-fuel ratio control method according to a fourth aspect of the present invention, the maximum heat value during combustion is determined based on the combustion temperature or the heating state of the object to be heated. The maximum calorific value during combustion can be easily determined by using various objects to be heated, such as the combustion temperature itself, the temperature of hot water, the amount of generated steam, and the temperature of steam.

【0013】[0013]

【発明の実施の形態】次に図面を参照して本発明の実施
形態について説明する。図1はこの発明の一実施例の構
成を示すである。図において、1は送風機であり、一端
にファンモータ1aが設けられると共に、ファンモータ
1aに連結されたダクト1bが備わっている。なお、フ
ァンモータ1aは一定の回転数で回転するファン(図示
せず)を備え、当該ファンによって外気が吸入され、ダ
クト1b内へ空気が送出されるようになっている。ま
た、ファンモータ1aの運転・停止は供給空気量制御部
11によって制御されるようになっている。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 shows the configuration of an embodiment of the present invention. In the figure, reference numeral 1 denotes a blower, which has a fan motor 1a at one end and a duct 1b connected to the fan motor 1a. Note that the fan motor 1a includes a fan (not shown) that rotates at a constant rotation speed, and the outside air is sucked in by the fan and the air is sent into the duct 1b. The operation / stop of the fan motor 1a is controlled by the supply air amount control unit 11.

【0014】ファンモータ1aの吹出し口には、ダクト
1b内に流れ込む燃焼用空気の流量を調節するためのダ
ンパ2が設けられている。ダンパ2は、駆動部2aによ
り駆動軸2bを中心に回動するようになっている。そし
て、バーナ8における理論空気量より若干多い量(例え
ば理論空気量の1.05〜1.1倍;バーナにより異な
る)となるように、ダンパ2の開度が調整されている。
1.05〜1.1倍としたのは、この比率での燃焼が最
も良好となるとの経験則があるためである。(請求項で
は「理論空気比」と記しているが、実際は理論空気量に
この倍率を掛けた空気量を供給する。燃焼室において燃
料と空気が理論通りに攪拌し切れないためである。)
A damper 2 for adjusting the flow rate of the combustion air flowing into the duct 1b is provided at the outlet of the fan motor 1a. The damper 2 is configured to rotate about a drive shaft 2b by a drive unit 2a. The opening degree of the damper 2 is adjusted so that the amount is slightly larger than the theoretical air amount in the burner 8 (for example, 1.05 to 1.1 times the theoretical air amount; different depending on the burner).
The reason for setting the ratio to 1.05 to 1.1 times is that there is an empirical rule that combustion at this ratio is the best. (In the claims, "theoretical air ratio" is described, but in actuality, an air amount obtained by multiplying the theoretical air amount by this factor is supplied because fuel and air cannot be completely agitated in the combustion chamber as expected.)

【0015】ダクト1bの下流には、バーナ8が設けら
れている。バーナ8にはガス管7及び燃料量調節弁4を
介してダクト外部から所定量のガス(都市ガス、プロパ
ンガス等)が供給されている。バーナ8では、前記燃焼
用空気とガスとが混合され燃焼される。また、バーナ8
の下流には熱交換器6が設けられている。該熱交換器6
は銅製の冷却用水管6bと、これらを連結するフィン6
cとで構成されている。冷却用水管6bは、一端から供
給される水が該冷却用水管内を通り他端から排出される
ようになっている。また、熱交換器6の近傍には伝熱部
温度センサ6aが配置され、燃焼状態の変化を伝熱部の
温度によって検出するようになっている。
A burner 8 is provided downstream of the duct 1b. A predetermined amount of gas (city gas, propane gas, etc.) is supplied to the burner 8 from outside the duct via a gas pipe 7 and a fuel amount control valve 4. In the burner 8, the combustion air and gas are mixed and burned. Burner 8
A heat exchanger 6 is provided downstream of. The heat exchanger 6
Are cooling water pipes 6b made of copper and fins 6 connecting them.
c. The cooling water pipe 6b is configured such that water supplied from one end passes through the cooling water pipe and is discharged from the other end. A heat transfer section temperature sensor 6a is disposed near the heat exchanger 6, and detects a change in the combustion state based on the temperature of the heat transfer section.

【0016】また、バーナ8の一部には、排気口(煙
突)9が設けられ、ダクト1内を通ってきた燃焼ガスを
排気口9を介して排気するようになっている。ダクト1
bには流量センサ(検出手段)3が設けられると共に、
ガス管7にはバーナ8の上流側であって燃料量調節弁4
の下流側に燃料流量を測定する流量センサ(検出手段)
5が設けられている。流量センサ3は、ダクト1内の燃
焼用空気の流量を検出し、この流量に応じた流量信号F
Sを空燃比制御装置10へ供給する。流量センサ3とし
て、例えば図2に示す熱式流量センサ20を用いる。
An exhaust port (chimney) 9 is provided in a part of the burner 8, and the combustion gas passing through the duct 1 is exhausted through the exhaust port 9. Duct 1
b, a flow sensor (detection means) 3 is provided,
The gas pipe 7 has a fuel amount control valve 4 upstream of the burner 8.
Sensor (detection means) that measures the fuel flow downstream of
5 are provided. The flow rate sensor 3 detects a flow rate of the combustion air in the duct 1 and a flow rate signal F corresponding to the flow rate.
S is supplied to the air-fuel ratio control device 10. As the flow sensor 3, for example, a thermal flow sensor 20 shown in FIG. 2 is used.

【0017】図2は、熱式流量センサ20の構成を示す
正面図である。この熱式流量センサ20は、ダクト1b
内において空気の流れる方向に直交して並設された2本
の筒体21,22と、ダクト1bの外部に突出した筒体
端部とセンサ本体24の貫通穴25とを接続したチュー
ブ26,27と、センサ本体24の貫通穴25内に設け
られた流量センサ部28とを備える。
FIG. 2 is a front view showing the structure of the thermal type flow sensor 20. The thermal type flow sensor 20 includes a duct 1b
Two tubes 21 and 22 arranged side by side in a direction perpendicular to the direction of air flow in the inside, and a tube 26 connecting an end of the tube protruding outside the duct 1b and a through hole 25 of the sensor body 24, 27 and a flow sensor 28 provided in the through hole 25 of the sensor main body 24.

【0018】次に、流量センサ部28の構成を図3に示
す。図3は前記熱式流量センサの流量センサ部を示す斜
視図である。図3に示すように、該流量センサ部28
は、1.7mm角の半導体チップ28a上に厚さ20μ
m以下のダイアフラム28bが形成され、かつ、該ダイ
アフラム28b上に発熱抵抗パターン28cと感温抵抗
パターン28d,28eが配されたマイクロフローセン
サ(登録商標)28が取付けられたものである。
Next, the configuration of the flow sensor unit 28 is shown in FIG. FIG. 3 is a perspective view showing a flow sensor unit of the thermal flow sensor. As shown in FIG.
Is 20 μm thick on a 1.7 mm square semiconductor chip 28a.
m, and a micro-flow sensor (registered trademark) 28 having a heating resistance pattern 28c and temperature-sensitive resistance patterns 28d and 28e is mounted on the diaphragm 28b.

【0019】このマイクロフローセンサでは、所定の電
流を発熱抵抗パターン28cに供給して発熱させてお
き、感温抵抗パターン28d,28eの抵抗値をある一
定の値にしておく。ダクト1bを流れる燃焼用空気は、
図2に示す一方の筒体21の穴21aから流入し、チュ
ーブ26、貫通穴25、チューブ27を経て筒体22の
穴22aから流出する。このとき、このマイクロフロー
センサ28に流れる空気の流量に応じて、半導体チップ
上の熱分布が変化する。これによって、感温抵抗パター
ン28d,28eの抵抗値が変化する。この抵抗値の変
化は空燃比制御部10によって検出される。上述した流
量センサ部28は、非常に小型に構成されているため、
感度が非常によく、応答性に優れ(数msec)、常に正確
な流量測定が出来る。なお、燃焼用空気に含まれる粉塵
を捕集するために、上述したマイクロフローセンサの筒
体21,22の内部には、表面に梨地等の微細な凹凸面
を設けている。(特許第2880398号参照)
In this micro flow sensor, a predetermined current is supplied to the heating resistor pattern 28c to generate heat, and the resistance values of the temperature-sensitive resistor patterns 28d and 28e are set to a certain value. The combustion air flowing through the duct 1b is
It flows in from the hole 21a of one cylindrical body 21 shown in FIG. 2, and flows out of the hole 22a of the cylindrical body 22 through the tube 26, the through hole 25, and the tube 27. At this time, the heat distribution on the semiconductor chip changes according to the flow rate of the air flowing through the micro flow sensor 28. As a result, the resistance values of the temperature-sensitive resistance patterns 28d and 28e change. This change in the resistance value is detected by the air-fuel ratio controller 10. Since the above-described flow sensor unit 28 is configured to be very small,
Very good sensitivity, excellent response (several msec), and always accurate flow measurement. In order to collect dust contained in the air for combustion, fine irregularities such as mats are provided on the surfaces inside the cylinders 21 and 22 of the micro flow sensor described above. (See Patent No. 2880398)

【0020】一方、燃料量を測定する質量流量計5は、
図1に示す通りガス管7に配置されている。ガス管内
は、空気を供給するダクト1bに較べて粉塵の量が少な
いので、ダクト1bに設けられた質量流量計3と異な
り、図2に示したような粉塵のトラップ構造を有さなく
ても良い。質量流量計5は、流量センサ3と同様に質量
流量計測をする機能を有するため、図3に示す流量セン
サ部(マイクロフローセンサ28)のみを用いてバーナ
8に供給されるガスの質量流量を測定する。空燃比制御
部(制御手段)10は、燃焼装置制御部12からの発生
熱量指示により、空気量に関しては空気量制御ダンパ2
の開度、燃料量に関しては燃料量調節弁4の開度を計算
する。この具体的な手順は図4に示すフローチャートに
基づいて行なわれる。
On the other hand, the mass flow meter 5 for measuring the amount of fuel is
As shown in FIG. 1, it is arranged in the gas pipe 7. Since the amount of dust in the gas pipe is smaller than that of the duct 1b for supplying air, unlike the mass flow meter 3 provided in the duct 1b, the gas pipe does not need to have a dust trap structure as shown in FIG. good. Since the mass flow meter 5 has a function of measuring the mass flow rate similarly to the flow rate sensor 3, the mass flow rate of the gas supplied to the burner 8 is measured using only the flow rate sensor unit (micro flow sensor 28) shown in FIG. Measure. The air-fuel ratio control unit (control means) 10 controls the air amount control damper 2 based on the generated heat amount instruction from the combustion device control unit 12 for the air amount.
With respect to the opening degree and the fuel amount, the opening degree of the fuel amount control valve 4 is calculated. This specific procedure is performed based on the flowchart shown in FIG.

【0021】以下、このフローチャートについて説明す
る。まず最初に、燃焼装置制御部12により要求発熱量
値Q(KJ/h)を算出する(ステップS10)。次に、要
求発熱量に対応する燃料量を求める(ステップS1
1)。ここで、例えば図1の燃焼装置において、要求発
生熱量が、Q(KJ/h)であるとき、燃料が天然ガスであ
ると、その単位体積当たりの発熱量は、E(KJ/m3)な
らば、Q/E(m3)の燃料量を供給することになる。
Hereinafter, this flowchart will be described. First, the required heat value Q (KJ / h) is calculated by the combustion device controller 12 (step S10). Next, a fuel amount corresponding to the required calorific value is obtained (step S1).
1). Here, for example, in the combustion device shown in FIG. 1, when the required heat generation amount is Q (KJ / h) and the fuel is natural gas, the heat generation amount per unit volume is E (KJ / m3). For example, a fuel amount of Q / E (m3) is supplied.

【0022】次に、ステップS11で求めた燃料量に対
応する燃料調節弁開度を求める(ステップS12)。燃
料調節弁開度は、質量流量計5の測定値に基づき、単位
時間当りの燃料量供給量がQ/E(m3)となるように
制御されている。なお、流量と開度の関係の詳細説明は
省略するが、燃料調節弁の開度と流量の関係は、図8に
示すように空燃比制御装置10内にテーブルや関数式と
して予め保有されており、必要とする燃料調節弁開度を
容易に求めることができる。
Next, a fuel control valve opening corresponding to the fuel amount obtained in step S11 is obtained (step S12). The fuel control valve opening is controlled based on the measurement value of the mass flow meter 5 so that the fuel supply amount per unit time becomes Q / E (m3). Although a detailed description of the relationship between the flow rate and the opening degree is omitted, the relationship between the opening degree of the fuel control valve and the flow rate is stored in advance in the air-fuel ratio control device 10 as a table or a functional expression as shown in FIG. Thus, the required fuel control valve opening can be easily obtained.

【0023】なお、Q/E(m3) の燃料量に対する
最適な空気量は、理論空気量を求める方法(例えば、日
本バーナ研究会会報第74号、17頁、1993)によ
り、 燃料重量当りの理論空気量=11.424(n+1/
3) /(n+1/7)(m3 /kg) ここで、n=パラフィン系燃料CnH2n+2の炭素数
より求まる。求まった理論空気量の1.05〜1.1倍
を、燃料量と同様に、空気量を得る空気量制御ダンパ位
置を求めて、ダンパ位置を調整する(ステップS1
3)。このダンパ位置の調整は、質量流量計3の測定値
に基づいて行なわれる。以上により、空燃比の良好状
態、即ち最大発熱量を発生させるであろう、バーナに投
入すべき空気量及び燃料量を得ることになる。
The optimum amount of air for the fuel amount of Q / E (m3) can be determined by a method for obtaining a theoretical amount of air (for example, Japanese Society of Burner Research Vol. 74, pp. 17, 1993). Theoretical air amount = 11.424 (n + 1 /
3) / (n + /) (m3 / kg) Here, n is obtained from the carbon number of the paraffin-based fuel CnH2n + 2. As with the fuel amount, an air amount control damper position for obtaining the air amount is obtained from 1.05 to 1.1 times the calculated theoretical air amount, and the damper position is adjusted (step S1).
3). The adjustment of the damper position is performed based on the measured value of the mass flow meter 3. As described above, a good air-fuel ratio state, that is, the amount of air and fuel to be supplied to the burner, which will generate the maximum heat value, can be obtained.

【0024】さらに、空気量制御ダンパ位置および燃料
量調節弁位置が制御目標値に到達した後で、空燃比をチ
ェックする必要があるか否かを判断する(ステップS1
4)。空燃比のチェックが必要なときは、実際の空気量
と燃料量を再度、空気量質量流量計3および燃料量流量
計5で測定し、燃料量調節弁の開度位置での測定流量値
により、空気量を再計算して、空燃比を良好な状態に維
持するよう空気量を調整する。これは、上述の通り燃料
調節弁開度が指示流量とずれていることがあるためで、
ここで、空燃比のずれを補正する。
Further, after the position of the air amount control damper and the position of the fuel amount control valve have reached the control target values, it is determined whether or not the air-fuel ratio needs to be checked (step S1).
4). When it is necessary to check the air-fuel ratio, the actual air amount and the fuel amount are measured again by the air mass flow meter 3 and the fuel flow meter 5, and the measured flow value at the opening position of the fuel amount control valve is used. , The air amount is recalculated, and the air amount is adjusted so as to maintain the air-fuel ratio in a good state. This is because the fuel control valve opening may be different from the indicated flow rate as described above.
Here, the deviation of the air-fuel ratio is corrected.

【0025】次に、上述した空燃比制御を最適な状態に
維持する方法(空燃比制御の評価方法)について図1に
示す燃焼装置及び図5に示すフローチャートを参照して
説明する。なお、ここでは燃焼状態を伝熱部温度センサ
6aで検出しながら空燃比制御の評価を行う例について
説明する。
Next, a method for maintaining the above-described air-fuel ratio control in an optimal state (a method for evaluating the air-fuel ratio control) will be described with reference to the combustion apparatus shown in FIG. 1 and a flowchart shown in FIG. Here, an example in which the evaluation of the air-fuel ratio control is performed while the combustion state is detected by the heat transfer section temperature sensor 6a will be described.

【0026】当該評価を行なうに当って、上述の制御ル
ーチンによって空燃比を良好にした空気量と燃料量とが
バーナ8にて燃焼され、火炎Fとなって熱交換器6の水
管6bを加熱している。従って、上述の燃焼制御ルーチ
ンにおいて、空燃比制御を行い、良好な(ほぼ最適の)
空燃比となった状態で空燃比制御結果評価ルーチンが開
始される(ステップS20,S21)。
In performing the evaluation, the air amount and the fuel amount whose air-fuel ratio has been improved by the above-described control routine are burned by the burner 8, and become the flame F to heat the water pipe 6b of the heat exchanger 6. are doing. Therefore, in the above-described combustion control routine, the air-fuel ratio control is performed, and a favorable (almost optimal)
The air-fuel ratio control result evaluation routine is started with the air-fuel ratio attained (steps S20, S21).

【0027】まず最初に伝熱部温度センサ6aにより測
定された温度を測定しながら、空気量を微少量、例えば
1%減らす(ステップS22)。その結果、伝熱部温度
センサ6aにより測定された温度が、上下に変動するか
により、空燃比制御の評価を行う(ステップS24)。
即ち、(1) 温度が上がれば、元の空気量の位置よ
り、より空燃比が改善されたことになり、(2) 温度
が下がれば、元の空気量の位置より、より空燃比が劣化
したことになる。よって、(1)の場合は、さらに空気
量を(例えば1%)減らし、再度空燃比の評価を行う
(ステップS24)。
First, while measuring the temperature measured by the heat transfer section temperature sensor 6a, the amount of air is reduced by a very small amount, for example, 1% (step S22). As a result, the air-fuel ratio control is evaluated based on whether the temperature measured by the heat transfer section temperature sensor 6a fluctuates up and down (step S24).
That is, (1) when the temperature rises, the air-fuel ratio is improved more than the original air amount position, and (2) when the temperature decreases, the air-fuel ratio deteriorates more than the original air amount position. It will be done. Therefore, in the case of (1), the air amount is further reduced (for example, 1%), and the air-fuel ratio is evaluated again (step S24).

【0028】また、(2)の場合は、元の空気量の位置
の方が、より空燃比が最適に近いので、空気量を今度
は、例えば、1%増やす(ステップS25)。そして、
伝熱部温度センサ6aにより測定された温度が上がるか
否かを判断し(ステップS26)、温度が上がった場合
はさらに空気量を(例えば1%)増やし、再度空燃比の
評価を行う(ステップS27)。ステップS26でセン
サ6aの伝熱部温度が上がらない場合は、ステップS2
2〜ステップS27において、伝熱部温度センサ6aに
より測定された温度が最も高い空気量の位置を最適空燃
比が得られる位置と判断して、この空気量が継続して供
給できるように流量センサの出力に基づいて空気量制御
ダンパ2の開度を制御する(ステップS28)。
In the case of (2), the position of the original air amount is closer to the optimum air-fuel ratio, so the air amount is increased by, for example, 1% (step S25). And
It is determined whether or not the temperature measured by the heat transfer section temperature sensor 6a increases (step S26). If the temperature increases, the air amount is further increased (for example, 1%), and the air-fuel ratio is evaluated again (step S26). S27). If the temperature of the heat transfer section of the sensor 6a does not rise in step S26, step S2
In steps S2 to S27, the position of the air amount where the temperature measured by the heat transfer section temperature sensor 6a is the highest is determined as the position where the optimum air-fuel ratio is obtained, and the flow rate sensor is set so that this air amount can be continuously supplied. The opening degree of the air amount control damper 2 is controlled on the basis of the output (step S28).

【0029】続いて、図4に示す制御ルーチンに戻って
燃焼制御を継続すべきか否かを判断し(ステップS1
5)、継続すべき場合は、一定時間毎に上述した空燃比
の評価を行いながら燃焼制御を継続する。また、継続す
べきでない場合は燃焼制御を止めて燃焼を終了させる
(ステップS16)。なお、上述した空燃比制御結果の
評価は、時間を定めて(例えば3分ごと)行っている
が、常時行っても良い。さらには、燃焼量変更時は常時
評価を行い、燃焼量一定時は時間を定めて行ってもよ
い。また、本例では、伝熱部温度で評価を行ったが、燃
焼装置の出力となる燃焼温度自体、温水温度や、発生蒸
気量ないし蒸気温度等の被加熱対象物の加熱状態に基づ
いて、同様の空燃比制御結果の評価を行ってもよい。ま
た、空燃比制御の評価において、空気量を増減させる代
わりに燃料量を増減させても良く、もしくは空気量及び
燃料量の双方を増減させても良い。
Subsequently, returning to the control routine shown in FIG. 4, it is determined whether or not the combustion control should be continued (step S1).
5) If it is to be continued, the combustion control is continued while the air-fuel ratio is evaluated at regular intervals. If it should not be continued, the combustion control is stopped and the combustion is terminated (step S16). Although the evaluation of the air-fuel ratio control result described above is performed for a predetermined time (for example, every three minutes), it may be performed at all times. Further, the evaluation may be performed at all times when the combustion amount is changed, and the time may be determined when the combustion amount is constant. Further, in this example, the evaluation was performed using the heat transfer unit temperature, but based on the heating state of the object to be heated such as the combustion temperature itself, which is the output of the combustion device, the hot water temperature, the generated steam amount or the steam temperature, Similar evaluation of the air-fuel ratio control result may be performed. In the evaluation of the air-fuel ratio control, the fuel amount may be increased or decreased instead of increasing or decreasing the air amount, or both the air amount and the fuel amount may be increased or decreased.

【0030】さらには、ステップS10〜ステップS1
6に記載された燃焼制御ルーチンにおいて、供給空気量
を固定し、燃料量のみを質量流量センサ5で測定して燃
焼制御しても良く、これとは逆に供給燃料量を固定し、
供給空気量のみを質量流量センサ3で測定して燃焼制御
しても良い。なお、上述した実施例では、ガス(天然ガ
ス、プロパンガス)を用いた燃焼器について述べたが、
これに限定されることなく、灯油、軽油等、他の燃料を
用いるものでもよい。
Further, steps S10 to S1
In the combustion control routine described in 6, the supply air amount may be fixed, and only the fuel amount may be measured by the mass flow sensor 5 to perform combustion control. Conversely, the supply fuel amount may be fixed,
Combustion control may be performed by measuring only the supplied air amount with the mass flow sensor 3. In the above-described embodiment, the combustor using gas (natural gas, propane gas) has been described.
Without being limited to this, another fuel such as kerosene or light oil may be used.

【0031】以上、説明したように、この発明における
空燃比制御装置は、空気量または燃料量の質量流量検出
手段により、燃焼用空気量または燃料量の流量を検出し
ているので、確実な燃料の質量を検出出来るとともに、
最小燃料量位置から最大燃料位置のどの燃焼量位置で
も、最適な空燃比が得られる。よって、正確に把握した
投入燃料量における最大発熱量を計算にて得ることが出
来て、実際の燃焼の結果である、発生熱量が最大になっ
たかどうかを判別するための伝熱部の温度や、発生した
温水温度や発生蒸気量ないし蒸気温度の増減により、真
の最適空燃比による燃焼の評価を行えるので、常に最大
発熱状態を得る燃焼を行うことが出来る。即ち、空気量
や燃焼量調節手段の計時変化による制御量の変動を修正
して、常に最適な空燃比状態を得ることが出来る。
As described above, the air-fuel ratio control apparatus of the present invention detects the combustion air amount or the fuel amount flow rate by the air flow amount or the fuel amount mass flow rate detecting means. Can detect the mass of
An optimum air-fuel ratio can be obtained at any of the combustion amount positions from the minimum fuel amount position to the maximum fuel position. Therefore, it is possible to obtain the maximum calorific value at the input fuel amount accurately grasped by calculation, and to determine whether the generated heat amount is the maximum as a result of the actual combustion. Since the evaluation of the combustion based on the true optimum air-fuel ratio can be performed based on the generated hot water temperature or the generated steam amount or the increase / decrease of the steam temperature, it is possible to always perform the combustion for obtaining the maximum heat generation state. That is, it is possible to correct the fluctuation of the control amount due to the time change of the air amount or the combustion amount adjusting means, and to always obtain the optimum air-fuel ratio state.

【0032】また、空気または燃料供給手段に、何らか
の制御異常、例えばエアフィルタの目詰りや、燃料管の
ゴミ詰まりなどにより、初期の流量が得られないときに
も、エアフィルタの目詰り時には、目詰り時の、最大空
気供給量以上の燃料量を供給しないようにしたりするこ
とが出来る。さらに、この発明によれば、図6に示すご
とく、燃料の質量流量と空気の質量流量が比例関係にあ
ることを利用するので、質量流量を求める演算手段が不
要である。即ち、質量流量計により空気量または燃料量
を測定して空気量または燃料量を質量流量にて把握して
いるので、空燃比制御を行なう際、気温や気圧を測定す
る必要がない。また、質量流量計の出力値そのものが、
バーナに投入される質量そのものなので、投入熱量を計
算する際、測定した流量値に燃料の単位体積当たりの発
熱量を単に掛け合わせるだけで、投入発熱量が求まるの
で、計算手段が単純になり、燃料の温度センサや圧力セ
ンサが不要であるばかりでなく、温度、圧力補正計算手
段が不要である。
Further, when an initial flow rate cannot be obtained due to some control abnormality in the air or fuel supply means, for example, clogging of the air filter or clogging of the fuel pipe, when the air filter is clogged, At the time of clogging, it is possible not to supply a fuel amount more than the maximum air supply amount. Further, according to the present invention, as shown in FIG. 6, the fact that the mass flow rate of the fuel and the mass flow rate of the air are in a proportional relationship is used, so that there is no need for an arithmetic means for calculating the mass flow rate. That is, since the air amount or the fuel amount is measured by the mass flow rate by measuring the air amount or the fuel amount by the mass flow meter, it is not necessary to measure the air temperature or the air pressure when performing the air-fuel ratio control. Also, the output value of the mass flow meter itself is
Since the mass input to the burner itself, when calculating the heat input, simply multiplying the measured flow rate value by the heat value per unit volume of fuel, the input heat value can be obtained, so the calculation means becomes simple, Not only is there no need for a fuel temperature sensor or pressure sensor, but also there is no need for temperature and pressure correction calculation means.

【0033】さらに、燃料の温度センサや圧力センサは
測定に要する時間遅れがないので、瞬時の空気量および
燃料量が測定出来る。また、空燃比制御結果の評価にお
いては、燃焼装置の出力である、温水温度や発生蒸気量
ないし蒸気温度や伝熱部温度等により、例示のように、
簡単に評価できる。酸素濃度や一酸化炭素濃度測定のよ
うな、時間が掛かり、高価で、寿命が短いセンサを使用
することがないため、メンテナンスも容易となる。な
お、前記空燃比制御は、内燃機関、外燃機関、燃料電池
の一酸化炭素発生装置、触媒燃焼装置でも、燃焼状態評
価指標を、例えば一酸化炭素発生量等に適用してもよ
い。
Further, since the fuel temperature sensor and the pressure sensor have no time delay required for measurement, the instantaneous air amount and fuel amount can be measured. In addition, in the evaluation of the air-fuel ratio control result, as shown by way of example, depending on the output of the combustion device, the hot water temperature, the generated steam amount or the steam temperature, the heat transfer section temperature, etc.
Easy to evaluate. Maintenance is also facilitated because a time-consuming, expensive, short-lived sensor such as the measurement of oxygen concentration or carbon monoxide concentration is not used. In the air-fuel ratio control, even in an internal combustion engine, an external combustion engine, a carbon monoxide generator and a catalytic combustion device of a fuel cell, the combustion state evaluation index may be applied to, for example, the amount of carbon monoxide generated.

【0034】[0034]

【発明の効果】本発明の請求項1、請求項5に記載され
た空燃比制御方法及び装置は、空気量や燃料量の質量流
量を測定しているので、空気や燃料の質量を確実に検出
することができる。また、質量流量を測定することで、
最小燃料量位置から最大燃料位置のどの燃焼量位置でも
最適な空燃比が得られる。また、燃焼制御中に空気量ま
たは燃料量の少なくともいずれか一方を増減し、この増
減による燃焼状態の変化に基づき、空燃比が理論空燃比
となるように空気量や燃料量の少なくともいずれか一方
を加減して燃焼させているので、最適空燃比による燃焼
を常に行なうことができる。また、空気量や燃焼量調節
手段の計時変化による制御量の変動を修正して、常に最
適な空燃比状態を得ることができる。
According to the air-fuel ratio control method and apparatus according to the first and fifth aspects of the present invention, since the mass flow rate of the air amount and the fuel amount is measured, the mass of the air and the fuel can be reliably determined. Can be detected. Also, by measuring the mass flow rate,
An optimum air-fuel ratio is obtained at any combustion amount position from the minimum fuel amount position to the maximum fuel position. Further, during the combustion control, at least one of the air amount and the fuel amount is increased or decreased, and based on a change in the combustion state due to the increase or decrease, at least one of the air amount and the fuel amount is adjusted so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. Therefore, combustion at the optimum air-fuel ratio can always be performed. Further, it is possible to correct the fluctuation of the control amount due to the time change of the air amount and the combustion amount adjusting means, and to always obtain the optimum air-fuel ratio state.

【0035】また、本発明の請求項2、請求項6に記載
された空燃比制御方法及び装置は、マイクロフローセン
サを用いることで、正確な質量流量を測定することを可
能にする。また、本発明の請求項3に記載された空燃比
制御方法は、燃焼時の発熱量に基づいて燃焼状態の変化
を容易に判断することができ、空燃比の評価を確実に行
なうことができる。また、本発明の請求項4に記載され
た空燃比制御方法は、燃焼時の最大発熱量を、燃焼温度
又は被加熱対象物の加熱状態に基づいて容易に決定する
ことができる。
Further, the air-fuel ratio control method and apparatus according to the second and sixth aspects of the present invention enable accurate measurement of the mass flow rate by using a micro flow sensor. Further, according to the air-fuel ratio control method described in claim 3 of the present invention, a change in the combustion state can be easily determined based on the amount of heat generated during combustion, and the air-fuel ratio can be reliably evaluated. . Further, according to the air-fuel ratio control method described in claim 4 of the present invention, the maximum calorific value during combustion can be easily determined based on the combustion temperature or the heating state of the object to be heated.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本実施形態を示す概略構成図である。FIG. 1 is a schematic configuration diagram showing an embodiment.

【図2】 図1の空気量質量流量センサの構造図であ
る。
FIG. 2 is a structural diagram of the air mass flow sensor of FIG. 1;

【図3】 空気量または燃料量の質量流量センサ部の構
造図である。
FIG. 3 is a structural diagram of a mass flow rate sensor unit for an air amount or a fuel amount.

【図4】 空燃比制御開始時の制御のフローチャートで
ある。
FIG. 4 is a flowchart of control at the start of air-fuel ratio control.

【図5】 空燃比制御結果の評価方法のフローチャート
である。
FIG. 5 is a flowchart of a method for evaluating an air-fuel ratio control result.

【図6】 最大熱量を発生する状態での燃料の質量流量
と空気量の質量流量のグラフである。
FIG. 6 is a graph of a mass flow rate of a fuel and a mass flow rate of an air quantity in a state where a maximum amount of heat is generated.

【図7】 空気量または燃料量調節手段の例の「遊び」
が出来る構成を示す部分断面図である。
FIG. 7 “Play” of an example of the air amount or fuel amount adjusting means.
FIG. 3 is a partial cross-sectional view showing a configuration that can perform the following.

【符号の説明】[Explanation of symbols]

1 送風機 2 空気量制御ダンパ 3 空気量質量流量計 4 燃料量調節弁 5 燃料量質量流量計 6 熱交換器 6a 伝熱部温度センサ 7 燃料(ガス)配管 8 バーナ 9 排熱口 10 空燃比制御装置 11 空気量制御部 12 燃焼装置制御部 28 マイクロフローセンサ DESCRIPTION OF SYMBOLS 1 Blower 2 Air amount control damper 3 Air amount mass flow meter 4 Fuel amount control valve 5 Fuel amount mass flow meter 6 Heat exchanger 6a Heat transfer part temperature sensor 7 Fuel (gas) piping 8 Burner 9 Heat exhaust port 10 Air-fuel ratio control Device 11 Air flow control unit 12 Combustion device control unit 28 Micro flow sensor

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F02D 45/00 366 F02D 45/00 366B F23N 1/02 F23N 1/02 D ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI Theme coat ゛ (Reference) F02D 45/00366 F02D 45/00 366B F23N 1/02 F23N 1/02 D

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 空燃比制御を行う燃焼制御方法であっ
て、空気量の質量流量と燃料量の質量流量の少なくとも
いずれか一方の質量流量を測定し、測定された前記質量
流量に基づいて燃焼を制御し、前記燃焼制御中に空気量
と燃料量の少なくともいずれか一方を増減し、この増減
による燃焼状態の変化に基づき、空燃比が理論空燃比と
なるように空気量と燃料量の少なくともいずれか一方を
加減して燃焼させることを特徴とする空燃比制御方法。
1. A combustion control method for controlling an air-fuel ratio, comprising measuring a mass flow rate of at least one of a mass flow rate of an air quantity and a mass flow rate of a fuel quantity, and performing combustion based on the measured mass flow rate. During the combustion control, at least one of the air amount and the fuel amount is increased or decreased, and at least the air amount and the fuel amount are adjusted so that the air-fuel ratio becomes the stoichiometric air-fuel ratio based on a change in the combustion state due to the increase or decrease. An air-fuel ratio control method, characterized in that either one of them is adjusted for combustion.
【請求項2】 マイクロフローセンサを用いて前記質
量流量を測定することを特徴とする、請求項1に記載の
空燃比制御方法。
2. The air-fuel ratio control method according to claim 1, wherein the mass flow rate is measured using a micro flow sensor.
【請求項3】 燃焼時の発熱量に基づいて燃焼状態の変
化を判断し、空燃比が理論空燃比状態にあるか否かを評
価することを特徴とする、請求項1又は請求項2に記載
の空燃比制御方法。
3. The method according to claim 1, wherein a change in the combustion state is determined based on a calorific value during combustion, and whether or not the air-fuel ratio is in a stoichiometric air-fuel ratio state is evaluated. The air-fuel ratio control method described in the above.
【請求項4】 燃焼時の最大発熱量は、燃焼温度または
被加熱対象物の加熱状態に基づいて決定されることを特
徴とする、請求項3に記載の空燃比制御方法。
4. The air-fuel ratio control method according to claim 3, wherein the maximum calorific value during combustion is determined based on a combustion temperature or a heating state of an object to be heated.
【請求項5】 空燃比制御を行う燃焼制御装置であっ
て、空気量の質量流量と燃料量の質量流量の少なくとも
いずれか一方の質量流量を測定する質量流量測定手段
と、前記質量流量測定手段によって測定された質量流量
に基づいた燃焼制御中に、空気量と燃料量の少なくとも
いずれか一方を増減し、前記増減による燃焼状態の変化
に基づき、空燃比が理論空燃比となるように空気量と燃
料量の少なくともいずれか一方を加減して燃焼させる空
燃比制御手段とを備えたことを特徴とする空燃比制御装
置。
5. A combustion control device for controlling an air-fuel ratio, wherein said mass flow rate measuring means measures at least one of a mass flow rate of an air quantity and a mass flow rate of a fuel quantity, and said mass flow rate measuring means. During the combustion control based on the measured mass flow rate, at least one of the air amount and the fuel amount is increased or decreased, and based on the change in the combustion state due to the increase or decrease, the air amount is adjusted so that the air-fuel ratio becomes the stoichiometric air-fuel ratio. And an air-fuel ratio control means for adjusting and burning at least one of the fuel amounts.
【請求項6】 前記質量流量測定手段がマイクロフロー
センサであることを特徴とする、請求項5に記載の空燃
比制御装置。
6. The air-fuel ratio control device according to claim 5, wherein said mass flow rate measuring means is a micro flow sensor.
JP2001069119A 2001-03-12 2001-03-12 Air-fuel ratio control method and device Pending JP2002267159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001069119A JP2002267159A (en) 2001-03-12 2001-03-12 Air-fuel ratio control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001069119A JP2002267159A (en) 2001-03-12 2001-03-12 Air-fuel ratio control method and device

Publications (1)

Publication Number Publication Date
JP2002267159A true JP2002267159A (en) 2002-09-18

Family

ID=18927195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001069119A Pending JP2002267159A (en) 2001-03-12 2001-03-12 Air-fuel ratio control method and device

Country Status (1)

Country Link
JP (1) JP2002267159A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220917A (en) * 2004-02-09 2005-08-18 Ge Jenbacher Gmbh & Co Ohg Method and device for controlling internal combustion engine and internal combustion engine using the method and the device
JP2007316060A (en) * 2006-04-24 2007-12-06 Johnson Matthey Plc Particulate matter generator and capturing device
WO2009088017A1 (en) 2008-01-08 2009-07-16 Yamatake Corporation Flow rate control device
WO2009088016A1 (en) 2008-01-08 2009-07-16 Yamatake Corporation Fuel supply device
JP2011080700A (en) * 2009-10-07 2011-04-21 Ngk Insulators Ltd Method and device for controlling combustion air of combustion furnace
JP2011099594A (en) * 2009-11-04 2011-05-19 Sunray Reinetsu Co Ltd Combustion device and combustion control method
JP2011252666A (en) * 2010-06-03 2011-12-15 Maeda Road Constr Co Ltd Burner device, combustion method of burner, and control memory for the same
US8097371B2 (en) 2006-04-11 2012-01-17 Panasonic Corporation Hydrogen generator, fuel cell system comprising the same, and operation method thereof
KR101160025B1 (en) 2009-08-27 2012-06-25 현대제철 주식회사 Method for Controlling Air-Fuel Ratio with Change of Combustibility of Mixed Gas in a Reheating Furnace
WO2012127569A1 (en) * 2011-03-18 2012-09-27 トヨタ自動車株式会社 Control device for internal combustion engine
JP2013238390A (en) * 2012-05-11 2013-11-28 Fisher-Rosemount Systems Inc Method and apparatus to control combustion process system
JP2014020681A (en) * 2012-07-19 2014-02-03 Nippon Thermoener Co Ltd Air-fuel ratio control method and device for boiler
JP2020119443A (en) * 2019-01-28 2020-08-06 東京瓦斯株式会社 Combustion-related information provision control device, and combustion-related information provision control program

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220917A (en) * 2004-02-09 2005-08-18 Ge Jenbacher Gmbh & Co Ohg Method and device for controlling internal combustion engine and internal combustion engine using the method and the device
US8097371B2 (en) 2006-04-11 2012-01-17 Panasonic Corporation Hydrogen generator, fuel cell system comprising the same, and operation method thereof
KR101329067B1 (en) 2006-04-24 2013-11-14 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Particulate matter generator and collector
JP2007316060A (en) * 2006-04-24 2007-12-06 Johnson Matthey Plc Particulate matter generator and capturing device
US8636024B2 (en) 2008-01-08 2014-01-28 Azbil Corporation Fuel supply device
JP2009162436A (en) * 2008-01-08 2009-07-23 Yamatake Corp Flow control apparatus
WO2009088017A1 (en) 2008-01-08 2009-07-16 Yamatake Corporation Flow rate control device
US8640731B2 (en) 2008-01-08 2014-02-04 Azbil Corporation Flow rate control device
WO2009088016A1 (en) 2008-01-08 2009-07-16 Yamatake Corporation Fuel supply device
KR101160025B1 (en) 2009-08-27 2012-06-25 현대제철 주식회사 Method for Controlling Air-Fuel Ratio with Change of Combustibility of Mixed Gas in a Reheating Furnace
JP2011080700A (en) * 2009-10-07 2011-04-21 Ngk Insulators Ltd Method and device for controlling combustion air of combustion furnace
JP2011099594A (en) * 2009-11-04 2011-05-19 Sunray Reinetsu Co Ltd Combustion device and combustion control method
JP2011252666A (en) * 2010-06-03 2011-12-15 Maeda Road Constr Co Ltd Burner device, combustion method of burner, and control memory for the same
JP5267745B2 (en) * 2011-03-18 2013-08-21 トヨタ自動車株式会社 Control device for internal combustion engine
WO2012127569A1 (en) * 2011-03-18 2012-09-27 トヨタ自動車株式会社 Control device for internal combustion engine
JP2013238390A (en) * 2012-05-11 2013-11-28 Fisher-Rosemount Systems Inc Method and apparatus to control combustion process system
JP2014020681A (en) * 2012-07-19 2014-02-03 Nippon Thermoener Co Ltd Air-fuel ratio control method and device for boiler
JP2020119443A (en) * 2019-01-28 2020-08-06 東京瓦斯株式会社 Combustion-related information provision control device, and combustion-related information provision control program
JP7309372B2 (en) 2019-01-28 2023-07-18 東京瓦斯株式会社 Combustion-related information provision control device, combustion-related information provision control program

Similar Documents

Publication Publication Date Title
US8230825B2 (en) Boiler control system
JP2002267159A (en) Air-fuel ratio control method and device
CN113646584A (en) Method for operating a premix gas burner, premix gas burner and boiler
CN108716664A (en) A kind of method and apparatus of on-line measurement burner hearth ash fouling coefficient
CA2569353A1 (en) System, method, and article of manufacture for adjusting co emission levels at predetermined locations in a boiler system
KR100406472B1 (en) Air proportionality type boiler using air pressure sensor
US6712282B2 (en) Fluid delivery device, particularly for delivery of combustion air to a heating burner of a motor vehicle
JP4225698B2 (en) Combustion equipment
KR100704711B1 (en) Air proportionality type gas boiler
JP2003042444A (en) Water heater
CN117242300A (en) Method for controlling premixed gas burner and control and adjustment device thereof
JP2004226035A (en) Combustion apparatus and hot-water supply device
CN1332152C (en) Air proportional boiler using air pressure sensor
KR100270900B1 (en) A gas boiler
KR100704712B1 (en) Multi air proportionality type gas boiler
US10634346B2 (en) Heater device and method for operating a heater device
JP2939135B2 (en) Gas combustion equipment
CN109765266A (en) A kind of measuring device and method of liquid fuel low heat value
CN211601074U (en) Water heating device
JP3534865B2 (en) Air-fuel ratio control device for combustor
RU2152557C1 (en) Method of determination of flow rate of flue gases
JPH07260140A (en) Combustion controller
JP2946279B2 (en) Control method of gas combustion device and gas combustion device
JPH0658530A (en) Combustion control device for hot water supply heater
JP3611381B2 (en) Combustor control device and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061121