JP4225698B2 - Combustion equipment - Google Patents

Combustion equipment Download PDF

Info

Publication number
JP4225698B2
JP4225698B2 JP2001064683A JP2001064683A JP4225698B2 JP 4225698 B2 JP4225698 B2 JP 4225698B2 JP 2001064683 A JP2001064683 A JP 2001064683A JP 2001064683 A JP2001064683 A JP 2001064683A JP 4225698 B2 JP4225698 B2 JP 4225698B2
Authority
JP
Japan
Prior art keywords
combustion
fuel
calorific value
flow rate
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001064683A
Other languages
Japanese (ja)
Other versions
JP2002267157A (en
Inventor
明志 毛笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2001064683A priority Critical patent/JP4225698B2/en
Publication of JP2002267157A publication Critical patent/JP2002267157A/en
Application granted granted Critical
Publication of JP4225698B2 publication Critical patent/JP4225698B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Regulation And Control Of Combustion (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料を燃焼させた際に発生する単位体積当たりもしくは単位質量当りの熱量(発熱量)が、時間経過と共にある限定された範囲内で変動する燃料を使用する燃焼器の効率的な制御方法に関する。
【0002】
【従来の技術】
従来の一般的な燃焼器においては、使用する燃料の発熱量は時間的には変化しないものとして運転されている。石油製品等の液体燃料やLPG等の気体燃料を燃焼させる際には通常発熱量の計測は行わないし、石炭などの品種による違いの大きな固体燃料においても発熱量の計測はその受け入れ時のみに行うのが通例である。
一方、燃焼機器において温度制御等を行う際には、その偏差を正すために燃料流量を制御して発生熱量を変化させる。しかしながら、燃焼用空気流量は燃料流量に対して固定した比率に設定され、燃料流量とは独立して制御されないのが一般的である。具体的には、家庭用のガス給湯機器等では、燃料制御弁の開度信号と燃焼用ファンの回転数とは、内蔵制御コンピュータの制御テーブルもしくは制御関数に基づいて一義的に決められており、これに基づいて燃焼制御が行われる。業務用ボイラや燃焼炉の多くでは、燃料制御弁と燃焼用空気制御弁とが機械的なリンケージで繋がれており、燃料流量に対して空気流量は一義的に決められて運転されている。以上のように、一般的な燃焼制御においては、燃料と燃焼用空気とを独立して制御することは行われていない。
例外的に、量論空気比で運転されるエンジンや発電事業用ボイラ等の大掛かりな燃焼機器では、燃料流量と空気流量とが個別に制御されることがある。エンジンでは、量論空気比を外れると排ガスの三元触媒が有効に機能しないためであり、大規模設備では、何らかの要因で空気比の変化が起きたときの後述する影響が大きいためである。このような空燃比制御においては、燃焼排ガスの酸素濃度等から空気比を検知して、それをフィードバックすることで燃焼用空気流量が制御されている。このような燃焼排ガス分析に基づく空燃比フィードバック制御は手法としては広く知られているが、実用例は限定されている。
【0003】
【発明が解決しようとする課題】
天然ガス等の発熱量は産地(井戸)によってある範囲内で異なった値を持っている。これらを原料とする都市ガスでは、ガス事業者の熱量調整により熱量変動は狭い範囲に管理されてきた。しかしながら、天然ガスソースの多様化や託送ガスの受け入れが進めば、発熱量の変動は大きくならざるを得なくなる。ガス事業者による熱量調整がほとんど行われていない欧米では、産地の異なる天然ガスがパイプライン網に複数箇所から供給される結果、途中で混合されて需要地では発熱量が10〜15%変動することは一般的である。また、プロパンとブタンの混合物であるLPGにおいては、貯槽での蒸発時に蒸気圧の違いにより、気化ガスの成分が初期にはプロパンが、末期にはブタンが多くなるように変動し、それに伴って発熱量が変化することが知られている。石炭においても、その発熱量は産地により大きく変動することがよく知られている。石油においては、分溜にて製品の物性を制御するので熱量の変動幅は大きくないが、受け入れロットごとの差を無視できるわけではない。
【0004】
燃料の発熱量が変化すると完全燃焼に必要な空気量即ち理論空気量が変化するため、燃焼器で燃料流量に合わせて空気量が固定されていると空気比が変動することになる。炭化水素燃料では、水素やアセチレン等の特殊な成分を除いて、発熱量の変動幅が15%程度の範囲であれば、理論空気量は発熱量にほぼ比例することが知られている。従って、発熱量が大きい方向に変化すると空気比が小さい方向に変化して不完全燃焼などの危険を生じる。逆に発熱量が小さい方向に変化すると空気比が大きくなるため、排ガス損失が増大して機器の効率が低下する。燃焼限界に近い大空気比で運転されている希薄燃焼エンジンやガスタービン燃焼器などでは、失火や燃焼効率低下の可能性も発生する。
【0005】
このような燃料発熱量変化に対しても、排ガス分析(酸素濃度や炭酸ガス濃度検出)に基づく空気比フィードバック制御は有効に機能する。しかしながら、信頼性のある分析機器はいわゆる計測器レベルとなって高価であり、安価な機器に汎用できるものではない。各種の酸素センサー等が評価されつつあるものの、量論空気比エンジンの空気比1を検知する酸素センサーを除いて、信頼性が十分に確認されたものや高温排ガスに直接に使えるものは無い。さらには、排ガスに濃度分布がある場合には、平均濃度を精妙に測らない限り、正しい空気比は得られない。
【0006】
従来の一般的な空気比制御や、排ガス分析に基づく空気比制御には、以上のような問題点があり、本発明はそれらを解決する燃焼の制御方法を実現することを目的としている。
【0007】
【課題を解決するための手段】
〔構成1〕
本発明に係わる燃焼応用機器は、請求項1に記載したごとく、燃焼機器の燃焼を制御する燃焼制御器を備え、
検出される燃焼機器の負荷に基づいて、前記燃焼機器に導かれる燃料流量と燃焼用空気流量とを決定して前記燃焼機器の燃焼を制御する燃焼制御器を備えた燃焼応用機器であって、
前記燃焼機器に燃料を導く燃料供給管路の途中にて燃料の発熱量を検出する手段を設け、
前記燃焼制御器が、
前記燃料流量を前記燃焼機器の負荷に基づいて決定し、
前記燃焼用空気流量を、燃料の標準発熱量に基づく理論空気量と空気比と決定された前記燃料流量とを乗算して仮決定し、検出された前記燃料の発熱量と前記標準発熱量との偏差に基づいて補正して本決定することを特徴としている。
〔作用効果〕
本構成のごとく、燃料供給管路の途中にて燃料の発熱量を検出し、その値を用いて空気比を補正制御すれば、燃料の発熱量が時間的に変動しても、空燃比を所定値に維持することが可能で、所期の安全燃焼と機器性能を維持することが可能になる。燃焼用空気量の制御は、発熱量と連動して手動もしくは自動にて燃焼用ファンの能力を可変することや、空気用の制御弁開度を変更することにより行うことができる。
【0008】
〔構成2〕
本発明に係わる燃焼応用機器は、請求項2に記載したごとく、上記構成1における燃料の発熱量を検出する手段が、当該燃料の流量検出手段と発熱量検出手段とを組み合わせて構成された熱量計測器、もしくは、発熱量を検出してその変動を流量に換算補正する当該燃料の流量計に付属する発熱量補正器であって、検出した発熱量を、通信手段を介して燃焼制御器に送信することで当該燃料を燃焼させる際の燃焼用空気流量を補正制御するとを特徴とする。
〔作用効果〕
本構成のごとく、燃料の発熱量を検出する手段が、当該燃料の流量検出手段と発熱量検出手段とを組み合わせて構成される熱量計測器、もしくは、当該燃料の流量計に付属する発熱量を検出してその変動を流量に換算補正する発熱量補正器であって、検出した発熱量を、通信手段を介して発熱量検出手段と燃焼制御器との間で通信することを行えば、燃焼制御に必要な熱量相当値を簡便かつ安価に得る構成とすることができる。
【0009】
〔構成3〕
本発明に係わる燃焼の制御方法は、請求項3に記載したごとく、上記構成1における燃料の発熱量を検出する手段が、燃料供給事業者からの公衆通信回線への発信に基づく燃料物性情報の受信手段であり、前記燃焼制御器にてその情報を受信することで当該燃料を燃焼させる際の前記燃焼用空気流量を補正制御することを特徴とする。
料供給事業者は、本発明を利用しようとする燃料使用者にガスクロマトグラフィー等によって計測した燃料の発熱量等を、公衆通信回線を用いて提供する必要があるが、事業者は本情報を有償で提供するように構成することも可能である。
〔作用効果〕
本構成のごとく、燃料の発熱量を検出する手段が、燃料供給事業者からの公衆通信回線への発信に基づく燃料物性情報の受信手段であり、燃焼制御器にてそのうちの発熱量情報を受信することを行えば、燃料の発熱量を極めて安価に入手して燃焼制御に応用することができる。
燃料が管路網によって供給され、燃料のソース(井戸など)によって熱量が変化する場合には、燃料供給業者は管路が結合される地点の下流で熱量計測を行ってその情報を発信し、燃料の利用者は、供給される燃料の発熱量情報を、管路網を参考にして選択使用することにより、本発明の効果を得ることができる。燃料の発熱量を推定する管路網の解析は燃料供給業者が行うことも可能である。
【0010】
〔構成4〕
本発明に係わる燃焼機器は、請求項4に記載したごとく、請求項1または2における燃料の発熱量を検出する手段、または請求項3における燃料の発熱量を受信する手段を自らの制御装置の一部とし、その値を用いて燃焼用空気流量を補正制御することを特徴とする。
〔作用効果〕
本構成のごとく、燃料の発熱量を検出する手段もしくは、燃料の発熱量を受信する手段を自らの制御装置の一部とし、その値を用いて燃焼用空気流量を補正制御すれば、燃料の発熱量変動に対して、不完全燃焼や非効率状態で運転を継続することが無くなり、安全かつ経済的な燃焼機器を構成できる。特に、燃料の発熱量を検出する手段が、即時かつ連続的に発熱量を検出できるものである場合には、フィードフォワード制御理論を適用して、その値を用いて燃焼用空気流量を補正制御すれば、燃料の発熱量変動に対して、不完全燃焼や非効率状態で運転をほぼ完全に抑止することができる。
【0011】
【発明の実施の形態】
本発明の燃焼制御方法について、図面に基づいて説明する。
図1において、燃料は貯槽200から燃料管路3を通して供給され、燃焼用空気送風機11からの空気にて燃焼器10にて燃焼される。燃焼機器100では燃焼器10にて発生された燃焼エネルギーは、熱交換器102を介して熱媒体に伝えられ、エネルギーを失った燃焼ガスは排ガスとして煙突101から排出される。
本発明において、燃焼の制御動作は以下のように行われる。
( ) 燃焼機器100の負荷を、温度検知器14の信号より検出し、燃料流量を決定する。
( ) 燃料流量に対応した空気流量を仮決定する。本空気流量は燃料の標準発熱量に基づく理論空気量に空気比と燃料流量を乗じて決定される。
( ) 燃焼器10の上流に設置された発熱量もしくは発熱量の標準値からの偏差の検出装置1からの情報に基づいて、( )で決めた空気流量を補正する。
( ) 負荷に応じた燃料弁12の開度信号と、補正された空気量に基づいた空気弁13の開度信号を、制御盤より出力する。
本発明では、燃料の発熱量を、管路に設置された発熱量の検出装置において検出する発熱量を用いて燃焼用空気量の制御を行うことを特徴としている。発熱量には、貯槽200での燃料油の受け入れ時や、石炭受け入れ時等の受け入れ検査における発熱量試験値は含んでいない。燃料油は貯槽内の残留油と混合して発熱量が変化するし、石炭は貯炭場で他の炭種と混合して発熱量が変るため、燃焼器に供給される実発熱量は受け入れ時の検査値よりも、燃料供給管路にて計測する方がより正確な値となるからである。
【0012】
燃料の発熱量を測定する方法の例として、JISに規定する方法を挙げるができる。石炭及びコークスについては、JIS M8814−1976に燃研式A型、B型及びベルテロマーラー式熱量計を用いる方法、原油及び石油製品については、JIS K2279−1993に改良型ボンベ型熱量計を用いる方法、燃料ガス及び天然ガスについては、ユンカース式流水型ガス熱量計を用いる方法がそれぞれ記されている。これらの方法の他にも1〜2%程度の発熱量変化を検出できる方法であれば何でも用いることができる。他に、発熱量を直接測定する方法でなくても、燃料組成をガスクロマトグラフィーにて定量分析し、その組成値に各成分の発熱量を乗じて全体の発熱量を計算する方法等の間接的な方法を用いることもできる。
【0013】
発熱量値そのものでなくても、発熱量もしくは発熱量の標準値からの変化量と相関関係のある物性値を計測してその値に相当する電気信号等を用いることも可能で、より実際的でもある。ここで問題としている燃料の発熱量の変動値は、標準とするものから15%程度の比較的狭い範囲であるから、例えば燃料の比重、光の吸収、蒸気圧等の物性値から推定して求めることも可能である。原油及び石油製品については、JIS K2279−1993に比重等から推定する方法が記されている。
【0014】
本発明を実用化する場合の留意点を以下に挙げる。
第1点は、燃料の発熱量の検出を間欠的に行わざるを得ないときの検出タイミングの問題である。ここでは、管路にて燃料を輸送することを前提としているので、石炭を燃料とする場合は微粉炭を対象としている。この場合には、微粉炭の原料となる石炭の切替え時を含めれば、可能な範囲で定期的に測定すればよい。燃料油の場合は、追加油受け入れ後油槽内で油が混合したと見なされた後を含めればやはり、可能な範囲で定期的に測定すればよい。LPGの様に成分の蒸気圧の違いで連続的に発熱量の変化するものは、追加LPGの受け入れ後を含めて、適当な時間間隔で測定し、測定間隔の間は線形等の補間をすればよい。もちろん、発熱量を先に例示したような物性を用いて連続的に検出できるならその方法を選択すべきである。
【0015】
第2点は、発熱量検出時点と、その燃料が燃焼器に到達する時点との時間差の問題である。発熱量が先述の代替物性等で即時に検出できる場合には、検出時が燃料の燃焼器到達時よりも早くなる。この場合には、発熱量検出位置をできる限り燃焼器に近づければよい。他に、管路長を管路内の燃料の流速で除すことで、遅れ時間を推算してその時間分制御を遅らせて制御を掛けることも可能である。発熱量検出の方が燃料到達よりも遅い場合には、発熱量が急激で大幅に変化する燃料には対応できないが、熱量変動の結果として失火等で運転継続不可能に至る燃焼機器でなければ、それが長時間不完全燃焼を続けたり、効率の低い運転を継続することを防止する効果を有する。
本発明の燃焼制御は、燃料の発熱量検知に基づく空気比のフィードフォワード制御の一種と考えることができる。これにより、燃料の発熱量が変動しても、燃焼の安全性と効率を維持することができる。
【0016】
〔別実施の形態〕
〈1〉 図2においては、熱量相当値を流量計5とそれに付属する発熱量検知手段6とからなる熱量計もしくは熱量補正機能付流量計から得、通信手段4を介して制御盤2に送ることで、空気比を補正する構成とするところが、先述の実施の形態とは異なる。
制御用信号としては、求めた熱量値でもよいし、発熱量補正器よりの流量補正信号を直接使ってもよい。
発熱量補正器の発熱量変動検知原理としては、先に例示したような燃料物性値の変動をもちいることができる。さらに、天然ガスのような気体燃料では、音速変化量を発熱量変動の指標として用いることも可能である。天然ガスの組成変動のような限られた発熱量変動範囲内では、燃料中の音速と密度に相関関係があり、密度と発熱量に近似的に比例関係があるからである。流量の計量に音速を用いるガスメータ(いわゆる超音波メーター)では、流量と発熱量変動値のいずれをも音速測定にて行えるので、構成次第では発熱量補正が安価に行える特長がある。
なお、本制御においては、燃料の取引用発熱量変動補正機能メーターを使うこともできるし、燃焼機器直上流に管理用発熱量変動補正機能メーターを設けて当該燃焼機器専用で用いることも可能である。
【0017】
〈2〉 図3においては、燃料供給事業者がインターネット20等に発信する情報を燃焼制御用に用いるものである。
燃料が天然ガスであり、欧米のように熱量調節を行わない場合には、天然ガスソースの違いによって発熱量が異なるので、ガス事業者は区域毎もしくは配管系統毎の熱量を随時測定してその値をサービス情報として発信するものとする。熱量の測定位置は、配管の合流点の下流で混合が期待できかつ分岐が成されていない位置が適当である。また、直接測定を行わなくても、配管の圧力損失計算をその原理とする配管網の解析により、ある地点にどのソースの天然ガスが流入してきているかを予測できる場合には、その予測値をもって測定値に代えることができる。ただし、各ソースの発熱量は当然測定を行わなければならない。
天然ガスソースの違いによる熱量変動は頻度も変動幅も大きくはない(10%程度以内)ので、厳密な補正を必要としない機器では、この値で補正すれば長時間の不完全燃焼や効率低下の継続を十分防止することができる。機器の運転継続に問題を生じるおそれのあるような厳密な補正を必要とする機器では、燃焼器の直上流にて、発熱量を検出して補正する方式を選定するか本方法を併用すればよい。
機器への発熱量の入力・制御手段としては、以下がある。
( ) インターネットからの情報に基づいて、空気調節弁やダンパー開度を手動で直接調節する。手動の空気調節弁を自動調節弁と直列に配して、その手動調節弁を調節しても良いし、空気調節弁が燃料調節弁と機械的リンケージにて結合されている場合は、そのリンケージを調節しても良い。
( ) 空気調節弁もしくは燃焼用ファンの能力を、外部電気信号を用いて制御できるものは、インターネットからの情報に基づいて、その制御情報を制御盤2より手動で入力することで制御する。
( ) ( )でさらに、制御盤2に通信機能を備えたものでは、インターネット等から自動的に情報を取ってきて自律的に空気弁もしくはファンの能力を制御する。
【0018】
【発明の効果】
本発明による燃料の発熱量計測に基づく発熱量フィードフォワード空燃比制御は、従来の排ガス分析に基づく空燃比フィードバック制御と比較して、低コストで信頼性の高い制御方法を提供し得るものである。従来の排ガス分析に基づく空燃比フィードバック制御の方が、各種の外乱に対してより汎用性のあることは事実である。しかしながら、現行そこまでの制御が行われていない燃焼機器に対しては、本発明による発熱量フィードフォワード制御で十分発熱量変動の無かった時の性能が回復でき得る。
以上説明した通り、本発明により、燃料の発熱量変動による燃焼上の危険性や効率低下を、経済的に抑止することが可能になる。
【図面の簡単な説明】
【図1】 本発明の発熱量フィードフォワード制御の構成を説明する概略構成図
【図2】 本発明における発熱量検出手段を、燃料流量計測器に付属する発熱量補正手段よりの信号とする他の構成を説明する概略構成図
【図3】本発明における発熱量検出手段を、公衆通信回線よりの情報とする他の構成を説明する概略構成図
【図4】排ガス分析に基づく空燃比フィードバック制御の従来例を説明する概略構成図
【符号の説明】
1 発熱量検出器
2 制御盤
3 燃料供給管路
4 通信手段(制御信号線)
5 燃料流量計
6 燃料流量計の燃料発熱量変動補正器
7 発熱量検出器(供給事業者管理用:有線通信手段付)
8 発熱量検出器(管路での熱量管理用:無線通信手段付)
9 排ガス分析計(酸素濃度計、炭酸ガス濃度計)
10 燃焼器(バーナ)
11 燃焼用送風機(ファン、ブロア)
12 燃料制御弁(調節弁)
13 燃焼用空気制御弁(弁、ダンパー)
14 温度検出器
20 公衆通信回線(インターネット網)
21 コンピュータ(サーバー)
22 コンピュータ
23 通信機器
100 燃焼機器
101 煙突
102 熱交換器
200 燃料貯槽
201 燃料貯槽1(LNGタンク)
202 燃料貯槽2(LNGタンク:201とは別ソースのLNG貯蔵)
203 天然ガス田
[0001]
BACKGROUND OF THE INVENTION
The present invention provides an efficient combustor that uses a fuel in which the amount of heat (calorific value) per unit volume or unit mass generated when the fuel is burned fluctuates within a limited range over time. It relates to a control method.
[0002]
[Prior art]
The conventional general combustor is operated on the assumption that the calorific value of the fuel used does not change with time. When burning liquid fuel such as petroleum products or gaseous fuel such as LPG, calorific value is not usually measured, and calorific value is measured only at the time of acceptance even for solid fuel that varies greatly depending on varieties such as coal. It is customary.
On the other hand, when performing temperature control or the like in the combustion equipment, the amount of generated heat is changed by controlling the fuel flow rate in order to correct the deviation. However, the combustion air flow rate is generally set to a fixed ratio with respect to the fuel flow rate, and is generally not controlled independently of the fuel flow rate. Specifically, in gas hot water appliances for home use, the opening signal of the fuel control valve and the rotational speed of the combustion fan are uniquely determined based on the control table or control function of the built-in control computer. Based on this, combustion control is performed. In many commercial boilers and combustion furnaces, the fuel control valve and the combustion air control valve are connected by a mechanical linkage, and the air flow rate is uniquely determined with respect to the fuel flow rate. As described above, in general combustion control, fuel and combustion air are not controlled independently.
In exceptional cases, in a large-scale combustion device such as an engine or a power generation business boiler that operates at a stoichiometric air ratio, the fuel flow rate and the air flow rate may be individually controlled. This is because the exhaust gas three-way catalyst does not function effectively when the stoichiometric air ratio deviates from the engine, and in a large-scale facility, the influence described later when the air ratio changes due to some factor is large. In such air-fuel ratio control, the flow rate of combustion air is controlled by detecting the air ratio from the oxygen concentration or the like of the combustion exhaust gas and feeding it back. Although air-fuel ratio feedback control based on such combustion exhaust gas analysis is widely known as a technique, practical examples are limited.
[0003]
[Problems to be solved by the invention]
The calorific value of natural gas has different values within a certain range depending on the production area (well). In city gas using these as raw materials, fluctuations in calorific value have been managed within a narrow range by adjusting the calorific value of gas companies. However, if diversification of natural gas sources and acceptance of consignment gas proceed, fluctuations in the calorific value will inevitably increase. In Europe and the United States, where the amount of heat is hardly adjusted by gas companies, natural gas from different production areas is supplied to the pipeline network from multiple locations. That is common. In addition, in LPG, which is a mixture of propane and butane, the vapor gas component fluctuates so that propane increases at the beginning and butane increases at the end due to the difference in vapor pressure during evaporation in the storage tank. It is known that the calorific value changes. It is well known that the calorific value of coal varies greatly depending on the production area. In petroleum, since the physical properties of products are controlled by fractional distillation, the fluctuation range of heat quantity is not large, but the difference between receiving lots cannot be ignored.
[0004]
When the calorific value of the fuel changes, the amount of air necessary for complete combustion, that is, the theoretical amount of air changes. Therefore, if the air amount is fixed in accordance with the fuel flow rate in the combustor, the air ratio varies. In hydrocarbon fuels, it is known that the theoretical air amount is approximately proportional to the calorific value if the fluctuation range of the calorific value is in the range of about 15%, excluding special components such as hydrogen and acetylene. Therefore, when the calorific value is changed in a larger direction, the air ratio is changed in a smaller direction, causing danger such as incomplete combustion. On the contrary, when the calorific value is changed in a small direction, the air ratio is increased, so that the exhaust gas loss is increased and the efficiency of the device is lowered. In a lean combustion engine or a gas turbine combustor that is operated at a large air ratio close to the combustion limit, there is a possibility of misfire or a reduction in combustion efficiency.
[0005]
The air ratio feedback control based on the exhaust gas analysis (detection of oxygen concentration and carbon dioxide concentration) functions effectively even for such a change in fuel heating value. However, a reliable analytical instrument is expensive at the so-called measuring instrument level, and cannot be generally used for an inexpensive instrument. Although various types of oxygen sensors are being evaluated, there is nothing that has been sufficiently confirmed to be reliable or that can be used directly for high-temperature exhaust gas, except for oxygen sensors that detect air ratio 1 of stoichiometric air ratio engines. Furthermore, when the exhaust gas has a concentration distribution, a correct air ratio cannot be obtained unless the average concentration is measured precisely.
[0006]
Conventional general air ratio control and air ratio control based on exhaust gas analysis have the above problems, and the present invention aims to realize a combustion control method that solves these problems.
[0007]
[Means for Solving the Problems]
[Configuration 1]
The combustion application device according to the present invention comprises a combustion controller for controlling the combustion of the combustion device as described in claim 1 ,
A combustion application device comprising a combustion controller that controls a combustion flow of the combustion device by determining a fuel flow rate and a combustion air flow rate guided to the combustion device based on a detected load of the combustion device,
A means for detecting the amount of heat generated by the fuel in the middle of the fuel supply line for guiding the fuel to the combustion device ;
The combustion controller;
Determining the fuel flow rate based on the load of the combustion equipment;
The combustion air flow rate is provisionally determined by multiplying a theoretical air amount based on a standard heat value of fuel and an air ratio and the determined fuel flow rate, and the detected heat value of the fuel and the standard heat value are calculated. It is characterized in that this determination is made by correcting based on the deviation .
[Function and effect]
As in this configuration, if the heat generation amount of the fuel is detected in the middle of the fuel supply line and the air ratio is corrected and controlled using that value, the air-fuel ratio can be reduced even if the heat generation amount of the fuel fluctuates over time. The predetermined value can be maintained, and the intended safe combustion and equipment performance can be maintained. The amount of combustion air can be controlled by changing the capacity of the combustion fan manually or automatically in conjunction with the amount of heat generated, or by changing the opening of the control valve for air.
[0008]
[Configuration 2]
As described in claim 2, the combustion application device according to the present invention is configured such that the means for detecting the calorific value of the fuel in the configuration 1 is a combination of the fuel flow rate detecting means and the calorific value detecting means. A calorific value correction unit attached to a measuring device or a flow meter for the fuel that detects the calorific value and converts the fluctuation into a flow rate, and the detected calorific value is transmitted to the combustion controller via communication means. the combustion air flow rate at the time of burning the fuel by sending characterized that you correct control.
[Function and effect]
As in this configuration, the means for detecting the calorific value of the fuel is the calorific value measuring device configured by combining the fuel flow rate detecting means and the calorific value detecting means, or the calorific value attached to the fuel flow meter. a heating value corrector detected and converted correcting the variation in the flow rate, the detected calorific value, by performing to communicate with the heating Canes detecting means via the communication means and the combustion controller, It can be set as the structure which obtains the calorie | heat amount equivalent value required for combustion control simply and cheaply.
[0009]
[Configuration 3]
According to the combustion control method of the present invention, as described in claim 3, the means for detecting the amount of heat generated by the fuel in the above-described configuration 1 includes the fuel property information based on the transmission from the fuel supplier to the public communication line. a receiving means, wherein said correcting control combustion air flow rates of the combustion of the fuel by receiving the information in the combustion controller.
Fuel supply operators, the heating value of the fuel which the fuel user desiring to utilize the present invention was measured by gas chromatography and the like, it is necessary to provide with a public communication line, operators present information It is also possible to configure so as to provide for a fee.
[Function and effect]
As in this configuration, the means for detecting the calorific value of the fuel is a means for receiving fuel property information based on the transmission from the fuel supplier to the public communication line, and the combustion controller receives that calorific value information. If this is done, the calorific value of the fuel can be obtained at a very low cost and applied to combustion control.
If the fuel is supplied by a pipeline network and the amount of heat changes depending on the source of the fuel (such as a well), the fuel supplier will measure the calorific value downstream of the point where the pipeline is connected and send that information, The fuel user can obtain the effect of the present invention by selectively using the calorific value information of the supplied fuel with reference to the pipeline network. An analysis of the pipeline network that estimates the amount of heat generated by the fuel can also be performed by the fuel supplier.
[0010]
[Configuration 4]
As described in claim 4, the combustion apparatus according to the present invention has means for detecting the amount of heat generated by the fuel according to claim 1 or 2 or means for receiving the amount of heat generated by the fuel according to claim 3 of its own control device. The combustion air flow rate is corrected and controlled using a part of the value.
[Function and effect]
As in this configuration, if the means for detecting the calorific value of the fuel or the means for receiving the calorific value of the fuel is made part of its own control device and the combustion air flow rate is corrected and controlled using that value, It is possible to configure a safe and economical combustion device because the operation is not continued in an incomplete combustion or inefficient state with respect to the calorific value fluctuation. In particular, the means for detecting the calorific value of the fuel, in the case in which immediately and can detect continuously calorific value, by applying the feedforward control theory, correction control the combustion air flow rate with the value In this case, the operation can be almost completely suppressed in the incomplete combustion or inefficient state with respect to the fluctuation of the calorific value of the fuel.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The combustion control method of the present invention will be described with reference to the drawings.
In FIG. 1, fuel is supplied from a storage tank 200 through a fuel pipe 3 and burned in a combustor 10 with air from a combustion air blower 11. In the combustion device 100, the combustion energy generated in the combustor 10 is transmitted to the heat medium via the heat exchanger 102, and the combustion gas that has lost the energy is discharged from the chimney 101 as exhaust gas.
In the present invention, the combustion control operation is performed as follows.
( 1 ) The load of the combustion device 100 is detected from the signal of the temperature detector 14, and the fuel flow rate is determined.
( 2 ) Temporarily determine the air flow rate corresponding to the fuel flow rate. This air flow rate is determined by multiplying the theoretical air amount based on the standard calorific value of the fuel by the air ratio and the fuel flow rate.
( 3 ) The air flow rate determined in ( 2 ) is corrected based on the calorific value installed upstream of the combustor 10 or information from the detection device 1 for deviation from the standard value of the calorific value.
( 4 ) An opening signal of the fuel valve 12 corresponding to the load and an opening signal of the air valve 13 based on the corrected air amount are output from the control panel.
The present invention is characterized in that the amount of combustion air is controlled by using the heat generation amount detected by the heat generation amount detection device installed in the pipeline. The calorific value does not include a calorific value test value in an acceptance test such as when fuel oil is received in the storage tank 200 or when coal is received. Fuel oil is mixed with residual oil in the storage tank, and the calorific value changes.Coal is mixed with other coal types at the coal storage, and the calorific value changes, so the actual calorific value supplied to the combustor is This is because the value measured by the fuel supply line is more accurate than the inspection value.
[0012]
As an example of a method for measuring the calorific value of fuel, a method defined in JIS can be given. For coal and coke, JIS M8814-1976 uses the Aken type A, B, and Bertelomerer calorimeters. For crude oil and petroleum products, uses an improved cylinder type calorimeter for JIS K2279-1993. For the method, fuel gas, and natural gas, a method using a Junkers type flowing water gas calorimeter is described. In addition to these methods, any method can be used as long as it can detect a calorific value change of about 1 to 2%. Other than the method of directly measuring the calorific value, indirect methods such as a method of calculating the total calorific value by quantitatively analyzing the fuel composition by gas chromatography and multiplying the composition value by the calorific value of each component A typical method can also be used.
[0013]
Even if it is not the calorific value itself, it is possible to measure the physical value that correlates with the calorific value or the amount of change from the standard value of the calorific value and use the electrical signal etc. corresponding to that value. But there is. Since the fluctuation value of the calorific value of the fuel in question here is a relatively narrow range of about 15% from the standard value, for example, it is estimated from physical properties such as the specific gravity of the fuel, light absorption, and vapor pressure. It is also possible to ask for it. For crude oil and petroleum products, JIS K2279-1993 describes a method for estimating from crude gravity and the like.
[0014]
Points to keep in mind when putting the present invention into practical use are listed below.
The first point is a problem of detection timing when it is necessary to intermittently detect the amount of heat generated by the fuel. Here, since it is assumed that the fuel is transported through a pipeline, when coal is used as fuel, pulverized coal is targeted. In this case, if the change of coal used as the raw material for pulverized coal is included, measurement may be performed periodically within a possible range. In the case of fuel oil, it may be measured periodically as much as possible, including after the additional oil is received, after the oil is considered mixed in the oil tank. If the calorific value changes continuously due to the difference in vapor pressure of the components, such as LPG, measure it at an appropriate time interval, including after receiving the additional LPG, and interpolate linearly between the measurement intervals. That's fine. Of course, if the calorific value can be continuously detected using the physical properties as exemplified above, the method should be selected.
[0015]
The second point, and the time out exothermic Canes, its fuel is a problem of time difference between the time when it reaches the combustor. When the calorific value can be detected immediately due to the above-mentioned alternative physical properties, the detection time is earlier than when the fuel reaches the combustor. In this case, it is brought close to the combustor much as possible the heating Canes unloading position. In addition, by dividing the pipe length by the flow rate of the fuel in the pipe, it is possible to estimate the delay time and delay the control by that time to apply the control. If the calorific value detection is slower than the fuel arrival, it cannot cope with the fuel whose calorific value is abrupt and changes drastically, but it must be a combustion device that cannot continue operation due to misfiring as a result of calorific value fluctuation. , It has the effect of preventing incomplete combustion for a long time or continuing low-efficiency operation.
The combustion control of the present invention can be considered as a kind of feedforward control of the air ratio based on the detection of the calorific value of the fuel. Thereby, even if the calorific value of fuel fluctuates, the safety and efficiency of combustion can be maintained.
[0016]
[Another embodiment]
<1> In FIG. 2, the value corresponding to the amount of heat is obtained from a calorimeter comprising a flow meter 5 and a calorific value detection means 6 attached thereto, or a flow meter with a calorific value correction function, and sent to the control panel 2 via the communication means 4. Thus, the configuration for correcting the air ratio is different from the above-described embodiment.
As the control signal, the calculated heat value may be used, or the flow rate correction signal from the calorific value corrector may be used directly.
As the heat generation amount fluctuation detection principle of the heat generation amount corrector, the variation of the fuel property value as exemplified above can be used. Furthermore, in a gaseous fuel such as natural gas, it is also possible to use the amount of change in sound speed as an index of fluctuation in calorific value. This is because within a limited calorific value fluctuation range such as the composition fluctuation of natural gas, there is a correlation between the speed of sound and density in the fuel, and there is an approximately proportional relationship between the density and the calorific value. Gas meters that use the speed of sound for flow rate measurement (so-called ultrasonic meters) can measure both the flow rate and the calorific value variation by means of sound speed measurement.
In this control, a fuel transaction calorific value fluctuation correction function meter can be used, or a management calorific value fluctuation correction function meter can be provided immediately upstream of the combustion equipment and used exclusively for the combustion equipment. is there.
[0017]
<2> In FIG. 3, information transmitted from the fuel supplier to the Internet 20 or the like is used for combustion control.
If the fuel is natural gas and the calorific value is not adjusted as in Europe and the United States, the calorific value varies depending on the natural gas source. The value is transmitted as service information. The measurement position of the calorific value is appropriately a position where mixing can be expected downstream of the junction of the pipes and no branch is formed. In addition, if it is possible to predict which source of natural gas is flowing into a certain point by analyzing the piping network based on the principle of calculating the pressure loss of the piping without performing direct measurement, the predicted value will be used. It can be replaced with a measured value. However, the calorific value of each source must be measured.
The amount of heat fluctuation due to the difference in the natural gas source is not very frequent or fluctuating (within about 10%). For equipment that does not require strict correction, if this value is corrected, incomplete combustion for a long time or reduced efficiency Can be sufficiently prevented. For equipment that requires strict corrections that may cause problems in continuation of equipment operation, if a method for detecting and correcting the amount of heat generation is selected immediately upstream of the combustor, or if this method is used in combination, Good.
The followings are input / control means for the amount of heat generated in the equipment.
( 1 ) Based on information from the Internet, manually adjust the air control valve and damper opening directly. A manual air control valve may be placed in series with the automatic control valve to adjust the manual control valve, or if the air control valve is connected to the fuel control valve by a mechanical linkage, the linkage May be adjusted.
( 2 ) Those capable of controlling the performance of the air control valve or the combustion fan using an external electric signal are controlled by manually inputting the control information from the control panel 2 based on information from the Internet.
( 3 ) If the control panel 2 has a communication function in ( 3 ) and ( 2 ) , information is automatically taken from the Internet or the like, and the performance of the air valve or fan is controlled autonomously.
[0018]
【The invention's effect】
The calorific value feedforward air-fuel ratio control based on the calorific value measurement of the fuel according to the present invention can provide a low-cost and highly reliable control method compared with the air-fuel ratio feedback control based on the conventional exhaust gas analysis. . It is true that conventional air-fuel ratio feedback control based on exhaust gas analysis is more versatile with respect to various disturbances. However, for the combustion equipment that has not been controlled so far, the performance when the calorific value feedforward control according to the present invention has not sufficiently changed the calorific value can be recovered.
As described above, according to the present invention, it is possible to economically prevent the danger of combustion and the reduction in efficiency due to the fluctuation of the calorific value of the fuel.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram for explaining the configuration of heat generation amount feedforward control according to the present invention. FIG. 2 shows the heat generation amount detection means in the present invention as a signal from a heat generation amount correction means attached to a fuel flow rate measuring device. FIG. 3 is a schematic configuration diagram illustrating another configuration in which the calorific value detection means in the present invention is information from the public communication line. FIG. 4 is an air-fuel ratio feedback control based on exhaust gas analysis. Schematic configuration diagram explaining an example of conventional [Description of symbols]
DESCRIPTION OF SYMBOLS 1 Calorific value detector 2 Control panel 3 Fuel supply line 4 Communication means (control signal line)
5 Fuel flow meter 6 Fuel calorific value fluctuation compensator 7 Fuel calorific value detector (Supplier management: With wired communication means)
8 Calorific value detector (for heat management in pipes: with wireless communication means)
9 Exhaust gas analyzer (oxygen concentration meter, carbon dioxide concentration meter)
10 Combustor (burner)
11 Combustion blower (fan, blower)
12 Fuel control valve (control valve)
13 Combustion air control valve (valve, damper)
14 Temperature detector 20 Public communication line (Internet network)
21 Computer (Server)
22 Computer 23 Communication device 100 Combustion device 101 Chimney 102 Heat exchanger 200 Fuel storage tank 201 Fuel storage tank 1 (LNG tank)
202 Fuel storage tank 2 (LNG tank: LNG storage of a source different from 201)
203 Natural gas field

Claims (4)

燃焼機器の燃焼を制御する燃焼制御器を備え、
検出される燃焼機器の負荷に基づいて、前記燃焼機器に導かれる燃料流量と燃焼用空気流量とを決定して前記燃焼機器の燃焼を制御する燃焼制御器を備えた燃焼応用機器であって、
前記燃焼機器に燃料を導く燃料供給管路の途中にて燃料の発熱量を検出する手段を設け、
前記燃焼制御器が、
前記燃料流量を前記燃焼機器の負荷に基づいて決定し、
前記燃焼用空気流量を、燃料の標準発熱量に基づく理論空気量と空気比と決定された前記燃料流量とを乗算して仮決定し、検出された前記燃料の発熱量と前記標準発熱量との偏差に基づいて補正して本決定する燃焼用の燃焼応用機器。
It has a combustion controller that controls the combustion of combustion equipment,
A combustion application device comprising a combustion controller that controls a combustion flow of the combustion device by determining a fuel flow rate and a combustion air flow rate guided to the combustion device based on a detected load of the combustion device,
Provided with means for detecting the amount of heat generated by the fuel in the middle of the fuel supply conduit for guiding the fuel to the combustion equipment ,
The combustion controller
Determining the fuel flow rate based on the load of the combustion equipment;
The combustion air flow rate is provisionally determined by multiplying a theoretical air amount based on a standard heat value of fuel and an air ratio and the determined fuel flow rate, and the detected heat value of the fuel and the standard heat value are calculated. Combustion applied equipment for combustion, which is determined by correcting based on the deviation.
燃料の発熱量を検出する手段が、当該燃料の流量検出手段と発熱量検出手段とを組み合わせて構成された熱量計測器、もしくは、発熱量を検出してその変動を流量に換算補正する当該燃料の流量計に付属する発熱量補正器であって、検出した発熱量を、通信手段を介して燃焼制御器に送信することで当該燃料を燃焼させる際の燃焼用空気流量を補正制御する請求項1記載の燃焼応用機器The means for detecting the calorific value of the fuel is a calorimeter configured by combining the fuel flow rate detecting means and the calorific value detecting means, or the fuel for detecting the calorific value and converting the fluctuation into a flow rate A calorific value corrector attached to the flow meter of claim 1, wherein the detected calorific value is transmitted to the combustion controller via communication means to correct and control the combustion air flow rate when combusting the fuel. 1. Combustion applied equipment according to 1. 燃料の発熱量を検出する手段が、燃料供給事業者からの公衆通信回線への発信に基づく燃料物性情報の受信手段であり、前記燃焼制御器にてその情報を受信することで当該燃料を燃焼させる際の前記燃焼用空気流量を補正制御する請求項1記載の燃焼応用機器Combustion means for detecting the calorific value of the fuel, a receiving unit of the fuel property information based on transmission of the public network from a fuel supply company, the fuel by receiving the information in the combustion control device The combustion applied apparatus according to claim 1, wherein the combustion air flow rate at the time of making the correction is controlled. 請求項1または2おける燃料の発熱量を検出する手段、または請求項3における燃料の発熱量を受信する手段を自らの制御装置の一部とし、その値を用いて燃焼用空気流量を補正制御する燃焼応用機器。The means for detecting the calorific value of the fuel according to claim 1 or the means for receiving the calorific value of the fuel according to claim 3 is a part of its own control device, and the value is used to correct and control the combustion air flow rate. Combustion applied equipment.
JP2001064683A 2001-03-08 2001-03-08 Combustion equipment Expired - Fee Related JP4225698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001064683A JP4225698B2 (en) 2001-03-08 2001-03-08 Combustion equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001064683A JP4225698B2 (en) 2001-03-08 2001-03-08 Combustion equipment

Publications (2)

Publication Number Publication Date
JP2002267157A JP2002267157A (en) 2002-09-18
JP4225698B2 true JP4225698B2 (en) 2009-02-18

Family

ID=18923466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001064683A Expired - Fee Related JP4225698B2 (en) 2001-03-08 2001-03-08 Combustion equipment

Country Status (1)

Country Link
JP (1) JP4225698B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190027368A (en) * 2016-06-30 2019-03-14 엔지 Method and system for calculating in real time the amount of energy transported in a non-cooled, pressurized, liquefied natural gas tank

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5107063B2 (en) 2008-01-08 2012-12-26 アズビル株式会社 Flow control device
JP2009162128A (en) 2008-01-08 2009-07-23 Yamatake Corp Fuel supply device
GB2504807B (en) * 2012-05-11 2020-02-12 Fisher Rosemount Systems Inc Methods and apparatus to control combustion process systems
KR101464486B1 (en) * 2013-05-31 2014-12-04 한국에너지기술연구원 air-fuel ratio control a control apparatus and system depending on heating value change and a control method using it
KR101483971B1 (en) 2013-07-04 2015-01-21 한국에너지기술연구원 air-fuel ratio control module depending on heating value change, a control apparatus and system including it, a control method using it
JP6413145B2 (en) * 2014-09-29 2018-10-31 三菱日立パワーシステムズ株式会社 Gas turbine equipment, control device therefor, and control method for gas turbine equipment
FR3045775B1 (en) * 2015-12-18 2018-07-06 Engie METHOD AND SYSTEM FOR CALCULATING IN REAL-TIME THE PERIOD OF AUTONOMY OF AN UN-REFRIGERATED TANK CONTAINING LNG
JP7162831B2 (en) * 2018-06-01 2022-10-31 東京電力ホールディングス株式会社 Controllers, control systems and programs

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190027368A (en) * 2016-06-30 2019-03-14 엔지 Method and system for calculating in real time the amount of energy transported in a non-cooled, pressurized, liquefied natural gas tank
KR102235002B1 (en) * 2016-06-30 2021-04-02 엔지 A method and system for calculating the amount of energy transported in a non-cooled, pressurized, liquefied natural gas tank in real time.
US11293594B2 (en) 2016-06-30 2022-04-05 Engie Method and system for the real-time calculation of the amount of energy transported in a non-refrigerated, pressurised, liquefied natural gas tank

Also Published As

Publication number Publication date
JP2002267157A (en) 2002-09-18

Similar Documents

Publication Publication Date Title
EP0498809B1 (en) combustion control
US5486107A (en) Determination of fuel characteristics
JP4225698B2 (en) Combustion equipment
US8682499B2 (en) Combustion air control
CN110312933B (en) Method for evaluating combustion characteristics of gas that may contain molecular hydrogen
CN102734782A (en) Coal burning boiler energy efficiency monitoring method
CN105403683B (en) The online soft sensor method of Petrochemical Enterprises furnace fuel gas calorific value
Lin et al. Experimental research on gas interchangeability indices for domestic fully premixed burners
JPH09228853A (en) Gas turbine combustor
US2252367A (en) Efficiency meter
JP2002267159A (en) Air-fuel ratio control method and device
JP5815446B2 (en) Hot water system
Kosar et al. Short-term performance of gas-fired tankless water heater: laboratory characterization
Staller et al. A Modified F-Factor Approach for Real-Time Performance Monitoring of Fossil Fuel Power Plants
Zima et al. Combustion of wood pellets in a low-power multi-fuel automatically stoked heating boiler
KR20120000787A (en) Apparatus and method for supplying hot water to boiler using diffusion gas and device for controlling supply of hot water to boiler
Staller et al. A Real-Time Output–Loss Method for Monitoring Heat Rate for Coal-Fired Power Plants
JP5735252B2 (en) Gas mixing device for power generation system
KR100804233B1 (en) Oxygen concentration control method in case of firing multiple fuels
AU644382B2 (en) Microbridge-based combustion control
KR20210023606A (en) Unusual Condition DETECTing METHOD OF GAS APPLIANCE AND WATER HEATING DEVICE
KR100702144B1 (en) Apparatus and method for auto processing of boiler fuel consumption
Staller Standardized Test Method and Calculation Protocol for Real-Time Performance Monitoring of Coal-Fired Power Plants
LIPtáK et al. Btu Flow Measurement: Fuel Gas
Carpentier THyGA-Review on Other Projects Related to Mitigation and Identification of Useable Sensors in Existing Appliances

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20041210

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141205

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees