JP2007315696A - Diagnosis device and diagnosis method for air preheater - Google Patents

Diagnosis device and diagnosis method for air preheater Download PDF

Info

Publication number
JP2007315696A
JP2007315696A JP2006146664A JP2006146664A JP2007315696A JP 2007315696 A JP2007315696 A JP 2007315696A JP 2006146664 A JP2006146664 A JP 2006146664A JP 2006146664 A JP2006146664 A JP 2006146664A JP 2007315696 A JP2007315696 A JP 2007315696A
Authority
JP
Japan
Prior art keywords
air
air preheater
ventilator
gas
flow side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006146664A
Other languages
Japanese (ja)
Inventor
Kazunori Iwabuchi
渕 一 徳 岩
Yasuo Takagi
木 康 夫 高
Katsuya Yamashita
下 勝 也 山
Yujiro Nakatani
谷 祐二郎 中
Toshihiko Tanaka
中 俊 彦 田
Shinji Hayashi
真 司 林
Mariko Nishimura
村 眞理子 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2006146664A priority Critical patent/JP2007315696A/en
Publication of JP2007315696A publication Critical patent/JP2007315696A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a diagnosis device and a diagnosis method for an air preheater easily diagnosing an air leaking situation in the air preheater, with respect to a boiler facility not equipped with an exhaust gas property measuring means suited for monitoring air leakage in the air preheater. <P>SOLUTION: In the diagnosis device for the gas type air preheater 10 attached to the boiler facility 30, the diagnosis device for the air preheater is characterized in that the consumed energy of an air flow side ventilator 21 installed at the combustion air system side of the gas type air preheater, and the consumed energy of a gas flow side ventilator 22 installed at an exhaust gas system side are provided as inputs, and on the basis of the estimation of a ventilation amount of the air flow side ventilator and the estimation of a ventilation amount of the gas flow side ventilator, the estimate of a leaking air amount in the air preheater is outputted. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ボイラ設備に付設させる空気予熱器の診断装置および診断方法に係わり、とくに漏洩空気の量を容易に把握するための装置および方法を提供するものである。   The present invention relates to a diagnostic device and a diagnostic method for an air preheater attached to a boiler facility, and particularly to provide a device and a method for easily grasping the amount of leaked air.

火力発電所等の多くのボイラ設備では、燃焼効率を向上させるために、煙道排ガスの余熱を利用して燃焼用空気を予熱する空気予熱器が設置されている。   In many boiler facilities such as thermal power plants, in order to improve combustion efficiency, an air preheater that preheats combustion air by using residual heat of flue exhaust gas is installed.

一般的なボイラ設備の燃焼用空気の予熱方式を、図8に示す。燃焼用空気は、押込通風機21によって供給され、空気予熱器10で予熱されたのちボイラ30の火炉内に導入される。   FIG. 8 shows a preheating method for combustion air in a general boiler facility. Combustion air is supplied by the forced air blower 21, preheated by the air preheater 10, and then introduced into the furnace of the boiler 30.

一方、ボイラ30からの燃焼排ガスは、掃引通風機22の作用によって、空気予熱器10、集塵機34を通過したのち煙突35から放出される。なお、掃引通風機22を持たない通風方式が採用されたボイラ設備もある。   On the other hand, the combustion exhaust gas from the boiler 30 is discharged from the chimney 35 after passing through the air preheater 10 and the dust collector 34 by the action of the sweep fan 22. There is also a boiler facility that employs a ventilation system that does not have the sweeper 22.

ボイラ通風系統の制御方式として、いくつかの形態がある。そのうちで代表的なものは、負荷指令値または燃料供給量計器41の燃料供給量の測定値に基づいて押込通風機21に備えられたベーンによって燃焼用空気流を制御し、火炉内圧力を−10mmAq程度の大気圧以下に保持するように、火炉内圧力計器42の測定値に基づき、掃引通風機22に備えられたダンパによって燃焼排ガス流を制御する方式をとる。   There are several modes for controlling the boiler ventilation system. Among them, a representative one is that the combustion air flow is controlled by the vane provided in the forced air blower 21 based on the load command value or the measured value of the fuel supply amount of the fuel supply amount meter 41, and the pressure in the furnace is- Based on the measured value of the furnace pressure gauge 42, the combustion exhaust gas flow is controlled by a damper provided in the sweep fan 22 so that the atmospheric pressure is kept below about 10 mmAq.

また、燃焼用空気の空気過剰率は、ボイラ30内の節炭器32の出口付近に備えられた酸素濃度計器43の燃焼排ガス酸素濃度の測定値に基づいて調整される。   The excess air ratio of the combustion air is adjusted based on the measured value of the combustion exhaust gas oxygen concentration of the oxygen concentration meter 43 provided near the outlet of the economizer 32 in the boiler 30.

比較的大型のボイラ設備では、空気予熱器10として図9に示すような回転再生式の空気予熱器10が用いられることが多い。この回転再生式空気予熱器10では、ケーシング11の中心に配されたロータ軸12に支持された蓄熱体ロータ13が2〜3rpmで回転し、高温の排ガス流が通過する間に蓄熱体が加熱され、低温の空気流が通過する間に熱を放出することによって熱交換が行われる。14は、セクタープレートである。   In a relatively large boiler facility, a rotary regeneration type air preheater 10 as shown in FIG. 9 is often used as the air preheater 10. In this regenerative air preheater 10, the heat accumulator rotor 13 supported by the rotor shaft 12 disposed at the center of the casing 11 rotates at 2 to 3 rpm, and the heat accumulator is heated while the high-temperature exhaust gas flow passes. The heat exchange takes place by releasing heat while the cold air stream passes. Reference numeral 14 denotes a sector plate.

回転式の空気予熱器10は、単位容積当りの伝熱量が大きいことに高いメリットがあるが、一方で蓄熱体ロータ13の外周方向および半径方向外方それぞれに対してケーシング11との間を隙間なくシールし、排ガス流側と空気流側とを完全に隔てることはその回転機構のために難しく、その結果、高圧力側の空気流の一部が排ガス流側に漏洩し易いという欠点を持っている。   The rotary air preheater 10 has a high merit in that the amount of heat transfer per unit volume is large, but on the other hand, there is a gap between the casing 11 and the outer circumferential direction and the radially outward direction of the heat accumulator rotor 13. It is difficult to completely seal and separate the exhaust gas flow side and the air flow side due to the rotation mechanism, and as a result, a part of the high pressure side air flow tends to leak to the exhaust gas flow side. ing.

一般に、この漏洩空気量は、シール部の劣化や構成部品の変形等によって、図10に示すようにボイラ設備運用の経過とともに僅かながら増加し、その漏洩率は10数%に及ぶこともある。そして、空気予熱器10の漏洩空気量の増加に伴って、一般に燃焼用空気温度は低下し、また通風設備の駆動動力は増大するため、ボイラ設備としての効率は低下する。   In general, the amount of leaked air slightly increases with the progress of boiler facility operation as shown in FIG. 10 due to deterioration of the seal portion, deformation of components, and the like, and the leakage rate may reach several ten percent. As the amount of air leaked from the air preheater 10 increases, the combustion air temperature generally decreases and the driving power of the ventilation facility increases, so the efficiency of the boiler facility decreases.

さらに排ガス流量の増加は、集塵機34での集塵効率の低下を招き、空気予熱器10で予熱する前の燃焼用空気を昇温する機器(図示せず)を備えたボイラ設備では、その加熱熱量の一部が損失となる。   Further, the increase in the exhaust gas flow rate causes a decrease in the dust collection efficiency of the dust collector 34. In a boiler facility equipped with a device (not shown) for heating the combustion air before preheating with the air preheater 10, the heating is performed. Part of the heat is lost.

通風機など通風系統に設置される機器の容量は、一般に空気予熱器10での空気漏洩などを考慮して一定の余裕を持って選定されるが、過大な空気漏洩は通風制御系に制約を与えてボイラ出力を制限してしまう虞もある。   The capacity of equipment installed in the ventilation system such as a ventilator is generally selected with a certain allowance in consideration of air leakage in the air preheater 10, but excessive air leakage restricts the ventilation control system. There is also a possibility of limiting the boiler output.

このように、回転式空気予熱器で生じる異常を放置してボイラ設備の運用を継続すると、種々の弊害を伴うことがある。ボイラ設備の運用に当り、空気予熱器10での漏洩空気量の変動を管理してシール部の劣化状況を推定・予測し、空気予熱器の調整・改修等の適切な対応を行うことが求められる。   As described above, if the abnormality of the rotary air preheater is left unattended and the operation of the boiler equipment is continued, various adverse effects may occur. In the operation of boiler equipment, it is required to manage fluctuations in the amount of leaked air in the air preheater 10 to estimate and predict the deterioration of the seal part and to take appropriate measures such as adjusting and refurbishing the air preheater. It is done.

これに対処する方法として、煙道に複数の酸素濃度測定手段を付設し、空気予熱器の入口側および出口側の双方の燃焼排ガス流の酸素濃度を監視して、空気予熱器における空気漏洩の状況を把握する手法が知られている。   As a method to cope with this, a plurality of oxygen concentration measuring means are attached to the flue, and the oxygen concentration of the combustion exhaust gas flow on both the inlet side and the outlet side of the air preheater is monitored to prevent air leakage in the air preheater. A method for grasping the situation is known.

また特許文献1には、回転式空気予熱器の入口側および出口側の双方に備える排ガス性状分析手段と、漏洩空気率の算出手段と、空気予熱器の損傷具合を推定する手段とをそなえた空気予熱器性能診断装置が示されている。空気予熱器における漏洩空気量の変動の把握には、空気予熱器の入口側および出口側の双方の燃焼排ガス性状を監視することが有効である。
特許第2703548号公報
Further, Patent Document 1 includes exhaust gas property analyzing means provided on both the inlet side and the outlet side of the rotary air preheater, means for calculating the leakage air rate, and means for estimating the degree of damage to the air preheater. An air preheater performance diagnostic device is shown. In order to grasp the fluctuation of the amount of leaked air in the air preheater, it is effective to monitor the combustion exhaust gas properties on both the inlet side and the outlet side of the air preheater.
Japanese Patent No. 2703548

ところで、古いボイラ設備などでは、上述した空気予熱器での空気漏洩の監視に適した複数の排ガス性状測定手段を元々完備していないことが少なくない。このようなボイラ設備において、空気予熱器での漏洩の状況を適切に把握するためには、新しく排ガス性状測定手段を付設することになる。   By the way, it is often the case that the old boiler equipment or the like is not originally equipped with a plurality of exhaust gas property measuring means suitable for monitoring air leakage in the air preheater described above. In such a boiler facility, in order to appropriately grasp the state of leakage in the air preheater, a new exhaust gas property measuring means will be added.

しかし、一般に、排ガス性状の測定機器の設置や調整には専門的な技術が必要とされ、手間を要する場合が多い。例えば、空気予熱器で漏洩した空気と排ガスとが充分に混合されない場所で行われた排ガス性状の測定は、空気漏洩状況の把握に対して適切な測定とはならない。   However, in general, installation and adjustment of a measuring instrument for exhaust gas properties requires specialized techniques and often requires labor. For example, the measurement of the exhaust gas property performed in a place where the air leaked by the air preheater and the exhaust gas are not sufficiently mixed is not an appropriate measurement for grasping the air leakage state.

本発明は上述の点を考慮してなされたもので、空気予熱器における空気漏洩の監視に適した排ガス性状測定手段を完備していないボイラ設備に対して、空気予熱器での空気漏洩の状況を容易に診断する空気予熱器の診断装置および診断方法を提供することを目的とする。   The present invention has been made in consideration of the above-described points, and the situation of air leakage in the air preheater is not provided for boiler equipment that does not have exhaust gas property measuring means suitable for monitoring air leakage in the air preheater. It is an object to provide a diagnostic device and a diagnostic method for an air preheater that can easily diagnose the above.

上記目的達成のため、本発明では、次のような装置および方法を提供するものである。   In order to achieve the above object, the present invention provides the following apparatus and method.

まず診断装置として、
ボイラ設備に付設するガス式空気予熱器の診断装置において、
前記ガス式空気予熱器の空気系統側に設置された空気流側通風機の消費エネルギ、および排ガス系統側に設置されたガス流側通風機の消費エネルギが与えられ、
前記空気予熱器における漏洩空気量の推定値を出力する
ことを特徴とする空気予熱器の診断装置、を提供し、
次に診断方法として、
ボイラ設備に付設するガス式空気予熱器の診断方法において、
ガス式空気予熱器の空気系統側に設置された空気流側通風機の消費エネルギ、および排ガス系統側に設置されたガス流側通風機の消費エネルギを測定し、
前記空気予熱器における漏洩空気量の推定値を算出することを特徴とする空気予熱器の診断方法、
を提供するものである。
First, as a diagnostic device,
In the diagnostic device for the gas air preheater attached to the boiler equipment,
Energy consumption of the air flow side ventilator installed on the air system side of the gas air preheater, and energy consumption of the gas flow side ventilator installed on the exhaust gas system side are given,
Providing an air preheater diagnostic device, which outputs an estimated value of the amount of leaked air in the air preheater,
Next, as a diagnostic method,
In the diagnostic method of the gas air preheater attached to the boiler equipment,
Measure the energy consumption of the air flow side ventilator installed on the air system side of the gas air preheater and the energy consumption of the gas flow side ventilator installed on the exhaust gas system side,
A method of diagnosing an air preheater, characterized by calculating an estimated value of the amount of leaked air in the air preheater,
Is to provide.

本発明は上述のように、ガス式空気予熱器における空気流側通風機およびガス流側通風機の消費エネルギを用いて漏洩空気量を求めるようにしたため、空気漏洩の状況を簡易にしかも正確に把握することができる。   As described above, according to the present invention, the amount of leaked air is obtained by using the energy consumed by the air flow side ventilator and the gas flow side ventilator in the gas air preheater. I can grasp it.

以下、図1ないし図7を参照して本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図8により説明した従来のものと同様に、空気予熱器10は、ボイラ30に対する燃焼用空気流路および燃焼排気ガス流路の途中に設けられ、空気流路に設けられた通風機21および排気ガス流路に設けられた通風機22により給排気を行う。これら通風機21,22には、圧力計器61,62が設けられている。また、空気予熱器10には、4つの温度計器71−74が設けられている。   As in the conventional apparatus described with reference to FIG. 8, the air preheater 10 is provided in the middle of the combustion air flow path and the combustion exhaust gas flow path for the boiler 30, and the ventilator 21 and the exhaust provided in the air flow path. Supply and exhaust are performed by the ventilator 22 provided in the gas flow path. These ventilators 21 and 22 are provided with pressure gauges 61 and 62. The air preheater 10 is provided with four thermometers 71-74.

実施例1−3について
実施例1および実施例2により、上記のようなボイラ設備に対応する空気予熱器10の診断装置80を説明する。
Example 1-3 A diagnostic device 80 of the air preheater 10 corresponding to the boiler equipment as described above will be described by Example 1 and Example 2.

また、実施例3により、特に通風機21,22の消費エネルギ(消費電力や消費電流など)を測定する計器51,52を常設していないボイラ設備を対象とする空気予熱器の診断方法を説明する。   Further, according to the third embodiment, a diagnostic method for an air preheater for boiler facilities that do not have permanent meters 51 and 52 for measuring energy consumption (power consumption, current consumption, etc.) of the ventilators 21 and 22 will be described. To do.

図1および図2を参照して、本発明の実施例1を説明する。この図1において、空気予熱器10の診断装置80は、押込通風機21、掃引通風機22の消費エネルギを求めるために、押込通風機21の消費電力を測定する電力計器51の測定値および押込通風制御信号46と、掃引通風機22の消費電力を測定する電力計器52の測定値および掃引通風制御信号47とを収集する。   A first embodiment of the present invention will be described with reference to FIGS. In FIG. 1, the diagnostic device 80 of the air preheater 10 determines the power consumption of the push ventilator 21 and the measured value of the pusher ventilator 21 in order to obtain the energy consumption of the push ventilator 21 and the sweep ventilator 22. The ventilation control signal 46, the measured value of the power meter 52 that measures the power consumption of the sweep ventilator 22, and the sweep ventilation control signal 47 are collected.

次に、空気予熱器の診断装置80の処理動作について、図2に示すステップS1ないしS5にしたがって順次説明する。   Next, the processing operation of the air preheater diagnosis device 80 will be sequentially described according to steps S1 to S5 shown in FIG.

ステップS1:通風機風量の推定値の算出
押込通風機21および掃引通風機22の消費電力の測定値L,Lから、図3Aに例示する通風機21,22の風量Qと消費電力Lとの関係を示すそれぞれの特性曲線を使って、押込通風機21および掃引通風機22の通過風量の推定値Q,Qを求める。
Step S1: Calculation of Estimated Value of Ventilator Air Volume From the measured power values L F and L I of the push ventilator 21 and the sweep ventilator 22, the air volume Q and the power consumption L of the ventilators 21 and 22 illustrated in FIG. 3A The estimated values Q F and Q I of the passing air volume of the forced draft fan 21 and the sweep ventilator 22 are obtained using the respective characteristic curves indicating the relationship between

電力計器51,52が、押込通風機21および掃引通風機22の消費電流を測定する電流計器である場合、通風機21,22の風量Qと消費電流Iとの関係を示すそれぞれの特性曲線を使って、押込通風機21および掃引通風機22の通過風量の推定値Q,Qを同様に求めることができる。 When the power meters 51 and 52 are current meters that measure the current consumption of the forced draft fan 21 and the sweep ventilator 22, respective characteristic curves showing the relationship between the air volume Q and the current consumption I of the ventilators 21 and 22 are shown. The estimated values Q F and Q I of the passing air volume of the forced draft fan 21 and the sweep ventilator 22 can be similarly obtained.

ここで、特に通風制御方式が通風機21,22のベーン制御による場合、該当する通風機の消費電力Lの測定値と通風制御信号Uとから、図3Bに例示する通風機の風量Qと消費電力Lとの関係を示す特性曲線群を使って、通風機21,22の通過風量Qの推定値を求める。   Here, especially when the ventilation control method is based on the vane control of the ventilators 21 and 22, the air volume Q and the consumption of the ventilator illustrated in FIG. 3B from the measured value of the power consumption L of the corresponding ventilator and the ventilation control signal U. An estimated value of the passing air amount Q of the ventilators 21 and 22 is obtained using a characteristic curve group indicating a relationship with the electric power L.

また、押込通風機21および掃引通風機22の差圧の測定値P,Pと通風制御信号U,Uとを収集し、図3Cに例示する通風機21,22の風量Qと静圧差Pとの関係を示す特性曲線群を使って、押込通風機21および掃引通風機22の通過風量の推定値Q,Qを求めてもよい。 Further, the measured values P F and P I of the differential pressure between the pusher 21 and the sweeper 22 and the ventilation control signals U F and U I are collected, and the air volume Q of the fans 21 and 22 illustrated in FIG. Using the characteristic curve group indicating the relationship with the static pressure difference P, the estimated values Q F and Q I of the passing air volume of the forced draft fan 21 and the sweep draft fan 22 may be obtained.

なお、上記通風機の特性曲線として、通常試験時に取得する各通風機の性能特性データを補間して利用することができる。   In addition, the characteristic characteristic data of each ventilator acquired at the time of a normal test can be interpolated and used as the characteristic curve of the ventilator.

ステップS2:漏洩空気量の推定値の算出
空気予熱器10の空気漏洩が増加すると、一般に、押込通風機21の風量はボイラ30に供給される燃焼用空気量より増加し、掃引通風機22の風量はボイラ30からの燃焼排ガス量より増加することから、空気予熱器10の漏洩空気量ΔQを次式によって推定する。

Figure 2007315696
Step S2: Calculation of Estimated Value of Leakage Air When the air leakage of the air preheater 10 increases, generally, the air volume of the forced air blower 21 increases from the amount of combustion air supplied to the boiler 30 and the sweep air blower 22 Since the air volume increases from the amount of combustion exhaust gas from the boiler 30, the leakage air quantity ΔQ of the air preheater 10 is estimated by the following equation.
Figure 2007315696

押込通風機21および掃引通風機22の通過風量の推定値Q,Qから得る2つの漏洩空気量の推定値のうち小さい方を取り、押込通風機21および掃引通風機22に共通な風量増加分のみを抽出して、漏洩空気量ΔQが過大な見積もりとならないようにしている。 The smaller of the two estimated values of the leaked air amount obtained from the estimated values Q F and Q I of the passing air flow rate of the forced draft fan 21 and the sweep ventilator 22, and the common air flow rate for the forced draft fan 21 and the sweep ventilator 22. Only the increase is extracted so that the leaked air amount ΔQ is not overestimated.

ここで、QF0,QI0は、それぞれ燃焼用空気の基準風量、燃焼排ガスの基準風量であり、燃料供給量Fを用いて以下で見積もることもできる。

Figure 2007315696
Here, Q F0 and Q I0 are the reference air volume of combustion air and the reference air volume of combustion exhaust gas, respectively, and can be estimated as follows using the fuel supply amount F.
Figure 2007315696

ここで、

Figure 2007315696
であり、mは空気過剰率、c,h,s,o,n,wはそれぞれ燃料単位量に含まれる炭素、水素、硫黄、酸素、窒素、水分の重量とする。 here,
Figure 2007315696
Where m is the excess air ratio, and c, h, s, o, n, and w are the weights of carbon, hydrogen, sulfur, oxygen, nitrogen, and moisture contained in the fuel unit amount, respectively.

ステップS3:消費電力増加量の推定値の算出
漏洩空気量の増加分の推定値ΔQから、通風機21,22の風量Qと消費電力Lとの関係を示す特性曲線(図3A)を再び使って、図3Dに示すように押込通風機21および掃引通風機22それぞれの消費電力における増加分の推定値ΔL,ΔLを求める。
Step S3: Calculation of Estimated Value of Increased Power Consumption From the estimated value ΔQ of the increase in leaked air amount, the characteristic curve (FIG. 3A) showing the relationship between the air volume Q of the ventilators 21 and 22 and the power consumption L is used again. Then, as shown in FIG. 3D, estimated values ΔL F and ΔL I of the increase in the power consumption of the forced draft fan 21 and the sweep draft fan 22 are obtained.

ステップS4:漏洩空気量推定値の記録と表示
押込通風機21および掃引通風機22の消費電力L,L、空気予熱器10の漏洩空気量ΔQ、押込通風機21および掃引通風機22それぞれの消費電力の増加分の推定値ΔL,ΔLなどを時系列で記録し、グラフ等で表示する。
Step S4: Recording and Display of Estimated Leakage Air Value Power consumption L F , L I of the push ventilator 21 and the sweep ventilator 22, leak air amount ΔQ of the air preheater 10, the push ventilator 21 and the sweep ventilator 22 respectively The estimated values ΔL F and ΔL I of the increase in power consumption are recorded in time series and displayed in a graph or the like.

上記に加えて、空気予熱器10の燃焼用空気側と燃焼排ガス側との各出入口に設置した温度計器71,72,73,74の温度測定値をそれぞれ収集する。空気予熱器10で漏洩空気量が増加した場合、一般に空気予熱器10の熱交換器としての性能は低下するため、下式によって算出される温度効率ф,фを時系列で記録し表示することによって、空気予熱器の熱交換特性の変動を併せて監視する。

Figure 2007315696
In addition to the above, the temperature measurement values of the thermometers 71, 72, 73, 74 installed at the inlets and outlets of the air preheater 10 on the combustion air side and the combustion exhaust gas side are collected. When the amount of leaked air increases in the air preheater 10, the performance of the air preheater 10 as a heat exchanger generally decreases. Therefore, the temperature efficiencies ф a and ф g calculated by the following equations are recorded and displayed in time series. By doing so, the fluctuation of the heat exchange characteristics of the air preheater is also monitored.
Figure 2007315696

ステップS5:漏洩空気量予測曲線の算出と表示
空気予熱器10における空気漏洩率の予測曲線y = k + kx + kを求めて、グラフ等で表示する。ここで、係数k,k,kは、空気予熱器10での空気漏洩率の推定値列yと対応する時間列xとから、以下の方程式群を解くことにより求める。

Figure 2007315696
Step S5: In Search of prediction curve y = k 1 x 2 + k 2 x + k 3 of the air leakage rate in view the air preheater 10 and the calculation of the leakage air amount prediction curve is displayed graphically and the like. Here, the coefficients k 1 , k 2 , and k 3 are obtained by solving the following equation group from the estimated value sequence y i of the air leakage rate in the air preheater 10 and the corresponding time sequence x i .
Figure 2007315696

図4は、空気漏洩率の推定値、押込通風機21および掃引通風機22の消費電力増加分の推定値、および空気予熱器10における予熱空気の温度効率の記録データ、ならびにそれらの予測曲線の出力例である。   FIG. 4 shows the estimated value of the air leakage rate, the estimated value of the increase in power consumption of the forced draft fan 21 and the sweep draft fan 22, the record data of the temperature efficiency of the preheated air in the air preheater 10, and the prediction curves thereof. It is an output example.

空気予熱器10の診断装置80の機能は、既存のボイラの監視設備に組み込むことでも実現でき、押込通風機21の消費電力測定値および掃引通風機22の消費電力測定値を取り込んで、ボイラ設備の監視用に処理するプログラムの一部として提供することもできる。   The function of the diagnostic device 80 of the air preheater 10 can also be realized by incorporating it into the existing boiler monitoring equipment. It can also be provided as part of a program for processing for monitoring.

この実施例1によれば、排ガス性状の測定機器を新しく付設することなく取得可能な測定値に基づき、空気予熱器10における空気漏洩の状況を把握する空気予熱器10の診断装置80を提供することができる。通風機における消費電力の増加分の推定値を出力することによって、空気予熱器10の空気漏洩に起因するエネルギーコストを考慮した空気予熱器10の補修計画が可能になる。   According to the first embodiment, the diagnostic device 80 of the air preheater 10 is provided that grasps the state of air leakage in the air preheater 10 based on the measurement values that can be acquired without newly installing an exhaust gas property measuring device. be able to. By outputting the estimated value of the increase in power consumption in the ventilator, a repair plan for the air preheater 10 in consideration of the energy cost due to the air leakage of the air preheater 10 becomes possible.

空気予熱器10における燃焼用空気側および燃焼排ガス側の温度効率を算出することによって、空気予熱器10の熱交換性能を監視することができる。また、空気予熱器10における漏洩空気量の予測曲線を表示することによって、漏洩空気量の増加見込みを把握することができる。   By calculating the temperature efficiency of the combustion air side and the combustion exhaust gas side in the air preheater 10, the heat exchange performance of the air preheater 10 can be monitored. Further, by displaying the prediction curve of the leaked air amount in the air preheater 10, it is possible to grasp the expected increase in the leaked air amount.

図5は、本発明の実施例2を示している。なお、実施例1と同一の構成要素には同一の符号を用いる。   FIG. 5 shows a second embodiment of the present invention. In addition, the same code | symbol is used for the component same as Example 1. FIG.

この図5において、空気予熱器10の診断装置80は、押込通風機21の消費電力を測定する電力計器51の測定値および押込通風制御信号46と、掃引通風機22の消費電力を測定する電力計器52の測定値および掃引通風制御信号47と、燃料供給量計器41の測定値と、酸素濃度計器43の測定値とを収集する。   In FIG. 5, the diagnostic device 80 of the air preheater 10 includes the measured value of the power meter 51 that measures the power consumption of the forced draft fan 21 and the pushed draft control signal 46, and the power that measures the consumed power of the sweep ventilator 22. The measured value of the meter 52 and the sweep ventilation control signal 47, the measured value of the fuel supply amount meter 41, and the measured value of the oxygen concentration meter 43 are collected.

ここで、酸素濃度計器43は、図5に示すボイラ30内または空気予熱器10より上流側の煙道32に設置されており、燃焼用空気の空気過剰率の調整用に通常設置される酸素濃度計器を利用することができる。   Here, the oxygen concentration meter 43 is installed in the flue 32 upstream of the boiler 30 or the air preheater 10 shown in FIG. 5, and is usually installed for adjusting the excess air ratio of the combustion air. A densitometer can be used.

この実施例2の空気予熱器の診断装置80の処理について、実施例1におけるステップS1およびステップS3〜S5と同じ処理によって実施が可能であり、以下にステップS2の処理のみ説明する。   The processing of the air preheater diagnosis device 80 of the second embodiment can be performed by the same processing as the steps S1 and S3 to S5 in the first embodiment, and only the processing of the step S2 will be described below.

ステップS2:漏洩空気量の推定値の算出
排ガス酸素濃度の計測値(O)が、押込通風機21の通過風量の推定値Qとボイラ燃料供給量Fとから算出する酸素濃度の計算値

Figure 2007315696
と比較して明らかに異なる(小さい)場合に、空気予熱器10における漏洩空気量の推定値ΔQを次式で求める。
Figure 2007315696
Step S2: Calculation of Estimated Value of Leakage Air Volume The measured value (O 2 ) of the exhaust gas oxygen concentration is a calculated value of the oxygen concentration calculated from the estimated value Q F of the passing air volume of the forced air blower 21 and the boiler fuel supply amount F.
Figure 2007315696
When it is clearly different (small) compared to, the estimated value ΔQ of the amount of leaked air in the air preheater 10 is obtained by the following equation.
Figure 2007315696

ここで、

Figure 2007315696
であり、c,h,s,o,n,wは、それぞれ燃料単位量に含まれる炭素、水素、硫黄、酸素、窒素、水分の重量とする。 here,
Figure 2007315696
Where c, h, s, o, n, and w are the weights of carbon, hydrogen, sulfur, oxygen, nitrogen, and moisture contained in the fuel unit amount, respectively.

この実施例2によれば、排ガス性状の測定機器を新しく付設することなく取得可能な測定値に基づき、空気予熱器10における空気漏洩の状況を把握する空気予熱器10の診断装置80を提供することができる。   According to the second embodiment, there is provided the diagnostic device 80 for the air preheater 10 that grasps the state of air leakage in the air preheater 10 based on measurement values that can be acquired without newly installing an exhaust gas property measuring device. be able to.

図6は、本発明の実施例3を示している。この実施例3では、電力計器51および電力計器52を仮設置して、押込通風機21の消費電力および掃引通風機22の消費電力を測定する。通風機モータの供給電力が三相3線式である場合、図7に示すように2個の電力計を使って電力計器を構成しても電力を測定することができる。電力計器51および電力計器52には、無線によって測定値を発信する機能を備えているものを用いると、配線作業等が簡易となる。   FIG. 6 shows a third embodiment of the present invention. In the third embodiment, the power meter 51 and the power meter 52 are temporarily installed, and the power consumption of the push-in ventilator 21 and the power consumption of the sweep ventilator 22 are measured. When the supply power of the ventilator motor is a three-phase three-wire system, the power can be measured even if the power meter is configured using two power meters as shown in FIG. If the power meter 51 and the power meter 52 are provided with a function of transmitting measurement values wirelessly, wiring work and the like are simplified.

携帯情報端末81は、電力計器51および電力計器52から伝送される無線信号を受信し、押込通風機22および掃引通風機23の消費電力データを収集する。携帯情報端末81において、実施例1に説明した処理と同様に、押込通風機22および掃引通風機23の特性曲線それぞれを使って、空気予熱器10における漏洩空気量の推定値を算出する。さらに、他の計器信号等の収集により実施例1または実施例2における空気予熱器の診断装置と同様の機能を拡張することもできる。   The portable information terminal 81 receives radio signals transmitted from the power meter 51 and the power meter 52 and collects power consumption data of the push ventilator 22 and the sweep ventilator 23. In the portable information terminal 81, the estimated value of the amount of leaked air in the air preheater 10 is calculated using the characteristic curves of the forced draft fan 22 and the sweep ventilator 23 in the same manner as the processing described in the first embodiment. Furthermore, the function similar to the diagnostic apparatus of the air preheater in Example 1 or Example 2 can also be expanded by collecting other instrument signals and the like.

空気予熱器10の近傍に複数の燃焼排ガスの性状測定手段を設けて測定を行う場合に比べて、押込通風機21および掃引通風機22の消費電力の測定は容易に実現できることが多く、この実施例3の空気予熱器10の診断方法によれば、空気予熱器10の空気漏洩の状況を簡易に診断することができる。   Compared with the case where measurement is performed by providing a plurality of combustion exhaust gas property measuring means in the vicinity of the air preheater 10, the measurement of the power consumption of the forced draft fan 21 and the sweep ventilator 22 is often easily realized. According to the diagnostic method of the air preheater 10 of Example 3, the air leakage situation of the air preheater 10 can be easily diagnosed.

本発明の第1の実施例における空気予熱器の診断装置の設置状況を示す図。The figure which shows the installation condition of the diagnostic apparatus of the air preheater in 1st Example of this invention. 図1に示した第1の実施例における診断処理ステップを示す図。The figure which shows the diagnostic process step in the 1st Example shown in FIG. 図1に示した第1の実施例における通風機の風量−消費電力の関係を示す図。The figure which shows the relationship of the air volume-power consumption of the ventilator in 1st Example shown in FIG. 同じく通風機の風量−消費電力の関係を示す図。The figure which similarly shows the relationship between the air volume of a ventilator and power consumption. 同じく通風機の風量−静圧差の関係を示す図。The figure which similarly shows the relationship of the air volume-static pressure difference of a ventilator. 同じく通風機の風量−消費電力の関係を示す図。The figure which similarly shows the relationship between the air volume of a ventilator and power consumption. 第1の実施例における表示画面出力の一例を示す図。The figure which shows an example of the display screen output in a 1st Example. 本発明の第2の実施例における空気予熱器の診断装置の設置状況を示す図。The figure which shows the installation condition of the diagnostic apparatus of the air preheater in 2nd Example of this invention. 本発明の第3の実施例における空気予熱器の診断方法を示す図。The figure which shows the diagnostic method of the air preheater in the 3rd Example of this invention. 第3の実施例における通風機のモータの消費電力の測定方法の一例を示す図。The figure which shows an example of the measuring method of the power consumption of the motor of the ventilator in a 3rd Example. 従来のボイラ設備の予熱方式および通風制御方式を示す構成図。The block diagram which shows the pre-heating system and ventilation control system of the conventional boiler equipment. 従来のボイラ設備における回転式空気予熱器の構成図。The block diagram of the rotary air preheater in the conventional boiler equipment. 従来の空気予熱器における漏洩空気量の変化の一例を示す図。The figure which shows an example of the change of the amount of leakage air in the conventional air preheater.

符号の説明Explanation of symbols

10:空気予熱器
21:押込通風機
22:掃引通風機
30:ボイラ
31:燃焼用空気ダクト
32:節炭器
33:燃焼排ガスダクト(煙道)
34:集塵機
35:煙突
41:燃料供給量計器
42:火炉内圧力計器
43:酸素濃度計器
44:押込通風制御設定器
45:掃引通風制御設定器
46:押込通風制御信号
47:掃引通風制御信号
51,52:電力計器
61,62:圧力計器
71,72,73,74:温度計器
80:空気予熱器の診断装置
81:携帯情報端末
10: Air preheater 21: Pushing ventilator
22: sweep aerator 30: boiler 31: combustion air duct 32: economizer 33: combustion exhaust gas duct (flue)
34: Dust collector 35: Chimney 41: Fuel supply meter 42: Furnace pressure meter 43: Oxygen concentration meter 44: Pushing air flow control setting device 45: Sweep air flow control setting device 46: Pushing air flow control signal 47: Sweep air flow control signal 51 , 52: Power meter 61, 62: Pressure meter 71, 72, 73, 74: Thermometer 80: Air preheater diagnostic device 81: Portable information terminal

Claims (8)

ボイラ設備に付設するガス式空気予熱器の診断装置において、
前記ガス式空気予熱器の燃焼用空気系統側に設置された空気流側通風機の消費エネルギ、および排ガス系統側に設置されたガス流側通風機の消費エネルギが入力として与えられ、
前記空気流側通風機の通風量の推定と前記ガス流側通風機の通風量の推定とに基づいて前記空気予熱器における漏洩空気量の推定値を出力する
ことを特徴とする空気予熱器の診断装置。
In the diagnostic device for the gas air preheater attached to the boiler equipment,
The energy consumption of the air flow side ventilator installed on the combustion air system side of the gas air preheater and the energy consumption of the gas flow side ventilator installed on the exhaust gas system side are given as inputs,
An estimated value of the amount of leaked air in the air preheater is output based on the estimation of the ventilation amount of the air flow side ventilator and the estimation of the ventilation amount of the gas flow side ventilator. Diagnostic device.
前記空気流側通風機の消費エネルギに加えて通風制御信号が、また前記ガス流側通風機の消費エネルギに加えて通風制御信号が入力として与えられることを特徴とする請求項1記載の空気予熱器の診断装置。   The air preheating according to claim 1, wherein a ventilation control signal is given as an input in addition to the energy consumption of the air flow side ventilator, and a ventilation control signal is given as an input in addition to the energy consumption of the gas flow side ventilator. Device diagnostic equipment. 前記空気流側通風機の消費エネルギに替えて前記空気流側通風機の差圧および通風制御信号が、また前記ガス流側通風機の消費エネルギに替えて前記ガス流側通風機の差圧および通風制御信号が入力として与えられることを特徴とする請求項1記載の空気予熱器の診断装置。   In place of the energy consumption of the air flow side ventilator, the differential pressure and the ventilation control signal of the air flow side ventilator, and in place of the energy consumption of the gas flow side ventilator, the differential pressure of the gas flow side ventilator and The air preheater diagnosis apparatus according to claim 1, wherein a ventilation control signal is given as an input. 前記入力に加えて、ボイラ燃料供給量と、前記空気予熱器より上流側のガス系統の酸素濃度と、が入力されることを特徴とする請求項1に記載の空気予熱器の診断装置。   The diagnostic apparatus for an air preheater according to claim 1, wherein, in addition to the input, a boiler fuel supply amount and an oxygen concentration of a gas system upstream of the air preheater are input. 前記入力に加えて、空気系統側のガス式空気予熱器への入口温度および出口温度と、ガス系統側のガス式空気予熱器への入口温度および出口温度と、が入力されることを特徴とする請求項1ないし4の何れかに記載の空気予熱器の診断装置。   In addition to the input, an inlet temperature and an outlet temperature to the gas air preheater on the air system side, and an inlet temperature and an outlet temperature to the gas air preheater on the gas system side are input. The diagnostic apparatus for an air preheater according to any one of claims 1 to 4. 前記推定値に加えて、前記漏洩空気量の増加に起因するエネルギ損失量の推定値を出力することを特徴とする請求項1ないし5の何れかに記載の空気予熱器の診断装置。   6. The diagnostic apparatus for an air preheater according to claim 1, wherein an estimated value of an amount of energy loss caused by an increase in the amount of leaked air is output in addition to the estimated value. 漏洩空気量の予測曲線を表示することを特徴とする請求項1ないし6の何れかに記載の空気予熱器の診断装置。   The diagnostic apparatus for an air preheater according to any one of claims 1 to 6, wherein a prediction curve of the leaked air amount is displayed. ボイラ設備に付設するガス式空気予熱器の診断方法において、
ガス式空気予熱器の空気系統側に設置された空気流側通風機の消費エネルギ、およびガス系統側に設置されたガス流側通風機の消費エネルギを測定し、
前記空気予熱器における漏洩空気量の推定値を算出することを特徴とする空気予熱器の診断方法。
In the diagnostic method of the gas air preheater attached to the boiler equipment,
Measure the energy consumption of the air flow side ventilator installed on the air system side of the gas air preheater and the energy consumption of the gas flow side ventilator installed on the gas system side,
A method for diagnosing an air preheater, comprising: calculating an estimated value of a leakage air amount in the air preheater.
JP2006146664A 2006-05-26 2006-05-26 Diagnosis device and diagnosis method for air preheater Pending JP2007315696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006146664A JP2007315696A (en) 2006-05-26 2006-05-26 Diagnosis device and diagnosis method for air preheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006146664A JP2007315696A (en) 2006-05-26 2006-05-26 Diagnosis device and diagnosis method for air preheater

Publications (1)

Publication Number Publication Date
JP2007315696A true JP2007315696A (en) 2007-12-06

Family

ID=38849712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006146664A Pending JP2007315696A (en) 2006-05-26 2006-05-26 Diagnosis device and diagnosis method for air preheater

Country Status (1)

Country Link
JP (1) JP2007315696A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281506A (en) * 2009-06-04 2010-12-16 Jfe Steel Corp Method of deciding maintenance and repair time of heat exchanger for preheating combustion air
CN102338395A (en) * 2011-09-28 2012-02-01 南京创能电力科技开发有限公司 Automatic air leakage control device of air preheater
JP2012132622A (en) * 2010-12-22 2012-07-12 Jfe Steel Corp Method for diagnosis of furnace air preheater
CN103968414A (en) * 2014-05-22 2014-08-06 北京蓝天瑞德环保技术股份有限公司 Automatic control device of basement boiler room air inlet amount
KR101452268B1 (en) 2012-12-26 2014-10-22 한전케이피에스 주식회사 Remote controller for an air preheater
CN113361171A (en) * 2021-06-11 2021-09-07 西安交通大学 Rotary air preheater dust deposition layered monitoring method based on finite difference method
CN114397069A (en) * 2022-01-05 2022-04-26 华北电力科学研究院有限责任公司 Method and device for determining air leakage rate of air preheater with two bins

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010281506A (en) * 2009-06-04 2010-12-16 Jfe Steel Corp Method of deciding maintenance and repair time of heat exchanger for preheating combustion air
JP2012132622A (en) * 2010-12-22 2012-07-12 Jfe Steel Corp Method for diagnosis of furnace air preheater
CN102338395A (en) * 2011-09-28 2012-02-01 南京创能电力科技开发有限公司 Automatic air leakage control device of air preheater
KR101452268B1 (en) 2012-12-26 2014-10-22 한전케이피에스 주식회사 Remote controller for an air preheater
CN103968414A (en) * 2014-05-22 2014-08-06 北京蓝天瑞德环保技术股份有限公司 Automatic control device of basement boiler room air inlet amount
CN113361171A (en) * 2021-06-11 2021-09-07 西安交通大学 Rotary air preheater dust deposition layered monitoring method based on finite difference method
CN113361171B (en) * 2021-06-11 2022-12-09 西安交通大学 Method for monitoring ash deposition layering of rotary air preheater based on finite difference method
CN114397069A (en) * 2022-01-05 2022-04-26 华北电力科学研究院有限责任公司 Method and device for determining air leakage rate of air preheater with two bins
CN114397069B (en) * 2022-01-05 2024-02-02 华北电力科学研究院有限责任公司 Method and device for determining air leakage rate of air preheater with two bins

Similar Documents

Publication Publication Date Title
JP2007315696A (en) Diagnosis device and diagnosis method for air preheater
US8880224B2 (en) Airflow managing system, a method of monitoring the airflow in an HVAC system and a HVAC system
US7260502B2 (en) Diagnosis method for boiler degradation, diagnosis apparatus for boiler degradation, diagnosis system for boiler degradation and recording medium that records operation program
JP4838870B2 (en) Heat transfer tube monitoring device
JP4831660B2 (en) A low-cost method for estimating steam turbine performance.
CN103886188A (en) Rotary-type air pre-heater air leakage rate real-time estimation method based on differential pressure
US7698933B2 (en) Method and device for estimating the temperature of exhaust gases entering into a post-treatment system arranged downstream from a system for the treatment of said gases
US20100068070A1 (en) Flow control for fluid handling system
WO2012001726A1 (en) Gas turbine gap assessment device and gas turbine system
JP2007329664A (en) Remote monitoring system for gas burning appliance
Ceylan et al. The effect of malfunctions in air handling units on energy and exergy efficiency
JP2004190633A (en) Fuel gas calorie estimating device of gas turbine
JP5461136B2 (en) Plant diagnostic method and diagnostic apparatus
JP3690992B2 (en) Abnormality diagnosis method and apparatus for thermal power plant
JP2703548B2 (en) Air preheater performance diagnostic device
JP2006250068A (en) Fan operation monitoring device
KR20070010767A (en) Combined power plant hrsg corrosion protection system
JP4019299B2 (en) Abnormality diagnosis method for gas turbine
JP5523950B2 (en) Fuel calorie calculation device and fuel calorie calculation method
JP4105852B2 (en) Remote damage diagnosis system for power generation facilities
Horyna et al. Virtual mass flow rate sensor using a fixed-plate recuperator
JP2003193808A (en) Diagnostic method and diagnostic system of electric power plant
JP5515591B2 (en) Waste heat regeneration system
Ionita Engineering and economic optimization of energy production
JPH0590155U (en) Combustion device life prediction device