JP2702954B2 - 高純度タンタル又は高純度ニオブ微粒子の製造方法 - Google Patents

高純度タンタル又は高純度ニオブ微粒子の製造方法

Info

Publication number
JP2702954B2
JP2702954B2 JP63048279A JP4827988A JP2702954B2 JP 2702954 B2 JP2702954 B2 JP 2702954B2 JP 63048279 A JP63048279 A JP 63048279A JP 4827988 A JP4827988 A JP 4827988A JP 2702954 B2 JP2702954 B2 JP 2702954B2
Authority
JP
Japan
Prior art keywords
gas
halide
purity
powder
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63048279A
Other languages
English (en)
Other versions
JPH01222028A (ja
Inventor
雄二郎 水崎
広純 伊沢
健三 塙
宏 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP63048279A priority Critical patent/JP2702954B2/ja
Publication of JPH01222028A publication Critical patent/JPH01222028A/ja
Application granted granted Critical
Publication of JP2702954B2 publication Critical patent/JP2702954B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はタンタル又はニオブの製造に係り、より詳細
には、各種高温材料、耐食材料用の粉末乃至焼結体とし
て使用される高純度で微細なタンタル又はニオブ粉末を
気相還元法により製造する方法に関する。
(従来の技術及び解決しようとする課題) タンタル(Ta)とニオブ(Nb)は化学的、物理的性質
が類似の点が多く、いずれも耐熱性、耐食性に優れてい
るため、その金属粉末又は合金粉は焼結体にして各種の
高温材料、耐食材料に使用されている。特にタンタルは
電解コンデンサーの陽極に好適な材料である。
ところで、TaやNb粉末を製造する方法には、粉砕
法、Na還元法、真空蒸発法、気相還元法などがあ
る。しかし、インゴットを水素化粉砕し或いは機械的に
粉砕するの方法では1μm以下の粒径に揃えることは
困難であり、また弗化物をNaで還元する方法は、Taの
場合、K2TaF7+5Na→2KF+5NaF+Taの反応によるもので
あり、一般に凝集しており、細かなものはできず、また
高密度化しにくい欠点がある。
一方、の真空蒸発法は特に純度の点では改善される
ものの、蒸気圧が低いために生産性が悪く、コスト高と
なり、工業的製造法とは云えない。
また、の気相還元法は、例えば、塩化物(TaCl5
を水素ガスで還元する方法であり、安価な設備を使用で
き、運転コストが低い利点がある。しかし、Ta、Nbは活
性であるために耐火物からの酸素により酸化されるの
で、純度が悪いという欠点があり、原理的には知られて
いるものの工業的には実施されていない。
この点、前記の気相還元法については従来より種々
の提案がされている。すなわち、(1)ハロゲン化物を
加熱してハロゲン化物蒸気を得る方法(例、特開昭59−
170211号、同62−56506号、同62−192507)、(2)高
温に加温された金属にハロゲンガスを当ててハロゲン化
物ガスを得る方法などがあり、前者の(1)の方法が主
流となっている。
また、本出願人は先に後者(2)の方法を改良する方
法として特願昭62−227856号を提案したが、この方法の
場合、多くの金属でそのハロゲン化物が液状又は固体で
生成し表面積が変化するため、一定量のハロゲン化物発
生量が得られず、生産効率上問題があり、更に、ハロゲ
ン化物を反応部へ送るパイプ上に還元された金属が成長
し、操業上問題があった。
本発明は、上記従来技術の問題点を解決するためにな
されたものであって、特に本出願人が先に提案した前記
気相還元法によるTa又はNbの製造法を改良し、酸化物が
なく、酸素等の不純物が極めて少ない高純度で粒度分布
のよりTa又はNb微粉末を生産効率良く、しかも安定して
安価に製造できる方法を提供することを目的とするもの
である。
(課題を解決するための手段) 前記目的を達成するため、本発明者は、Ta又はNbのハ
ロゲン化物がガス状で一定量を安定して得られる方法に
ついて鋭意研究を重ねた結果、Ta又はNb粒子をハロゲン
ガスによりハロゲン化物にする際に、得られたハロゲン
化物が容易に蒸発して表面より除去されることによりTa
又はNb粒子を化学的に粉砕する結果となり、Ta又はNb粒
子表面が蘇生され、安定した一定量のハロゲン化物ガス
の発生が低温で得られることを知見し、ここに本発明を
なしたものである。
すなわち、本発明に係るタンタル又はニオブの気相還
元法は、粒径100〜500μmのTa又はNb粒子を200〜600℃
に保持し、これをアルゴン等の不活性ガスと9〜50vol
%のハロゲンガスとの混合物と接触させてTa又はNbを含
む蒸気を得て、次いで該ハロゲン化物を含む蒸気を800
〜1100℃の温度で水素ガスで還元することを特徴とする
ものである。
以下に本発明を更に詳細に説明する。
本発明者の実験研究によれば、Ta又はNbは、そのハロ
ゲン化物の沸点が非常に低温で融点と殆ど変わりがない
ため、その原料粒子を加熱する際に温度コントロールす
ると、ハロゲン化物が金属表面から昇華してゆき、常に
新しい金属面が露出されて反応が更に進み、安定したハ
ロゲン化物ガス(蒸気)が得られることが判明した。
因みに、ハロゲン化物が塩化物、弗化物及び臭化物の
場合、それらの融点と沸点は第1表に示すとおりであ
る。
次に、本発明の製造プロセスについて説明する。
第1図は本発明の実施に用いられる装置の一例であ
り、第2図は該装置の気相還元部の詳細を示した図であ
る。
Ta又はNbの原料 通常はTa又はNbの粗粉又は板屑を原料として用い、低
純度のものでよい。但し、それらのハロゲン化物の発生
速度は原料の表面積によって変化するため、適正な粒径
のものを用いる必要があり、本発明では粒径が100〜500
μmの範囲のものを用いるのが好ましく、また扱い易
い。
このような原料は、上下を適当な大きさの網で仕切ら
れた充填層13内に置かれる。
加温及びハロゲン化 まず、ハロゲンガスとしては塩素(Cl)、弗素
(F)、臭素(Br)等を使用できるが、装置の腐食防止
並びに生成されるハロゲン化物の早期滴出防止の観点か
ら、ハロゲン化物は沸点の低いものがよく、塩素が望ま
しい。
このような点から、本発明では、ハロゲン化物発生部
分の温度を200〜600℃の範囲の適当な温度に調整するも
のである。通常は400℃程度とし、ハロゲン化物の融点
+300℃以下がよい。
ハロゲンガスのみでは、発生したハロゲン化物の流量
が小さく、不安定なため、Ar等の不活性ガスを適当量で
同時に流す必要がある。ハロゲンガスの混合割合は9〜
50vol%の範囲が好ましい。50vol%を超えるとそのよう
な効果が小さく、ハロゲン化物が粗粉となり、また9vol
%未満ではハロゲン化物が微粉となるものの、ハロゲン
化物の流量が低下し搬送不充分となるので好ましくな
い。
なお、ガス流量は反応装置の大きさ、目的とする粒度
等に応じて、自由に設定することができる。また、温度
コントロールは原料層中心部に設置した加熱制御装置
(例、石英管TC)により行うが、Ta又はNbとハロゲンガ
スとの反応は発熱反応であることを考慮し、ハロゲンガ
ス量及びハロゲンガスと不活性ガスとの混合量を調節し
ながら、ハロゲン化物の融点上300℃以内となるように
制御する。
Ta又はNb塩化物の還元 得られたTa又はNbハロゲン化物は、ガス状(蒸気)で
あり、キャリアーガス(例、Ar)によって搬送し、還元
反応部分(反応炉)に供給される。塩化物ガスの場合は
沸点が低く、凝縮することなく容易に反応炉に導入でき
る。なお、ハロガンガス濃度は粉末粒径に影響を及ぼす
ので、キャリアーガス流量及びハロゲンガス流量は粒径
を最適にするように選択するのがよい。キャリアーガス
流量は例えばハロゲンガス流量の約5倍とする。
次いで、Ta又はNbハロゲン化物ガスは反応炉で反応温
度に加熱される。反応温度は適宜設定できるが、800〜1
100℃の範囲が望ましい。従来、Nb、Ta等の高融点金属
を水素還元する場合、反応温度を1300〜1500℃程度に設
定する場合が多いが、反応温度が高いと耐火物の還元が
起こり、粉末中の酸素含有量が極端に増すことになる。
この点、本発明における反応温度は低温でよいので、耐
火物の酸化が防止されると共に気密性の高い石英管を使
用可能となるため、酸素含有量の低いハロゲン化物が得
られる効果と相俟って、粉末中の酸素含有量を著しく下
げることができる。含有酸素量は粉末の取り出し時に空
気酸化によって生じる酸化物量分だけに留まる程度であ
る。なお、反応温度が500℃未満では反応速度が遅くな
りすぎ、粉末中の塩化物量が増すので望ましくない。
例えば、Ta又はNb塩化物の場合の水素ガスによる反応
は、次式 2TaCl5+5H2→2Ta+10HCl 2NbCl5+5H2→2Nb+10HCl により行なわれるが、これらの反応式の平衡関係より、
水素ガスの流量は、Taの場合は1100℃でH2/Taモル比が1
6/1、800℃のときは64/1(95%収率)となる。しかし、
本発明者の実験結果により、純度の良いTa粉(Nb粉)を
得るためにはH2/Ta(Nb)モル比が30/1以上が必要であ
り、多いほど良好な結果が得られることが判明した。し
かし、500倍以上になると水素の流速が大きくなりす
ぎ、反応に寄与しないで流出する分が多くなるため、こ
れ以上の水素ガスは不要である。
還元反応で生じたTa又はNb粉末は、装置内で回収され
るが、回収した粉末はArガス中で装置から取り出すか、
或いはゆっくり空気に触れさせて表面を安定化させてか
ら取り出すのがよい。
次に本発明の実施例を示す。
(実施例) 第1図に示す装置を使用してタンタルの気相還元を実
施した。なお、第2図はこの装置における気相還元反応
部の詳細を示した図である。図中、1はAr供給ボンベ、
2はH2供給ボンベ、3はCl2供給ボンベ、4は脱酸器、
5は脱水器、6は流量計、7はCl2ライン、8はキャリ
アArライン、9は第2Arリン、10はH2ライン、11は反応
管、12は塩化物発生炉、13は充填層、14は還反応炉、15
はH2ガスノズル、16は粉末回収フィルター、17はHCl吸
収塔、18は電気伝導度測定セル、19は飛散防止網、20は
粉末支え網、21は充填層13の中心部に設けた石英管TCで
あり、Ta粉の塩化物化並びに該塩化物の水素還元、生成
粉末の回収等が連続的に実施できる装置構成を有してい
る。
まず、Ta原料として、市販の−32#(粒径500μm)
のTa粗粉(O2含有量は約2500ppm)を準備し、これを塩
化物発生炉12の充填層13にセットした。セット後、Arガ
スで充分に雰囲気置換を行った。
次いで、Cl2ガス流量0.05Nl/min、キャリアArガス流
量0.5Nl/min、第2Arガス流量2.5Nl/minにて各ガスをラ
インに供給すると共に、H2ガスを流量10Nl/min(約、0.
4mol/min)にてH2/Taモル比が約400倍になるようにH2
スノズル15より還元反応炉14に供給し、更に塩化物発生
炉11の塩化温度を500℃、還元反応炉14の反応温度を100
0℃にセットして反応を開始した。
これにより、Ta粗粉は充填層内にて塩化揮発し(TaCl
2蒸発速度1×10-3mol/min)、生じた塩化物ガスはキャ
リアArガスによって還元反応炉14に導かれ、H2ガスノズ
ル15からの水素ガスにより還元され、金属微粒子と塩化
水素ガスが生成される。
生成された金属微粒子は回収フィルター16に捕集さ
れ、塩化水素ガスは吸収塔17に吸収除去される。
回収された金属微粒子についてTEM(透過型電子顕微
鏡)によりデジタイザーを用いて画像回折を行って粒度
分布を調べ、またX線回折により酸化物の存在を調べ
た。
その結果、金属微粒子はアモルファス状で、凝集が弱
く、X線回折によっても酸化物の存在は認められず、O2
含有量が極めて少ない実質的に純金属Taよりなる粉であ
ることが確認された。また粒度分布は、第3図及び第4
図に示すとおり、平均粒径が10.9〜24.9nmで良好な粒径
分布を示した。
(発明の効果) 以上詳述したように、本発明によれば、特定の粒径の
Ta又はNb原料に不活性ガスと混合したハロゲンガスを低
温度で接触させてハロゲン化物ガスを得て水素還元する
ので、以下のような優れた効果が得られる。
低温で発生したハロゲン化物ガスが発生部分から離
れた処で還元反応するため、ハロゲン化物導入ノズルへ
の付着等の問題が全くなく、安定した運転ができる。
低温でハロゲンガスを取り扱うため、装置材質に対
する問題が少なく、気密性の高い装置が容易に作製で
き、安価に高純度のTa又はNb粉を得る装置が達成でき
る。
ハロゲン化物の発生量のコントロールが容易で、粒
度分布のコントロールが楽であり、流入させるハロゲン
ガス及び希釈不活性ガス流量によって制御が容易であ
る。
【図面の簡単な説明】
第1図及び第2図は本発明法の実施に用いる装置の一例
を示す説明図で、第1図は装置の全体図、第2図は第1
図のA部の詳細図であり、 第3図は実施例で得られたTa微粒子の粒径分布を示すヒ
ストグラム、 第4図は第2図の粒径分布を対数確率プロットした図で
ある。 7……Cl2ライン、8……キャリアArライン、9……第2
Arライン、10……H2ライン、11……反応管、12……塩化
物発生炉、13……充填層、14……還元反応炉、15……H2
ガスライン、16……粉末回収フィルター、19……飛散防
止網、20……粉末支え網、21……石英管TC。
フロントページの続き (72)発明者 伊沢 広純 長野県塩尻市大字宗賀1 昭和電工株式 会社微紛研究センター内 (72)発明者 塙 健三 長野県塩尻市大字宗賀1 昭和電工株式 会社微紛研究センター内 (72)発明者 斎藤 宏 茨城県取手市戸頭7―7―9 301 (56)参考文献 特開 昭62−23912(JP,A) 特公 昭39−9664(JP,B1) 特公 昭32−2358(JP,B1) 特公 昭48−33125(JP,B1)

Claims (1)

    (57)【特許請求の範囲】
  1. 【請求項1】粒径100〜500μmの金属Ta又は金属Nb粒子
    を200〜600℃に保持し、これをアルゴン等の不活性ガス
    と9〜50vol%のハロゲンガスとの混合ガスと接触させ
    てTa又はNbのハロゲン化物を含む蒸気を得て、次いで該
    ハロゲン化物を含む蒸気を800〜1100℃の温度で水素ガ
    スで還元することを特徴とする高純度タンタル又は高純
    度ニオブ微粒子の製造方法。
JP63048279A 1988-02-29 1988-02-29 高純度タンタル又は高純度ニオブ微粒子の製造方法 Expired - Lifetime JP2702954B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63048279A JP2702954B2 (ja) 1988-02-29 1988-02-29 高純度タンタル又は高純度ニオブ微粒子の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63048279A JP2702954B2 (ja) 1988-02-29 1988-02-29 高純度タンタル又は高純度ニオブ微粒子の製造方法

Publications (2)

Publication Number Publication Date
JPH01222028A JPH01222028A (ja) 1989-09-05
JP2702954B2 true JP2702954B2 (ja) 1998-01-26

Family

ID=12798996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63048279A Expired - Lifetime JP2702954B2 (ja) 1988-02-29 1988-02-29 高純度タンタル又は高純度ニオブ微粒子の製造方法

Country Status (1)

Country Link
JP (1) JP2702954B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5029055B2 (ja) * 1971-08-30 1975-09-20
JPS6223912A (ja) * 1985-07-23 1987-01-31 Showa Denko Kk 金属微粉の製造法

Also Published As

Publication number Publication date
JPH01222028A (ja) 1989-09-05

Similar Documents

Publication Publication Date Title
EP2055412B1 (en) Niobium or tantalum based powder produced by the reduction of the oxides with a gaseous metal
Gu et al. A mild solvothermal route to nanocrystalline titanium diboride
JPS6330062B2 (ja)
EP1144147B1 (en) METHOD FOR PRODUCING METAL POWDERS BY REDUCTION OF THE OXIDES, Nb AND Nb-Ta POWDERS AND CAPACITOR ANODE OBTAINED THEREWITH
WO2000067936A1 (en) Metal powders produced by the reduction of the oxides with gaseous magnesium
JP2008534778A (ja) 一次高融点金属の製造法
IL198900A (en) High purity powders produced by thermo-metallic redox of durable metal oxides and capacitors made therefrom
JP2007505992A (ja) 金属ハロゲン化物の還元によって金属組成物を製造するための方法および装置
AU2001296793A1 (en) Metalothermic reduction of refractory metal oxides
US4029740A (en) Method of producing metal nitrides
US6869461B2 (en) Fine powder of metallic copper and process for producing the same
US10316391B2 (en) Method of producing titanium from titanium oxides through magnesium vapour reduction
WO2017183487A1 (ja) 金属粉末の製造方法
JP2702954B2 (ja) 高純度タンタル又は高純度ニオブ微粒子の製造方法
RU2616920C2 (ru) Способ получения нанопорошка гидрида титана
Luidold et al. Production of niobium powder by magnesiothermic reduction of niobium oxides in a cyclone reactor
JP3564852B2 (ja) 高純度金属ルテニウム粉末の製造方法
Lu et al. Production of fine titanium powder from titanium sponge by the shuttle of the disproportionation reaction in molten NaCl–KCl
JPH09227965A (ja) 精製金属ルテニウム粉末とその製造方法
IL139061A (en) Metal powders produced by the reduction of the oxides with gaseous magnesium
RU2401888C1 (ru) Способ получения порошка тугоплавкого металла
JPH01222027A (ja) タンタル箔及びその製造法
JP2571263B2 (ja) 金属扁平粉及びその製造方法
JPH0472884B2 (ja)
JPH04314804A (ja) モリブデン粉末の製造法

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11