JP2694590B2 - Method for diagnosing core active state and method for core activation - Google Patents

Method for diagnosing core active state and method for core activation

Info

Publication number
JP2694590B2
JP2694590B2 JP29663392A JP29663392A JP2694590B2 JP 2694590 B2 JP2694590 B2 JP 2694590B2 JP 29663392 A JP29663392 A JP 29663392A JP 29663392 A JP29663392 A JP 29663392A JP 2694590 B2 JP2694590 B2 JP 2694590B2
Authority
JP
Japan
Prior art keywords
core
furnace
lance
temperature
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29663392A
Other languages
Japanese (ja)
Other versions
JPH06122912A (en
Inventor
守政 一田
嘉雄 奥野
和也 国友
陽三 細谷
久朗 神山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP29663392A priority Critical patent/JP2694590B2/en
Publication of JPH06122912A publication Critical patent/JPH06122912A/en
Application granted granted Critical
Publication of JP2694590B2 publication Critical patent/JP2694590B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高炉の安定操業にとって
重要な炉芯の活性状態を操業中に迅速に診断し、またこ
れにより炉芯が不活性と診断されたときに活性化する手
段を提供することを目的とする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides means for promptly diagnosing the active state of the core, which is important for stable operation of the blast furnace, during operation, and for activating it when the core is diagnosed as inactive. The purpose is to provide.

【0002】[0002]

【従来の技術】高炉操業において炉内反応状況を的確に
把握して送風温度、送風湿度、コークス比、装入原料の
分布状態などの操業条件を制御することは非常に重要で
ある。上記炉内反応状況を判断するために高炉の各部分
の温度、ガス成分、ガス流量、装入物降下状況など多く
のデータを集めている。特に炉芯部の状況は非常に重要
であり、その状況を把握する試みがなされている。
2. Description of the Related Art In blast furnace operation, it is very important to accurately grasp the reaction conditions in the furnace and control the operating conditions such as blast temperature, blast humidity, coke ratio, and distribution state of charging raw materials. In order to judge the reaction status in the furnace, a lot of data such as temperature of each part of the blast furnace, gas components, gas flow rate, and dropping condition of the charge are collected. In particular, the condition of the furnace core is very important, and attempts have been made to understand the condition.

【0003】炉芯はコークスが堆積して構成されてお
り、高炉の操業が安定しているときにはその空隙率は
0.5程度である。これにより溶融滴下してきた溶銑や
溶融スラグは炉芯を通り抜けて炉底部に溜まることにな
る。また羽口からの送風が炉の中心部まで達することに
より炉芯部の温度が維持できる。したがって炉芯の通気
性・通液性の確保、すなわち炉芯を活性な状態に保つこ
とは重要である。炉芯は炉下部での熱のバッファーとし
ての役割をもつと同時に炉下部での装入物とガスの伝熱
効率に大きな影響を与える。とくに、炉芯温度が低い場
合には炉芯内でのスラグ・メタルの滞留量が増加し炉芯
内の通気抵抗が増加するため、炉芯内へのガス流入量が
減少しさらに炉芯温度が低下する。
The core of the furnace is formed by depositing coke, and its porosity is about 0.5 when the operation of the blast furnace is stable. As a result, the molten pig iron and molten slag that have been melted and dropped pass through the core of the furnace and accumulate at the bottom of the furnace. Further, the temperature of the furnace core can be maintained by the air blown from the tuyere reaching the center of the furnace. Therefore, it is important to secure the air permeability and liquid permeability of the core, that is, to keep the core active. The core serves as a heat buffer in the lower part of the furnace, and at the same time has a great influence on the heat transfer efficiency of the charge and gas in the lower part of the furnace. In particular, when the core temperature is low, the amount of slag / metal staying inside the core increases and the ventilation resistance inside the core increases, so the gas inflow into the core decreases and the core temperature further decreases. Is reduced.

【0004】近年、高炉の大型化に伴う炉下部に占める
炉芯割合の増加、および羽口からの燃料吹込み量の増加
に伴う高O/Cおよび未燃チャーの発生・堆積により、
炉芯の肥大化および炉芯温度の低下が心配されている。
未溶融の融着層が炉芯表層部に積層する場合には炉芯が
肥大化し、炉下部での装入物の降下領域が縮小するた
め、炉下部での装入物の滞留時間が減少し装入物の昇温
が遅れる。その場合には装入物が未溶融でレースウェイ
に流入し、炉熱が大幅に低下し炉況不調に陥る可能性が
大きい。
In recent years, due to the increase in the proportion of the core in the lower part of the furnace due to the increase in size of the blast furnace, and the generation and accumulation of high O / C and unburned char due to the increase in the amount of fuel injected from the tuyere,
There is concern about the enlargement of the core and the decrease in core temperature.
When an unmelted fusion layer is laminated on the surface layer of the core, the core expands and the descent area of the charge in the lower part of the furnace decreases, so the residence time of the charge in the lower part of the furnace decreases. The temperature rise of the charge is delayed. In that case, there is a high possibility that the charge will flow into the raceway unmelted and the heat of the furnace will drop significantly, leading to a poor reactor condition.

【0005】上記の観点から炉芯温度の測定が行なわれ
ているが、高温かつ炉内装入物のほとんどの重量がかか
る等の制約からその方法は限られている。すなわち炉芯
を形成しているコークスのサンプリングを羽口部より行
い結晶化度の測定値から求めるコークス履歴温度による
方法が知られており、また特開昭61−257405号
公報には羽口あるいは炉下部側壁から水冷構造のプロー
ブを炉芯部に挿入し、グラスファイバーにより光温度計
を連結して羽口先端から一定距離の炉芯温度を測定する
方法が開示されている。
From the above viewpoint, the core temperature is measured, but its method is limited due to the high temperature and the weight of most of the contents inside the furnace. That is, there is known a method in which the coke forming the furnace core is sampled from the tuyere to obtain the coke hysteresis temperature obtained from the measured value of the crystallinity, and in Japanese Patent Laid-Open No. 61-257405, the tuyere or A method is disclosed in which a probe having a water-cooled structure is inserted into the furnace core from the side wall of the lower part of the furnace and an optical thermometer is connected by a glass fiber to measure the temperature of the furnace core at a certain distance from the tip of the tuyere.

【0006】[0006]

【発明が解決しようとする課題】炉芯の温度を測定する
前記の方法のうちコークス履歴温度による方法は測定に
時間がかかり、またその時の炉芯の状態を必ずしも反映
していない。この点特開昭61−257405号公報の
方法は炉芯温度の測定方法自体としては優れているが、
炉芯の活性状態をより直接的に把握するにはさらに検討
すべきことが判明した。すなわち、炉芯の温度自体はた
とえば1400℃以下程度になると不活性と考えられて
いるが、操業条件たとえば低Si操業といったことでも
変わるので炉芯の温度だけでは情報が不足することもあ
る。
Among the above-mentioned methods for measuring the temperature of the core, the method based on the history temperature of coke requires a long time for measurement and does not necessarily reflect the state of the core at that time. In this respect, the method disclosed in JP-A-61-257405 is excellent as a method for measuring the core temperature itself,
It was found that further investigation is needed to more directly grasp the active state of the core. That is, it is considered that the temperature of the furnace core itself becomes inactive when it becomes about 1400 ° C. or lower, but since it also changes depending on operating conditions such as low Si operation, the temperature of the furnace core alone may lack information.

【0007】すなわち先にも述べたように、炉芯の活性
状態とは炉芯の通気性・通液性が確保されている状態を
いうのであり、炉芯部の温度が低下するのは、通気性が
低下したため羽口からの送風が炉の中心部まで達するこ
とができなくなった結果の表れである。したがって炉芯
温度が炉況不良な状態にまで現実に低下する前の段階で
炉芯の活性状態を把握し、さらに有効なアクションをと
ることが高炉の安定操業に重要なことといえる。本発明
はこのようなことを課題とするものである。
That is, as described above, the activated state of the furnace core means a state in which the air permeability and liquid permeability of the furnace core are ensured, and the temperature of the furnace core portion decreases This is a result of the fact that the ventilation from the tuyere could not reach the central part of the furnace due to the reduced air permeability. Therefore, it can be said that it is important for stable operation of the blast furnace to grasp the active state of the core and take more effective action before the core temperature actually drops to the state where the core condition is poor. The present invention aims to solve this problem.

【0008】[0008]

【課題を解決するための手段】本発明は前記課題を解決
するものであって、高炉の休風時に、羽口から炉芯内に
挿入したランスを用いて炉内に高温の空気または酸素富
化空気を吹込み、吹込みによる前記ランスから一定距離
先の一定時間における温度上昇量から判断することを特
徴とする炉芯活性状態の診断方法である。
Means for Solving the Problems The present invention is to solve the above problems, and when the blast furnace is in a blast, a lance inserted from the tuyere into the core of the blast furnace is used to provide hot air or oxygen-rich gas in the furnace. A method for diagnosing an active state of a furnace core is characterized in that the activated air is blown, and a judgment is made based on an amount of temperature rise in a certain time after a certain distance from the lance due to the blowing.

【0009】また上記炉芯活性状態の診断方法により炉
芯が不活性と診断されたときには、上記診断に用いたラ
ンスを介して加熱手段を炉芯内に供給して炉芯加熱をす
ることを特徴とし、または上記診断に用いたランスを抜
き出し、当該部位に加熱用ランスまたはプラズマトーチ
を挿入し、加熱手段を炉芯内に供給して炉芯加熱をする
ことを特徴とし、または高炉のボッシュレベル以下の炉
下部に設けた開口から加熱用ランスまたはプラズマトー
チを挿入し、休風時ないし送風時において加熱手段を炉
芯内に供給して炉芯加熱をすることを特徴とする炉芯活
性化方法である。
When the furnace core is diagnosed to be inactive by the method for diagnosing the core core activation state, heating means is supplied to the core core through the lance used for the diagnosis to heat the core core. Characteristic, or extracting the lance used for the above diagnosis, inserting a heating lance or a plasma torch in the relevant part, and supplying heating means into the core to heat the core, or Bosch of the blast furnace Inserting a heating lance or a plasma torch through the opening provided in the lower part of the furnace below the level, and supplying the heating means into the core during idle or blowing to heat the core. It is a method of conversion.

【0010】[0010]

【作用】本発明者等は先にも述べたように、炉芯の通気
性・通液性すなわち活性がまず低下し、それにより炉芯
の温度低下などの結果が生ずるという点に着目し、迅速
かつ簡易な方法で炉芯の活性を診断する方法を見出し
た。すなわち高炉の休風時に羽口から炉芯内にランスを
挿入して高温の空気または酸素富化空気を吹き込むので
ある。この場合、空気または酸素富化空気は500℃以
上に予熱する。そうするとコークスの着火温度に達して
いるので、空気等の到達した部分はコークスが燃焼して
温度が上昇することになる。加熱温度は高い方がコーク
ス燃焼温度が高く効果的であるが、技術的に2000℃
位が限度となる。
As described above, the present inventors have paid attention to the fact that the air permeability / liquid permeability of the furnace core, that is, the activity is lowered first, which results in a decrease in the temperature of the furnace core. A method for diagnosing the activity of the core by a quick and simple method was found. That is, when the blast furnace is off, a lance is inserted into the core from the tuyere to blow hot air or oxygen-enriched air. In this case, the air or oxygen-enriched air is preheated to above 500 ° C. Then, since the ignition temperature of the coke has been reached, the temperature of the portion where the air or the like has reached rises due to the combustion of the coke. The higher the heating temperature, the higher the coke combustion temperature, which is effective, but technically 2000 ° C.
Place is the limit.

【0011】このとき炉芯の粉率が上昇し、たとえば3
0%を越えるような状態になっていると通気性が不良と
なり、炉芯の内部まで吹き込まれた空気等が到達しなく
なる。したがってランス先端から一定距離先の部分の温
度、たとえば1m先の温度の一定時間における上昇量を
測定すれば炉芯の活性度を的確に反映できることがわか
った。なお吹込む空気等の量は500〜2000Nm3
/hで良い。これより少ないと測定が十分にできなくな
るし、多いとむだであるばかりでなく炉芯の活性の判断
が不正確になる。
At this time, the powder ratio of the furnace core rises, for example, 3
If it exceeds 0%, the air permeability will be poor and the air blown into the core will not reach. Therefore, it was found that the activity of the furnace core can be accurately reflected by measuring the temperature rise in the portion a certain distance away from the tip of the lance, for example, the temperature rise 1 m ahead in a certain time. The amount of air blown in is 500 to 2000 Nm 3
/ H is good. If it is less than this, the measurement cannot be performed sufficiently, and if it is more than this, not only is it useless, but the determination of the activity of the core becomes inaccurate.

【0012】温度測定は測定箇所に熱電対を挿入する方
法、グラスファイバーを挿入してこれに光高温計を結合
する方法などが適用できる。温度の検出端はあらかじめ
別途所定の部位に挿入しておくと、同一部位における吹
き込みによる温度上昇が連続的にわかり最も好ましい。
しかし通常の作業においてはランスと温度検出端とを交
互に挿入しても目的を達することができる。
For the temperature measurement, a method of inserting a thermocouple at a measuring point, a method of inserting a glass fiber and connecting an optical pyrometer to the measuring point, and the like can be applied. It is most preferable to insert the temperature detection end into a predetermined site separately beforehand because the temperature rise due to blowing into the same site can be continuously observed.
However, in the normal operation, the purpose can be achieved even by inserting the lance and the temperature detecting end alternately.

【0013】図1は羽口に挿入したランスから500℃
の空気を1000Nm3 /hの速度で炉芯部に吹き込ん
だ場合のランス先端から1mの位置における温度上昇の
経過を示す。これは典型的な炉芯活性状態、炉芯不活性
状態における温度の時間経過を示したものである。この
条件においては30分経過後の温度上昇量が120℃以
上では炉芯が活性、60℃以下では不活性と診断できる
ことが図2に示す試験の結果などと合わせて判断でき
る。すなわち図2は図1と同じ条件における30分経過
後の温度上昇量と炉芯の−3mm粉コークスの粉率との
関係を示したものである。このコークス粉率が30%位
を越えると温度上昇が非常に低くなることがわかる。
FIG. 1 shows 500 ° C. from the lance inserted in the tuyere.
2 shows the progress of temperature rise at a position 1 m from the tip of the lance when the above air is blown into the furnace core at a speed of 1000 Nm 3 / h. This shows a time course of temperature in a typical core active state and core inactive state. Under these conditions, it can be judged from the results of the test shown in FIG. 2 that it is possible to diagnose that the core is active when the temperature rise amount after 120 minutes is 120 ° C. or higher and inactive when it is 60 ° C. or lower. That is, FIG. 2 shows the relationship between the amount of temperature increase after 30 minutes under the same conditions as in FIG. 1 and the powder rate of -3 mm powder coke in the furnace core. It can be seen that when the coke powder ratio exceeds about 30%, the temperature rise becomes extremely low.

【0014】温度上昇量は空気や酸素富化空気などのガ
スの種類や予熱温度によって変わる。空気中の酸素が富
化されていた方がコークスの燃焼温度が高くなるので温
度上昇が大きい。しかし空気そのままでも燃焼温度は2
000℃程度にはなり、炉芯自体の温度よりは十分高い
ので測定上特に問題はない。
The amount of temperature rise depends on the type of gas such as air and oxygen-enriched air and the preheating temperature. When the oxygen in the air is enriched, the combustion temperature of the coke becomes higher, so the temperature rises more. However, the combustion temperature is 2 even with air as it is.
Since the temperature is about 000 ° C., which is sufficiently higher than the temperature of the furnace core itself, there is no particular problem in measurement.

【0015】本発明はさらに上記のように炉芯活性状態
を診断した結果、不活性と診断された場合の方策につい
ても定める。すなわちこの場合には炉芯にランスないし
プローブを押し込んで加熱手段を送給する。これには炉
芯活性状態の診断に用いたランスをそのまま利用して加
熱を行なっても良いし、診断に用いたランスを抜き出し
その場所に加熱用ランスやプラズマトーチを挿入して行
なっても良い。この場合は原則的には高炉が休風時に加
熱を行なうことになるが、ランス等を挿入した羽口のみ
の送風を遮断すれば送風中でもできる。また高炉のボッ
シュレベル以下の炉下部に開口を設け、ここから加熱用
ランスあるいはプラズマトーチを挿入してもよい。この
場合炉芯の目的とする位置に向けて加熱ランス等を傾斜
して挿入することもできる。この方法は休風時のみなら
ず高炉送風中に炉芯加熱を行なうのに適している。しか
しいずれにしても高炉送風中にランス等を挿入するとき
には適当なガスシールをする必要がある。
The present invention further defines a measure to be taken when the furnace core active state is diagnosed as inactive as a result of the diagnosis as described above. That is, in this case, the heating means is fed by pushing the lance or probe into the furnace core. For this, heating may be performed using the lance used for diagnosing the active state of the core as it is, or the lance used for diagnosis may be extracted and a heating lance or plasma torch may be inserted at that location. . In this case, in principle, the blast furnace heats up when there is no air flow, but it can be done even if the air is blown only at the tuyere with a lance inserted. Further, an opening may be provided in the lower part of the furnace below the Bosch level of the blast furnace, and a heating lance or a plasma torch may be inserted from there. In this case, a heating lance or the like can be inserted while being inclined toward a target position of the furnace core. This method is suitable for heating the core of the blast furnace not only when there is no air, but during blowing of the blast furnace. However, in any case, it is necessary to provide an appropriate gas seal when inserting a lance or the like into the blast furnace.

【0016】加熱手段としては高温の空気、酸素富化空
気等を吹き込む方法がとれる。ガス加熱は熱交換装置で
行なえるが、プラズマ発生装置を用いれば1000℃以
上にもできて好ましい。また燃焼高温ガスに酸素ガスを
混合することにより加熱空気等と同様の効果を得ること
もできる。またランスから燃焼材、たとえば液体、気体
燃料、粉末燃料と空気や酸素含有ガスを供給し、ランス
先端で燃焼させた高温ガスの顕熱で炉芯部を加熱する手
段、あるいはこの高温ガスの顕熱と余剰の酸素で炉芯部
を加熱しながら炉芯コークスの一部を燃焼させる手段を
とることもできる。
As a heating means, a method of blowing hot air, oxygen-enriched air, or the like can be used. The gas heating can be performed by a heat exchange device, but it is preferable to use a plasma generator because the temperature can be raised to 1000 ° C. or higher. Also, by mixing oxygen gas with the combustion high temperature gas, the same effect as that of heated air can be obtained. A means for heating the core of the furnace with sensible heat of the high temperature gas burned at the tip of the lance by supplying a combustion material such as liquid, gaseous fuel, powdered fuel and air or oxygen-containing gas from the lance, or developing this high temperature gas. A means for burning a part of the core coke while heating the core with heat and excess oxygen can also be used.

【0017】また上記加熱を炉芯に対して効率よく行な
うには、炉芯の不活性の状況によっては炉芯の掘削を積
極的に行なうとよい。すなわち炉芯の不活性が軽度の場
合には、送給した加熱空気等が炉芯内部に拡散でき加熱
可能であるが、空隙率が著しく低下した場合にはランス
を押し込むなどの機械的方法、高温ガスによるコークス
の燃焼による掘削を積極的に図るなどの方法により炉芯
の中心部の温度上昇を図るとよい。ただし本発明の炉芯
活性状態の診断方法においては炉芯の不活性が重症にな
らないうちに発見することに意義があるので、この診断
方法を適切に適用していれば少なくとも大がかりな炉芯
掘削をしないで炉芯活性化ができる。
In order to efficiently perform the above heating on the core, it is preferable to actively excavate the core depending on the inertness of the core. That is, when the inertness of the furnace core is mild, it is possible to heat the fed heated air etc. by diffusing inside the furnace core, but it is possible to heat it by a mechanical method such as pushing in the lance when the porosity is significantly reduced, It is advisable to increase the temperature of the core of the furnace core by a method such as aggressively conducting excavation by burning coke with high-temperature gas. However, in the method for diagnosing the active state of the core of the present invention, it is significant to discover before the inactivity of the core becomes serious, so if this diagnostic method is applied appropriately, at least large-scale core excavation will be performed. The furnace core can be activated without

【0018】[0018]

【実施例】【Example】

実施例1 本発明の炉芯活性状態の診断方法および炉芯活性化方法
を内容積3880m3の高炉に適用した。図3は炉芯活
性状態の診断方法および炉芯活性化方法を示す図であ
る。この図に示すように、挿入台車2により休風時に外
径125mmの水冷の送風ランス1を羽口3より挿入し
た。なお図3において、10は高炉、11は融着帯、1
2は炉芯、4は熱交換器、5はプラズマ加熱装置、6は
コンプッレサーである。ガスの加熱温度は熱交換器、プ
ラズマ加熱装置のいずれかを動作させたり、バルブ7、
8で流量を変えることにより調節できる。また空気を直
接取り込むときにはコンプレッサー6を動作させるが、
加圧したガスを供給するときには不要である。
Example 1 The method for diagnosing the activated state of the core and the method for activating the core of the present invention were applied to a blast furnace having an internal volume of 3880 m 3 . FIG. 3 is a diagram showing a method for diagnosing the core active state and a method for activating the core. As shown in this figure, a water-cooled blower lance 1 having an outer diameter of 125 mm was inserted from the tuyere 3 by the insertion carriage 2 when the wind was resting. In FIG. 3, 10 is a blast furnace, 11 is a cohesive zone, and 1 is
Reference numeral 2 is a furnace core, 4 is a heat exchanger, 5 is a plasma heating device, and 6 is a compressor. As for the heating temperature of the gas, either the heat exchanger or the plasma heating device is operated, the valve 7,
It can be adjusted by changing the flow rate at 8. When taking in air directly, the compressor 6 is operated,
It is not necessary when supplying pressurized gas.

【0019】このようにして送風ランス1の先端を羽口
3の先端より1.6mの位置にして500℃に加熱した
空気を1000Nm3 /h吹き込んだ。その結果、送風
ランス先端より1m先における30分後の温度上昇量が
33℃であったので炉芯不活性と判断した。そこで上記
ランスより600℃に加熱された30%酸素富化空気を
5000Nm3 /h吹き込んだ。1時間後ランスを引抜
き送風を開始し安定した操業をすることができた。
In this manner, the air heated to 500 ° C. was blown at 1000 Nm 3 / h with the tip of the blowing lance 1 positioned 1.6 m from the tip of the tuyere 3. As a result, the temperature rise amount after 30 minutes at a distance of 1 m from the tip of the blowing lance was 33 ° C., so it was determined that the furnace core was inactive. Then, 30% oxygen-enriched air heated to 600 ° C. was blown from the above lance at 5000 Nm 3 / h. One hour later, the lance was pulled out and the air flow was started to allow stable operation.

【0020】実施例2 実施例1と同様な方法により炉芯の活性状態を診断した
ところ、送風ランス先端より1m先の30分後の温度上
昇量が45℃であったので炉芯が不活性と判断した。そ
こで上記ランスを抜き取り、別の非水冷のランスを挿入
してプラズマ加熱により1800℃に昇温した空気を2
500m3 /h吹き込んだ。1時間後ランスを引抜き送
風を開始し安定した操業をすることができた。
Example 2 When the activated state of the core was diagnosed by the same method as in Example 1, the temperature rise amount was 45 ° C. 30 minutes after 1 m from the tip of the blowing lance, so the core was inactive. I decided. Therefore, the lance is taken out, another non-water-cooled lance is inserted, and the air heated to 1800 ° C by plasma heating is heated to 2
It was blown in at 500 m 3 / h. One hour later, the lance was pulled out and the air flow was started to allow stable operation.

【0021】実施例3 実施例1と同様な方法により炉芯の活性状態を診断した
ところ、送風ランス先端より1m先の30分後の温度上
昇量が51℃であったので炉芯が不活性と判断した。そ
こで上記ランスを抜き取り、非水冷の二重管構造のラン
スを挿入し、コークス炉ガスを内管から、30%酸素富
化空気を外管から供給して燃焼させた。コークス炉ガス
は500Nm3 /h、空気比は1.3となるようにして
1時間送給した後、送風を再開して安定した操業をする
ことができた。
Example 3 When the activation state of the core was diagnosed by the same method as in Example 1, the temperature rise amount was 51 ° C. 30 minutes after 1 m from the tip of the blowing lance, so the core was inactive. I decided. Therefore, the lance was taken out, a lance having a non-water-cooled double tube structure was inserted, and coke oven gas was supplied from the inner tube and 30% oxygen-enriched air was supplied from the outer tube for combustion. After sending the coke oven gas at 500 Nm 3 / h and an air ratio of 1.3 for 1 hour, the blowing was restarted to allow stable operation.

【0022】実施例4 実施例1と同様な方法により炉芯の活性状態を診断した
ところ、送風ランス先端より1m先の30分後の温度上
昇量が35℃であったので炉芯が不活性と判断した。そ
こで上記ランスを抜き取り、別途羽口上の開口部から水
冷ランスを炉芯部に挿入し、プラズマ加熱装置で150
0℃に加熱した空気を3000Nm3 /h吹き込んだ。
吹き込み開始後30分して送風を開始し、送風中も吹き
込みを続け、吹き込みは1時間30分行なった。この間
およびその後も安定した操業をすることができた。
Example 4 When the activated state of the furnace core was diagnosed by the same method as in Example 1, the temperature rise amount was 35 ° C. 30 minutes after 1 m from the tip of the blowing lance, so the furnace core was inactive. I decided. Therefore, the lance is pulled out, a water cooling lance is separately inserted into the furnace core through the opening on the tuyere, and a plasma heating device is used to
The air heated to 0 ° C. was blown into the air at 3000 Nm 3 / h.
Air blowing was started 30 minutes after the start of blowing, and blowing was continued during blowing, and blowing was performed for 1 hour and 30 minutes. During this period and thereafter, stable operation was possible.

【0023】[0023]

【発明の効果】本発明の炉芯活性状態の診断方法によれ
ば、炉芯の活性状態を迅速に判断でき、また本発明の炉
芯活性化方法を実施することにより炉芯の活性状態に対
応した対策をとることが可能となる。これにより微粉炭
多量吹き込みにともなう高O/C操業下での安定操業を
達成することができ、高品質溶銑の安定供給、コスト低
減に寄与できる。
According to the method of diagnosing the active state of the core according to the present invention, the active state of the core can be promptly judged, and the active state of the core can be determined by carrying out the method of activating the core of the present invention. It is possible to take corresponding measures. This makes it possible to achieve stable operation under high O / C operation due to a large amount of pulverized coal blowing, and contribute to stable supply of high-quality hot metal and cost reduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】500℃の空気を炉芯部に吹き込んだときの温
度上昇の時間経過を示すグラフ
FIG. 1 is a graph showing a time course of temperature rise when air at 500 ° C. is blown into a furnace core.

【図2】炉芯のコークス粉率と500℃の空気を30分
間吹き込んだときの温度上昇との関係を示すグラフ
FIG. 2 is a graph showing the relationship between the coke powder ratio of the furnace core and the temperature rise when air at 500 ° C. is blown for 30 minutes.

【図3】炉芯活性状態の診断方法および炉芯活性化方法
を示す図
FIG. 3 is a diagram showing a method for diagnosing a core active state and a method for activating the core.

フロントページの続き (72)発明者 細谷 陽三 愛知県東海市東海町5−3 新日本製鐵 株式会社 名古屋製鐵所内 (72)発明者 神山 久朗 愛知県東海市東海町5−3 新日本製鐵 株式会社 名古屋製鐵所内Front page continued (72) Inventor Yozo Yozo 5-3 Tokai-cho, Tokai-shi, Aichi Pref. Nippon Steel Co., Ltd. Nagoya Works (72) Inventor Hisaro Kamiyama 5-3 Tokai-cho, Akai-ken Nippon Steel Nagoya Steel Works Co., Ltd.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高炉の休風時に、羽口から炉芯内に挿入
したランスを用いて炉内に高温の空気または酸素富化空
気を吹込み、吹込みによる前記ランスから一定距離先の
一定時間における温度上昇量から判断することを特徴と
する炉芯活性状態の診断方法。
1. When the blast furnace is in a blast, high-temperature air or oxygen-enriched air is blown into the furnace by using a lance inserted from the tuyere into the furnace core, and a constant distance ahead of the lance is maintained by blowing. A method for diagnosing an active state of a furnace core, which is characterized by judging from a temperature rise amount over time.
【請求項2】 請求項1に記載の炉芯活性状態の診断方
法により炉芯が不活性と診断されたときには、上記診断
に用いたランスを介して加熱手段を炉芯内に供給して炉
芯加熱をすることを特徴とする炉芯活性化方法。
2. When the furnace core is diagnosed to be inactive by the method for diagnosing the core core active state according to claim 1, heating means is supplied into the furnace core via the lance used for the diagnosis. A furnace core activation method comprising heating a core.
【請求項3】 請求項1に記載の炉芯活性状態の診断方
法により炉芯が不活性と診断されたときには、上記診断
に用いたランスを抜き出し、当該部位に加熱用ランスま
たはプラズマトーチを挿入し、加熱手段を炉芯内に供給
して炉芯加熱をすることを特徴とする炉芯活性化方法。
3. When the furnace core is diagnosed to be inactive by the method for diagnosing the furnace core active state according to claim 1, the lance used for the diagnosis is extracted, and a heating lance or a plasma torch is inserted into the relevant portion. Then, the heating means is supplied into the core to heat the core to activate the core.
【請求項4】 請求項1に記載の炉芯活性状態の診断方
法により炉芯が不活性と診断されたときには、高炉のボ
ッシュレベル以下の炉下部に設けた開口から加熱用ラン
スまたはプラズマトーチを挿入し、休風時ないし送風時
において加熱手段を炉芯内に供給して炉芯加熱をするこ
とを特徴とする炉芯活性化方法。
4. When the furnace core is diagnosed to be inactive by the method for diagnosing the core core active state according to claim 1, a heating lance or a plasma torch is opened from an opening provided in the lower part of the furnace below the Bosch level of the blast furnace. A method for activating a core, wherein the core is inserted and heating means is supplied into the core to heat the core when the air is blown or blown.
JP29663392A 1992-10-09 1992-10-09 Method for diagnosing core active state and method for core activation Expired - Lifetime JP2694590B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29663392A JP2694590B2 (en) 1992-10-09 1992-10-09 Method for diagnosing core active state and method for core activation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29663392A JP2694590B2 (en) 1992-10-09 1992-10-09 Method for diagnosing core active state and method for core activation

Publications (2)

Publication Number Publication Date
JPH06122912A JPH06122912A (en) 1994-05-06
JP2694590B2 true JP2694590B2 (en) 1997-12-24

Family

ID=17836074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29663392A Expired - Lifetime JP2694590B2 (en) 1992-10-09 1992-10-09 Method for diagnosing core active state and method for core activation

Country Status (1)

Country Link
JP (1) JP2694590B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114410859B (en) * 2021-12-29 2023-05-05 江苏省沙钢钢铁研究院有限公司 Diagnosis and treatment method for stacking furnace cores of medium-sized blast furnaces

Also Published As

Publication number Publication date
JPH06122912A (en) 1994-05-06

Similar Documents

Publication Publication Date Title
TWI481721B (en) Blast furnace operation method
KR101742901B1 (en) Apparatus for temperature measurements of a molten bath in a top submerged injection lance installation
EP2080972A1 (en) Combined burner and lance apparatus for electric arc furnaces
JP5904344B2 (en) Blast furnace blast start method and hearth temperature raising burner
TWI484041B (en) Blast furnace operation method
EP2871247B1 (en) Method for operating blast furnace
JP2694590B2 (en) Method for diagnosing core active state and method for core activation
JP2694589B2 (en) Method for diagnosing core filling state and method for activating core
JPS58104488A (en) Method and device for recovering combustible gas in electric metallurgical furnace
JP2017179574A (en) Melting-refining furnace for cold iron source and operating method for the melting-refining furnace
JP7306421B2 (en) How to start up a blast furnace
JPH10310808A (en) Operation of blast furnace
JP2011168886A (en) Blast furnace operation method
JPH08302407A (en) Operating method of furnace
JPWO2014162965A1 (en) Blast furnace operating method and lance
JPH0570814A (en) Method for operating blast furnace
JP2741140B2 (en) Blast furnace operation method
CN103667685A (en) Series preheating method and series preheating system for coal gas of sintering ignition furnace
JP2002303412A (en) Method for gasifying and melting waste
JP2694588B2 (en) Blast furnace operation method
JP3247289B2 (en) Blast furnace operation method
JPH04354810A (en) Method for blowing fine coal into blast furnace and device therefor
Garrido et al. Research and Technology Department Canadian Liquid Air Ltd
JPH03260004A (en) Method for operating blast furnace
JPH07268416A (en) Operation of blast furnace

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970722