JP3247289B2 - Blast furnace operation method - Google Patents

Blast furnace operation method

Info

Publication number
JP3247289B2
JP3247289B2 JP34856595A JP34856595A JP3247289B2 JP 3247289 B2 JP3247289 B2 JP 3247289B2 JP 34856595 A JP34856595 A JP 34856595A JP 34856595 A JP34856595 A JP 34856595A JP 3247289 B2 JP3247289 B2 JP 3247289B2
Authority
JP
Japan
Prior art keywords
tuyere
furnace
air
core
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34856595A
Other languages
Japanese (ja)
Other versions
JPH09170007A (en
Inventor
守政 一田
和也 国友
尚 熊岡
正章 中山
正弘 土岐
昭彦 篠竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34856595A priority Critical patent/JP3247289B2/en
Publication of JPH09170007A publication Critical patent/JPH09170007A/en
Application granted granted Critical
Publication of JP3247289B2 publication Critical patent/JP3247289B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高炉の操業時また
は休風時に炉芯部の状態を測定し、変調の徴候があれば
休風後の送風立ち上げ時に炉芯部を活性化させて、炉芯
状態を改善する高炉の操業方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the state of a furnace core during the operation of a blast furnace or when the air is shut off, and activates the furnace core when starting up the air blow after the air shut off if there are signs of modulation. The present invention relates to a method for operating a blast furnace for improving the state of the core.

【0002】[0002]

【従来の技術】製鉄用の高炉は大量の銑鉄を生産でき、
しかも熱効率が90%と高い。このため、現在でも銑鉄
製造の主流を維持している。しかし、高炉は巨大な向流
移動層であるために、生産性、生産弾力性等に問題があ
り、安定した生産量と溶銑品質の確保のためには、より
一層の制御性の向上が望まれている。一方、高炉では、
鉄源競争力強化の観点から、安価原燃料を使用する操業
や高微粉炭比の操業が実施されつつある。このような操
業下では、鉱石やコークスの粉化が促進され、未燃焼チ
ャーの生成等により炉下部での粉率が上昇して、炉芯部
の通気性・通液性の確保が困難となりやすい。従って、
有効な炉芯活性化技術の確立が望まれている。
2. Description of the Related Art A blast furnace for steelmaking can produce a large amount of pig iron,
Moreover, the thermal efficiency is as high as 90%. For this reason, the mainstream of pig iron production is maintained even today. However, since the blast furnace is a huge countercurrent moving bed, there are problems with productivity, production elasticity, etc., and further improvement in controllability is expected to ensure stable production and hot metal quality. It is rare. On the other hand, in the blast furnace,
From the viewpoint of strengthening the competitiveness of iron sources, operations using cheap raw fuels and operations with a high pulverized coal ratio are being implemented. Under such operations, the ore and coke are promoted to be powdered, the unburned char is generated, and the powder ratio at the lower part of the furnace increases, making it difficult to ensure the air permeability and liquid permeability of the furnace core. Cheap. Therefore,
It is desired to establish effective core activation technology.

【0003】このように、高炉の炉芯部の通気性・通液
性が低下した場合の炉芯の活性化方法としては、従来よ
り行われている燃料比上昇や水蒸気添加のほかに、いく
つかの炉芯活性化方法が開示されている。特開平6−0
93319号公報、特開平6−093320号公報に
は、高炉休風毎に複数の羽口を介して炉芯部の特性を測
定し、炉芯部の状態を判定したのち、加熱を必要とする
部位の近傍の羽口から中空パイプを炉内に挿入して炉芯
内コークスをサンプリングし、これによって炉芯内に通
気孔を設ける方法が開示されている。
[0003] As described above, the method of activating the core when the gas permeability and liquid permeability of the core of the blast furnace are reduced is not limited to the conventional method of increasing the fuel ratio or adding steam. Such a core activation method is disclosed. JP-A-6-0
In JP-A-93319 and JP-A-6-093320, it is necessary to measure the characteristics of the furnace core through a plurality of tuyeres every time the blast furnace is shut down, determine the state of the furnace core, and then require heating. A method is disclosed in which a hollow pipe is inserted into a furnace from a tuyere near a site to sample coke in a furnace core, thereby providing a vent in the furnace core.

【0004】また、特開平7−268416号公報に
は、休風時あるいは操業時に、炉芯部の粉率を測定し、
粉率が20%以上の場合に加熱並びに粉の除去を必要と
する部位の近傍の羽口から中空パイプを炉内に挿入して
炉芯内コークスをサンプリングし、これによって炉芯内
に空洞の通気孔を設ける方法が提示されている。 一
方、特開平2−285013号公報には、羽口に設けた
熱風制御弁を操作し、羽口からの吹き込み量を変化させ
ることにより炉芯の形状を変化させて炉芯・炉床部の通
液性を改善する方法が開示されている。
Japanese Patent Application Laid-Open No. Hei 7-268416 discloses that a powder ratio of a furnace core portion is measured at the time of a cold wind or at the time of operation,
When the powder ratio is 20% or more, a hollow pipe is inserted into the furnace through a tuyere near a portion requiring heating and powder removal, and coke in the furnace core is sampled. A method of providing a ventilation hole has been proposed. On the other hand, Japanese Unexamined Patent Publication No. Hei 2-285013 discloses that a hot air control valve provided in a tuyere is operated to change the shape of a furnace core by changing the amount of air blown from the tuyere, thereby to change the shape of the furnace core / hearth. A method for improving liquid permeability is disclosed.

【0005】[0005]

【発明が解決しようとする課題】上記の特開平6−09
3319号公報、特開平6−093320号公報、およ
び特開平7−268416号公報に提示されている方
法、すなわち羽口からのコークスサンプリングにより炉
芯内コークスを取り出すことで炉芯内に空洞の通気孔を
設ける方法は、羽口からのコークスサンプリングにより
形成された炉芯内の空洞の通気孔が、送風立ち上げ時に
確実に維持されている保証はない。従って、この方法で
は、炉芯内へ高温ガスの一部を吹き込むことによる炉芯
内コークス、メタル、スラグの加熱や粉除去の効果にバ
ラツキが生じ、予想通りの効果が得られる場合と予想よ
りも効果が小さい場合とが生じる。
SUMMARY OF THE INVENTION The above-mentioned JP-A-6-09
No. 3,319, JP-A-6-093320 and JP-A-7-268416, that is, by removing coke from the furnace core by sampling coke from the tuyere, a cavity is passed through the furnace core. The method of providing the air holes does not guarantee that the air holes in the hollow inside the furnace core formed by the coke sampling from the tuyere are reliably maintained at the time of starting the air blowing. Therefore, in this method, the effect of heating the coke, metal, and slag in the core by blowing a part of the high-temperature gas into the core and the effect of removing the powder are varied, and the expected effect is obtained. Also have a small effect.

【0006】一方、特開平2−285013号公報に開
示されている方法、すなわち各羽口に設置されている熱
風制御弁で羽口からの吹き込み量を変化させ、炉芯の形
状を変化させる方法は、炉芯・炉床部の通液性が改善さ
れるまでに時間がかかりすぎる可能性がある。従来の知
見によると、炉芯の更新には2〜3週間、あるいはそれ
以上必要であることが判明しており、この技術による炉
芯・炉床部の通液性の改善にかかる時間は1ケ月以上と
予想される。従って、長期間にわたり各羽口の熱風制御
弁を操作して強制的に各羽口の風量の円周方向分布をア
ンバランスにすることになる。このような長期間にわた
る各羽口の風量の円周方向分布をアンバランスにするこ
とは高炉操業上好ましいことではない。
On the other hand, a method disclosed in Japanese Patent Application Laid-Open No. 2-285013, that is, a method in which the amount of air blown from the tuyere is changed by a hot air control valve installed in each tuyere to change the shape of the furnace core. May take too much time before the liquid permeability of the core / hearth is improved. According to the conventional knowledge, it has been found that it takes 2 to 3 weeks or more to renew the core, and the time required for improving the liquid permeability of the core and the hearth by this technique is 1 hour. It is expected to last more than a month. Therefore, by operating the hot air control valve of each tuyere for a long period of time, the circumferential distribution of the air volume of each tuyere is unbalanced. It is not preferable for the operation of the blast furnace to unbalance the circumferential distribution of the air volume of each tuyere over such a long period.

【0007】炉芯の活性化とは、炉芯部における粉率を
低下させ、炉芯温度を上昇させて炉芯の通気性・通液性
を改善することである。その観点からいうと、炉芯の形
状を変化させて結果的に炉芯・炉床の通気性・通液性を
改善させる方法は間接的な手法であり、その効果には疑
問が残る。本発明は、このような従来の諸技術の問題点
に鑑み、炉芯の通気性・通液性に悪影響を及ぼしている
“鳥の巣”すなわちレースウェイの奥に形成されている
コークス粉やコークス灰およびスラグが集積した領域と
炉芯表層部に確実に空洞の通気孔を形成して、炉芯内へ
効率的に高温の熱風を吹き込むことにより、上記問題点
を解決する方法を提供することを目的としている。
[0007] Activation of the mandrel means to reduce the powder ratio in the mandrel and increase the mandrel temperature to improve the gas permeability and liquid permeability of the mandrel. From that point of view, the method of changing the shape of the furnace core and consequently improving the air permeability and liquid permeability of the furnace core and hearth is an indirect method, and its effect remains questionable. The present invention has been made in view of the problems of the conventional techniques described above, and has been developed in consideration of such problems as "bird's nest", which has an adverse effect on the air permeability and liquid permeability of the furnace core, that is, coke powder formed at the back of the raceway. Provided is a method for solving the above-described problems by reliably forming a hollow vent in a region where coke ash and slag are accumulated and a surface layer portion of a furnace core and efficiently blowing high-temperature hot air into the furnace core. It is intended to be.

【0008】[0008]

【課題を解決するための手段】すなわち本発明の高炉操
業法は、以下のような特徴を有する。 (1)高炉の操業時または休風時に炉芯状態を測定し、
炉芯状態が悪いと判断された場合に、高炉の休風時に羽
口から中空パイプを炉芯内に打ち込み、この中空パイプ
を炉芯内に残留させたまま送風立ち上げを行って、中空
パイプより炉芯内に送風すると共に、中空パイプを打ち
込んだ羽口の送風立ち上げ時の相対送風支管風量(送風
支管風量を平均の送風支管風量で除した値)が0.5以
上となるように、中空パイプを打ち込んだ羽口以外の羽
口の送風支管に設置された熱風制御弁の1個または2個
以上の開度を絞って、各羽口の送風支管風量を制御す
る。
That is, the blast furnace operation method of the present invention has the following features. (1) When the blast furnace is operating or when the wind is shut down, the core state is measured,
When it is determined that the state of the furnace core is bad, when the blast furnace is closed, a hollow pipe is driven into the furnace core from the tuyere, and the blow-up is performed with the hollow pipe remaining in the furnace core. The air is blown into the core of the furnace, and the relative air flow in the tuyere into which the hollow pipe is driven is set to be 0.5 or more when the air flow is started. Then, one or two or more hot air control valves installed in the air ducts of tuyeres other than the tuyeres into which the hollow pipes are driven are throttled to control the air volume of the air ducts of each tuyere.

【0009】あるいは、(2)高炉の操業時または休風
時に炉芯状態を測定し、炉芯状態が悪いと判断された場
合に、高炉の休風時に羽口から金棒を炉芯内に打ち込
み、この金棒を炉芯内に残留させたまま送風立ち上げを
行い、金棒を溶解させて炉芯内に通気孔を形成し、この
通気孔より炉芯内に送風すると共に、金棒を打ち込んだ
羽口の送風立ち上げ時の相対送風支管風量(送風支管風
量を平均の送風支管風量で除した値)が0.5以上とな
るように、金棒を打ち込んだ羽口以外の羽口の送風支管
に設置された熱風制御弁の1個または2個以上の開度を
絞って、各羽口の送風支管風量を制御する。
Alternatively, (2) measuring the state of the mandrel during operation of the blast furnace or when the wind is shut off, and if it is determined that the state of the mandrel is bad, driving a metal rod into the furnace core from the tuyere when the blast furnace is shut down. With the metal rod remaining in the furnace core, air is blown up, the metal rod is melted to form a vent in the furnace core, air is blown into the furnace core from the vent, and the blade is driven into the metal rod. In order to keep the relative air flow at the start of air blowing at the mouth (the value obtained by dividing the air flow at the air flow divided by the average air flow at the air flow) at least 0.5, the air flow into the air ducts at tuyeres other than the tuyere into which the metal rod is driven is set. The opening degree of one or more of the installed hot air control valves is reduced to control the air flow rate of the blowing branch pipe of each tuyere.

【0010】特に、炉芯の状態の善し悪しを判断する方
法としては、 高炉の操業時または休風時に、プローブにより炉芯部
の温度を測定し、炉芯温度が1350℃以下の場合に炉
芯状態が悪いと判断する方法、高炉の操業時または休
風時に、プローブにより炉芯部の粉率(例えば、全コー
クス中、粒度3mm以下のコークスの重量比率)を測定
し、粉率が30%以上の場合に炉芯状態が悪いと判断す
る方法、高炉の操業時または休風時に、プローブを炉
芯に挿入する際に必要とされる推力を測定し、推力値が
5t以上の場合に炉芯状態が悪いと判断する方法、高
炉の操業時または休風時に、プローブを炉芯に挿入する
際の挿入速度を測定し、挿入速度が炉芯温度1400℃
における挿入速度の0.7倍以下の場合に炉芯状態が悪
いと判断する方法、高炉の操業時に、羽口毎に設置し
てある送風支管風量計により各羽口の送風支管風量を測
定し、これを平均送風支管風量で除した相対送風支管風
量が0.9以下の羽口が存在する場合に炉芯状態が悪い
と判断する方法、が有効である。
[0010] In particular, as a method for judging the state of the state of the mandrel, the temperature of the mandrel is measured by a probe during operation of the blast furnace or when the wind is shut off. A method of judging that the condition is bad, when the blast furnace is operated or when the wind is shut off, the powder ratio of the furnace core (for example, the weight ratio of coke having a particle size of 3 mm or less in all coke) is measured with a probe, and the powder ratio is 30%. In the above case, the method of determining that the state of the furnace core is bad, and measuring the thrust required when inserting the probe into the furnace core during operation of the blast furnace or when the wind is shut off, and when the thrust value is 5 t or more, the furnace The method of judging that the core condition is bad, measuring the insertion speed when inserting the probe into the furnace core during the operation of the blast furnace or when the wind is shut off, the insertion speed is 1400 ° C.
The method of determining that the core state is bad when the insertion speed is 0.7 times or less in the blast furnace, while operating the blast furnace, measure the air flow in each tuyere with the air flow meter installed in each tuyere. A method of judging that the core state is bad when there is a tuyere having a relative airflow volume of 0.9 or less, which is obtained by dividing the airflow volume by an average airflow volume, is effective.

【0011】[0011]

【発明の実施の形態】本発明では、高炉の休風時に、羽
口から炉芯内に中空パイプを可搬型の打ち込み装置によ
り打ち込む。すなわち、この中空パイプによってレース
ウェイの奥に形成されている鳥の巣と炉芯表層部の通気
性の悪い領域を掘削することになるため、通常では高温
ガスの流通量が少ない炉芯内に、羽口から直接送風され
る800〜1300℃の熱風をこの中空パイプを介して
直接的かつ強制的に吹き込むことができる。炉芯内に吹
き込まれた熱風は、炉芯内のコークスと反応して約20
00℃のCOリッチな還元ガスになり、炉芯内コークス
を加熱すると共に炉芯内にホールドアップされているメ
タル・スラグを溶解する。同時に、炉芯内コークスの加
熱により炉芯内での粉コークスのソリューションロス反
応も進行するため、炉芯内の加熱による粉除去も確実に
進めることができる。これによって、炉芯の通気性・通
液性が改善される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, when a blast furnace is closed, a hollow pipe is driven into a furnace core from a tuyere by a portable driving device. In other words, this hollow pipe excavates the bird's nest formed in the back of the raceway and the poorly permeable area of the furnace core surface layer. Hot air of 800 to 1300 ° C. directly blown from the tuyere can be blown directly and forcibly through the hollow pipe. The hot air blown into the mandrel reacts with the coke in the mandrel and
It becomes a CO-rich reducing gas of 00 ° C., heats the coke in the furnace core and melts the metal slag held up in the furnace core. At the same time, since the solution loss reaction of the coke breeze in the mandrel also proceeds by heating the coke in the mandrel, the removal of the powder by heating the mandrel can be surely performed. Thereby, the gas permeability and liquid permeability of the furnace core are improved.

【0012】このように、羽口から吹き込まれる800
〜1300℃の熱風をこの中空パイプを介して直接的か
つ強制的に吹き込むことができるのは、送風立ち上げ後
の30〜60分前後と推定される。すなわち、送風後3
0〜60分前後の間には、中空パイプを打ち込んだ羽口
から800〜1300℃の熱風が100〜200Nm3
/minの流量で炉芯内へ吹き込まれるはずである。し
かしながら、中空パイプの外径は、中空パイプ打ち込み
時に羽口(羽口径:通常140〜150mmφ)との接
触による羽口の損傷を防止するために、100mmφ以
下にする必要があり、結果的に中空パイプの内径は70
〜80mmφと小さくなる。従って、実際に中空パイプ
を打ち込んだ羽口から中空パイプを介して炉芯部に吹き
込まれる熱風量は、50Nm3 /min以下と相対送風
支管風量で0.3以下になる可能性が大きい。炉芯の通
気性・通液性をできるだけ早期に改善するためには、少
なくとも相対送風支管風量で0.5以上の熱風量を吹き
込むことが望ましい。これは、相対送風支管風量が0.
4以下の場合、送風立ち上げ後の炉芯温度上昇量は小さ
く、相対送風支管風量が0.5以上になってやっと送風
立ち上げ後の炉芯温度上昇量が100℃以上になるため
である。
As described above, 800 blown from the tuyere
It is estimated that hot air of の 1300 ° C. can be blown directly and forcibly through this hollow pipe for about 30 to 60 minutes after the start of blowing. That is, after blowing 3
During about 0 to 60 minutes, hot air at 800 to 1300 ° C. was blown from the tuyere into which the hollow pipe was driven, at 100 to 200 Nm 3.
/ Min should be blown into the furnace core. However, the outer diameter of the hollow pipe needs to be 100 mmφ or less in order to prevent damage to the tuyere due to contact with the tuyere (tuyere diameter: usually 140 to 150 mmφ) when driving the hollow pipe. The inner diameter of the pipe is 70
8080 mmφ. Therefore, the amount of hot air blown from the tuyere into which the hollow pipe is actually driven into the furnace core through the hollow pipe is likely to be 50 Nm 3 / min or less, which is 0.3 or less in relative blow branch air flow. In order to improve the air permeability and liquid permeability of the furnace core as early as possible, it is desirable to blow a hot air volume of at least 0.5 relative blow air volume. This is because the relative airflow from the branch pipe is 0.
In the case of 4 or less, the amount of increase in the core temperature after the start of the blast is small, and the amount of increase in the core temperature after the start of the blast becomes only 100 ° C. or more when the relative blow branch air volume becomes 0.5 or more. .

【0013】そこで、本発明では、中空パイプを打ち込
んだ羽口以外の羽口から吹き込まれる熱風量を減少さ
せ、中空パイプを打ち込んだ羽口から吹き込まれる熱風
量を確保する。そのためには、中空パイプを打ち込んだ
羽口以外の羽口の送風支管に設置された熱風制御弁の開
度を絞る。ここで、熱風制御弁の開度は、中空パイプを
打ち込んだ羽口の相対送風支管風量が0.5以上になる
まで絞る必要がある。この熱風制御弁の開度を絞る期間
は1日から数日の間である。すなわち、羽口から打ち込
んだ中空パイプが溶融して完全に消滅したのちも、炉芯
内に形成された空洞が保持されている期間は継続する。
また、羽口から打ち込んだ中空パイプが溶融して完全に
消滅し、中空パイプを打ち込んだ羽口の相対送風支管風
量が1弱になった時点で、熱風制御弁の開度を元に戻す
ことも可能となるが、そこまでに要する時間は送風立ち
上げ開始後30〜60分前後である。なお、熱風制御弁
については、ボール弁タイプ、バタ弁タイプ等種々の形
式があり、いずれの形式を用いてもよい。
Accordingly, in the present invention, the amount of hot air blown from tuyeres other than the tuyere into which the hollow pipe is driven is reduced, and the amount of hot air blown from tuyeres into which the hollow pipe is driven is secured. For that purpose, the opening degree of the hot air control valve installed in the air duct of the tuyere other than the tuyere into which the hollow pipe is driven is reduced. Here, it is necessary to reduce the opening degree of the hot air control valve until the relative air flow of the tuyere into which the hollow pipe is driven becomes 0.5 or more. The period during which the opening of the hot air control valve is reduced is between one day and several days. That is, even after the hollow pipe driven from the tuyere has melted and completely disappeared, the period in which the cavity formed in the furnace core is maintained continues.
In addition, when the hollow pipe driven from the tuyere melts and disappears completely, and the relative air flow of the tuyere into which the hollow pipe is driven becomes less than 1, the hot air control valve is returned to its original position. However, the time required to reach this point is about 30 to 60 minutes after the start of the air supply. The hot air control valve has various types such as a ball valve type and a butterfly valve type, and any type may be used.

【0014】本発明では、通常、複数ケ所の羽口から中
空パイプを打ち込む。そのため、立ち上げ送風開始後3
0〜60分前後の間に800〜1300℃の熱風が2
0,000Nm3 以上炉芯内へ吹き込まれ、炉芯内のコ
ークスと反応して発生した2000℃前後の高温ガス
が、さらに炉芯内のコークスを昇温し、一旦固化した溶
融物も昇温溶融させて通気性・通液性を改善する。中空
パイプが溶融して消滅した後も炉芯内に形成された空洞
の形状はそのまま1日から数日の間保持されるため、レ
ースウェイ内のコークスと反応して発生した2000℃
前後の高温ガスの炉芯内への通気性はある程度確保さ
れ、炉芯内の加熱と粉除去により、炉芯部を迅速に活性
化することができる。
In the present invention, a hollow pipe is usually driven from a plurality of tuyeres. Therefore, after the start-up ventilation starts 3
Hot air of 800-1300 ° C is generated between 0-60 minutes.
A high-temperature gas of about 2,000 ° C. generated by reacting with coke in the furnace core by blowing into the furnace core of 000 Nm 3 or more further raises the temperature of the coke in the furnace core, and also raises the temperature of the once solidified melt. Melts to improve air permeability and liquid permeability. Even after the hollow pipe melts and disappears, the shape of the cavity formed in the furnace core is maintained as it is for one to several days.
The gas permeability of the front and rear hot gases into the furnace core is ensured to some extent, and the furnace core can be quickly activated by heating and powder removal in the furnace core.

【0015】このような炉芯改善効果は、中空パイプの
代わりに金棒を打ち込むことによっても達成される。こ
の場合には、羽口から炉芯内に打ち込まれた金棒がレー
スウェイ内でコークスと反応して発生した2000℃前
後の高温ガスにより加熱溶解され、炉芯内に空洞の通気
孔が形成される。その後、高温の還元ガスの一部がこの
炉芯内に形成された空洞の通気孔へ流れ、炉芯内のコー
クスやメタルやスラグが加熱されて、炉芯改善効果が得
られる。
Such a furnace core improvement effect can also be achieved by driving a metal rod in place of the hollow pipe. In this case, the metal rod driven into the furnace core from the tuyere is heated and melted by a high-temperature gas of about 2000 ° C. generated by reacting with coke in the raceway, and a hollow vent is formed in the furnace core. You. After that, a part of the high-temperature reducing gas flows into the air holes of the cavities formed in the furnace core, and the coke, metal, and slag in the furnace core are heated, and a core improving effect is obtained.

【0016】炉芯改善効果の観点からすれば、中空パイ
プまたは金棒を炉芯内へ掘削する羽口数は最低4箇所以
上必要であり、炉芯内へ掘削する羽口数が多い程炉芯改
善効果は大きくなる。休風中に中空パイプまたは金棒を
炉芯内へ掘削できる羽口数は休風時間により異なり、休
風時間が24時間以下の場合の掘削できる羽口数の上限
はせいぜい16箇所である。また、中空パイプまたは金
棒の最低打ち込み深度は、鳥の巣と炉芯表層部の通気性
の悪い領域を掘削する必要があることから3mであり、
実際の打ち込み深度としては3〜7mの範囲にすること
が望ましい。炉芯内に打ち込まれた中空パイプまたは金
棒は、休風中でも常に1400℃近い温度にさらされる
ため、座屈する可能性が大きい。従って、中空パイプま
たは金棒の材質は高温強度の高い品質のもの、例えばS
US304あるいはSUS304以上の高温強度を有す
るものを使用することが望ましい。
From the viewpoint of the core improvement effect, the number of tuyeres for excavating the hollow pipe or the metal rod into the core is required to be at least four or more. Becomes larger. The number of tuyeres that can excavate a hollow pipe or a metal rod into the furnace core during the calm is different depending on the calm time, and the upper limit of the number of tuyeres that can be excavated when the calm time is 24 hours or less is at most 16 places. In addition, the minimum driving depth of the hollow pipe or the metal rod is 3 m because it is necessary to excavate a poorly permeable area between the bird's nest and the furnace core surface,
It is desirable that the actual driving depth is in the range of 3 to 7 m. The hollow pipe or the rod inserted into the furnace core is always exposed to a temperature close to 1400 ° C. even during a cold wind, and thus has a high possibility of buckling. Therefore, the material of the hollow pipe or the rod is of high quality with high temperature strength, for example, S
It is desirable to use a material having a high temperature strength equal to or higher than US304 or SUS304.

【0017】一方、炉芯の状態を測定する方法として
は、公知の方法を適用することができる。例えば、休風
時には、(1)熱電対を内装したプローブを羽口から炉
芯内に挿入して測温する方法、(2)光ファイバーを内
装したプローブを羽口から炉芯内に挿入し、放射温度計
により測温する方法、(3)中空パイプのプローブを羽
口から炉芯内に挿入して炉芯コークスを採取し、そのコ
ークスの履歴温度あるいは粉率(例えば、粒度3mm以
下のコークスの重量比率)を測定する方法、あるいは、
(4)羽口部から炉芯内へプローブを挿入する時の挿入
抵抗や挿入速度から炉芯部の状態(活性度)を判定する
方法、等が実施可能である。
On the other hand, as a method of measuring the state of the furnace core, a known method can be applied. For example, at the time of cold, (1) a method of inserting a probe containing a thermocouple into the furnace core from the tuyere to measure the temperature, and (2) inserting a probe containing an optical fiber into the furnace core from the tuyere, (3) A hollow pipe probe is inserted into the furnace core from the tuyere to collect core coke, and the hysteresis temperature or powder ratio of the coke (for example, coke having a particle size of 3 mm or less) Weight ratio), or
(4) A method of determining the state (activity) of the furnace core from the insertion resistance and the insertion speed when inserting the probe from the tuyere into the furnace core can be implemented.

【0018】そして、(1)、(2)、(3)では炉芯
温度が1350℃以下の場合、(3)では炉芯部の粉率
が30%以上の場合、(4)では挿入推力(抵抗)が5
t以上の場合あるいは挿入速度が炉芯温度1400℃に
おける挿入速度の0.7倍以下の場合に炉芯の状態が悪
いと判定できる。さらに、高炉操業時の測定方法として
は、(5)各羽口の送風支管風量を平均の送風支管風量
で除した相対送風支管風量から判断する方法がある。ま
た、高炉には、操業中にサンプリングや測温ができる炉
芯ゾンデがあり、従って、操業時に炉芯温度や挿入推力
の測定が可能である。この場合も、休風時の測定と同様
に、炉芯温度が1350℃以下の場合、炉芯部の粉率が
30%以上の場合、挿入推力が5t以上の場合、あるい
は挿入速度が炉芯温度1400℃における挿入速度の
0.7倍以下の場合、また、(5)で相対送風支管風量
が0.9以下の羽口が存在する場合に炉芯の状態が悪い
と判定できる。
In (1), (2), and (3), when the core temperature is 1350 ° C. or less, in (3), the powder ratio of the furnace core is 30% or more, and in (4), the insertion thrust. (Resistance) is 5
When the insertion speed is not less than t or when the insertion speed is 0.7 times or less the insertion speed at a core temperature of 1400 ° C., it is possible to determine that the state of the core is poor. Further, as a measurement method during the operation of the blast furnace, there is a method of (5) determining from the relative air supply branch airflow obtained by dividing the air supply airflow at each tuyere by the average air supply airflow. Further, the blast furnace has a core mandrel that can perform sampling and temperature measurement during operation, and thus can measure the core temperature and the inserted thrust during operation. Also in this case, as in the case of the measurement at the time of calm, when the core temperature is 1350 ° C. or less, the powder ratio of the core part is 30% or more, the insertion thrust is 5 t or more, or the insertion speed is When the insertion speed at a temperature of 1400 ° C. is 0.7 times or less, or when there is a tuyere with a relative air flow rate of 0.9 or less in (5), it can be determined that the state of the furnace core is poor.

【0019】なお、羽口から中空パイプを打ち込む時
に、中空パイプの先端からコークスが入らないように取
り付ける先端キャップの材質は、炉芯内に打ち込んだ中
空パイプの前方の炉芯を加熱することを主目的とする場
合は、中空パイプの打ち込みが完了する時点で先端キャ
ップが溶融するように、高温強度の弱いSTPG(普通
鋼)とすることが望ましい。
When the hollow pipe is driven from the tuyere, the material of the tip cap attached so that coke does not enter from the tip of the hollow pipe is to heat the furnace core in front of the hollow pipe driven into the furnace core. In the case of the main purpose, it is desirable to use STPG (normal steel) having a low high-temperature strength so that the tip cap is melted when the driving of the hollow pipe is completed.

【0020】ここで、熱風とは、熱風炉で加熱され、高
炉の羽口から吹き込まれる高温の空気またはガスであ
る。熱風の温度範囲は以下の理由により、800〜13
00℃が望ましい。すなわち、熱風は、炉芯内に打ち込
んだ中空パイプを介して炉芯部のコークスを燃焼させて
高温の還元ガスになる。その際の還元ガス温度を200
0℃以上に確保するためには、熱風の下限温度を800
℃とする。また、熱風の温度が1300℃超になると、
炉芯内に打ち込んだ中空パイプを介して炉芯部のコーク
スを燃焼させてできる還元ガス温度が高温になりすぎ、
コークス中の灰分に含まれているSiO2 を揮発させて
炉芯の通気性を逆に悪化させる。そのため、熱風の上限
温度を1300℃とする。
Here, the hot air is high-temperature air or gas which is heated in a hot blast stove and blown from tuyere of a blast furnace. The temperature range of hot air is 800 to 13 for the following reasons.
00 ° C is desirable. That is, the hot air burns the coke in the furnace core through the hollow pipe driven into the furnace core to become a high-temperature reducing gas. The reducing gas temperature at that time is set to 200
In order to maintain the temperature at 0 ° C. or higher, the minimum temperature of hot air must be 800
° C. When the temperature of hot air exceeds 1300 ° C,
The temperature of the reducing gas generated by burning the coke in the furnace core through the hollow pipe driven into the furnace core becomes too high,
The SiO 2 contained in the ash in the coke is volatilized to deteriorate the air permeability of the furnace core. Therefore, the upper limit temperature of the hot air is set to 1300 ° C.

【0021】[0021]

【実施例】以下、図面に示す実施例に基づいて具体的に
説明する。 (実施例1)内容積が4000m3 以上で羽口数が38
本の大型高炉において、休風時にプローブにより炉芯温
度を測定したところ、1320℃であった。この温度が
1350℃以下であることから、炉芯の通気性・通液性
が悪化していると判断された。そこで、その休風時に、
図1に示すような方式で、8箇所の羽口(No.1,N
o.9,No.13,No.19,No.23,No.
29,No.30,No.35)から中空パイプを炉芯
部に打ち込んだ。すなわち、最初にエアーハンマーと油
圧とを組み合わせて打ち込む可搬型のパイプ打ち込み装
置1と打ち込み用治具2を用いて、まず先端に炉芯コー
クスの侵入防止用のキャップ3を設けた長さ2mの中空
パイプ4を、羽口5から炉芯部6に打ち込んだ。次に長
さが1mの中空パイプ7の先端を前記中空パイプ4の後
端に接続した後に打ち込み、中空パイプ4の先端が炉壁
から3mの深度となるようにした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a specific description will be given based on embodiments shown in the drawings. (Example 1) The inner volume is 4000 m 3 or more and the number of tuyeres is 38
In this large blast furnace, when the core temperature was measured with a probe at the time of the stall, the temperature was 1320 ° C. Since this temperature was 1350 ° C. or less, it was determined that the air permeability and liquid permeability of the furnace core were deteriorated. So, at the time of the calm,
In the manner shown in FIG. 1, eight tuyeres (No. 1, N
o. 9, No. 13, No. 19, no. 23, no.
29, No. 30, no. From 35), a hollow pipe was driven into the furnace core. That is, first, using a portable pipe driving device 1 and a driving jig 2 for driving by combining an air hammer and a hydraulic pressure, first, a cap 3 for preventing intrusion of core coke is provided at a tip thereof. The hollow pipe 4 was driven into the furnace core 6 from the tuyere 5. Next, the front end of the hollow pipe 7 having a length of 1 m was connected to the rear end of the hollow pipe 4 and then driven so that the front end of the hollow pipe 4 was at a depth of 3 m from the furnace wall.

【0022】なお、先端部の長さが2mの中空パイプ4
と長さが1mの中空パイプ7との繋ぎ目部分は、図2に
示すような切削加工を行って肉厚を変化させ、嵌め合い
がうまくいくようにした。また、炉芯コークス侵入防止
用のキャップ3の材質は、炉壁から3mの深度まで中空
パイプ4を持ち込んだ時点で溶融するようにSTPG
(普通鋼)とした。さらに、送風立ち上げ時に羽口から
送られる800〜1300℃の熱風が直接的かつ強制的
に炉芯に吹き込まれるように、パイプの打ち込み完了時
点で、中空パイプ7と羽口5の間の隙間にボタ8を詰め
た。
The hollow pipe 4 having a tip portion of 2 m in length is used.
The joint portion between the pipe and the hollow pipe 7 having a length of 1 m was subjected to a cutting process as shown in FIG. 2 to change the wall thickness so that the fitting was successful. The material of the cap 3 for preventing the core coke from intruding is STPG so that it is melted when the hollow pipe 4 is brought into the depth of 3 m from the furnace wall.
(Ordinary steel). Further, the gap between the hollow pipe 7 and the tuyere 5 at the time of completion of the driving of the pipe so that the hot air of 800 to 1300 ° C. sent from the tuyere is directly and forcibly blown into the furnace core when the blower is started. Was filled with Bota 8.

【0023】休風が終了して送風立ち上げの際、図2に
示すように、中空パイプを打ち込んだ以外の30箇所の
羽口(No.2〜8,No.10〜12,No.14〜
18,No.20〜22,No.24〜28,No.3
1〜34,No.36〜38)の熱風制御弁を絞り、中
空パイプを打ち込んだ8箇所の羽口の相対送風支管風量
が0.5以上になるようにした。こうして、休風後の送
風立ち上げは順調に推移し、図4に示すように、休風前
には多かったりスリップ等の荷下がり変動や風圧変動が
休風後は減少傾向を示した。そして、その1ケ月後の休
風時の炉芯温度は1460℃と前回の休風時の炉芯温度
に比べて140℃上昇した。その結果、溶銑と同時にス
ラグの排出が順調になり、出銑時間内にスラグが排出さ
れる割合を示す出滓率が60%から95%に向上した。
As shown in FIG. 2, at the time of the start of the air blowing after the suspension of the wind, the 30 tuyeres (Nos. 2 to 8, No. 10 to 12, No. 14) other than the hollow pipe are driven. ~
18, No. 20-22, No. 24 to 28, no. 3
Nos. 1-34, no. The hot air control valves of Nos. 36 to 38) were squeezed so that the relative blowing airflow of the eight tuyeres into which the hollow pipe was driven was 0.5 or more. In this way, the start-up of the air supply after the wind shuts down smoothly, and as shown in FIG. 4, there were many fluctuations in the load such as slippage before the wind shuts down and fluctuations in the wind pressure tended to decrease after the wind shuts down. One month later, the core temperature at the time of the outage was 1460 ° C., which was 140 ° C. higher than the temperature of the core at the time of the previous outage. As a result, the discharge of slag became smooth at the same time as the hot metal, and the slag rate, which indicates the rate of slag discharge within the tapping time, was improved from 60% to 95%.

【0024】(実施例2)内容積が4000m3 以上で
羽口数が38本の大型高炉において、休風時にプローブ
を炉芯に挿入する際に必要とされる挿入推力を測定した
ところ7tであった。この値が5t以上であることか
ら、炉芯の通気性・通液性が悪化していると判断され
た。そこで、その休風時に、任意の10箇所の羽口か
ら、図1に示すような方式で、中空パイプを炉芯部に打
ち込んだ。すなわち、最初にエアーハンマーと油圧とを
組み合わせて打ち込む可搬型のパイプ打ち込み装置1と
打ち込み用治具2を用いて、まず先端に炉芯コークスの
侵入防止用のキャップ3を設けた長さ2mの中空パイプ
4を、羽口5から炉芯部6に打ち込んだ。次に長さが1
mの中空パイプ7の先端を前記中空パイプ4の後端に接
続した後に打ち込み、中空パイプ4の先端が炉壁から3
mの深度となるようにした。
(Example 2) In a large blast furnace having an inner volume of 4000 m 3 or more and a tuyere number of 38, the insertion thrust required for inserting the probe into the core of the furnace at the time of wind shut down was measured to be 7 t. Was. Since this value was 5 t or more, it was determined that the gas permeability and liquid permeability of the furnace core were deteriorated. Therefore, at the time of the calm, a hollow pipe was driven into the furnace core from any ten tuyeres in the manner shown in FIG. That is, first, using a portable pipe driving device 1 and a driving jig 2 for driving by combining an air hammer and a hydraulic pressure, first, a cap 3 for preventing intrusion of core coke is provided at a tip thereof. The hollow pipe 4 was driven into the furnace core 6 from the tuyere 5. Then length 1
m after connecting the tip of the hollow pipe 7 to the rear end of the hollow pipe 4,
m depth.

【0025】なお、先端部の長さが2mの中空パイプ4
と長さが1mの中空パイプ7との繋ぎ目部分は、図3に
示すような切削加工を行って肉厚を変化させ、嵌め合い
がうまくいくようにした。また、炉芯コークス侵入防止
用キャップ3の材質は、炉壁から3mの深度まで中空パ
イプ4を打ち込んだ時点で溶融するようにSTPG(普
通鋼)とした。さらに、送風立ち上げ時に羽口から送ら
れる800〜1300℃の熱風が直接的かつ強制的に炉
芯に吹き込まれるように、パイプの打ち込み完了時点
で、中空パイプ7と羽口5の間の隙間にボタ8を詰め
た。
A hollow pipe 4 having a tip portion of 2 m in length is used.
The joint between the hollow pipe 7 and the hollow pipe 7 having a length of 1 m was subjected to a cutting process as shown in FIG. 3 to change the wall thickness so that the fitting was successful. The material of the core 3 for preventing coke from entering the furnace core was STPG (normal steel) so that it was melted when the hollow pipe 4 was driven into the furnace wall to a depth of 3 m. Further, the gap between the hollow pipe 7 and the tuyere 5 at the time of completion of the driving of the pipe so that the hot air of 800 to 1300 ° C. sent from the tuyere is directly and forcibly blown into the furnace core when the blower is started. Was filled with Bota 8.

【0026】休風が終了して送風立ち上げの際、中空パ
イプを打ち込んだ以外の28箇所の羽口の熱風制御弁を
絞り、中空パイプを打ち込んだ10箇所の羽口の相対送
風支管風量が0.5以上になるようにした。こうして、
休風後の送風立ち上げは順調に推移し、図5に示すよう
に、休風前には多かったスリップ等の荷下がり変動や風
圧変動が休風後は減少傾向を示した。そして、その1ケ
月後の休風時の炉芯への挿入推力は3tと前回の休風時
の挿入推力に比べて半分以下に低下した。その結果、溶
銑と同時にスラグの排出が順調になり、出銑時間内にス
ラグが排出される割合を示す出滓率が60%から85%
に向上した。
At the time of the start of the air supply after the end of the calm, the hot air control valves at the 28 tuyeres other than those at which the hollow pipes were driven were squeezed, and the relative blowing airflow at the 10 tuyeres at which the hollow pipes were driven was reduced. 0.5 or more. Thus,
As shown in FIG. 5, the start-up of the blast after the wind shuts off smoothly, and as shown in FIG. One month later, the thrust inserted into the furnace core when the wind was shut down was 3t, which was less than half that of the previous time when the wind was shut down. As a result, the discharge of slag becomes smooth at the same time as the hot metal, and the slag rate, which indicates the rate of slag discharge within the tapping time, is from 60% to 85%.
Improved.

【0027】(実施例3)内容積が4000m3 以上で
羽口数が38本の大型高炉において、操業中に相対送風
支管風量が0.9以下の羽口が3箇所(No.1,N
o.9,No.25)検知され、炉芯の通気性・通液性
が悪化していると判断された。そこで、次回の高炉の休
風時に、3箇所の相対送風支管風量が0.9以下となっ
た羽口とその近傍の羽口、すなわち相対送風支管風量が
0.9以下となった羽口の両隣の羽口の計9箇所の羽口
(No.38,No.1,No.2,No.8,No.
9,No.10,No.24,No.25,No.2
6)から、図1に示すような方式で、中空パイプを炉芯
部に打ち込んだ。
(Example 3) In a large blast furnace having an inner volume of 4000 m 3 or more and 38 tuyeres, three tuyeres (No. 1, N
o. 9, No. 25) It was detected, and it was determined that the air permeability and liquid permeability of the furnace core were deteriorated. Therefore, when the blast furnace is closed next time, the tuyeres with three relative air blower airflows at 0.9 or less and the tuyeres near them, that is, the tuyeres with relative air blower airflows at 0.9 or less. A total of nine tuyeres (No. 38, No. 1, No. 2, No. 8, No. 6) of the tuyeres on both sides.
9, No. 10, No. 24, no. 25, no. 2
From 6), a hollow pipe was driven into the furnace core in the manner shown in FIG.

【0028】すなわち、最初にエアーハンマーと油圧と
を組み合わせて打ち込む可搬型のパイプ打ち込み装置1
と打ち込み用治具2を用いて、まず先端に炉芯コークス
の侵入防止用のキャップ3を設けた長さ2mの中空パイ
プ4を、羽口5から炉芯部6に打ち込んだ。次に長さが
1mの中空パイプ7の先端を前記中空パイプ4の後端に
接続した後に打ち込み、中空パイプ4の先端が炉壁から
3mの深度となるようにした。
That is, a portable pipe driving device 1 for driving by first combining an air hammer and a hydraulic pressure.
First, a 2 m long hollow pipe 4 provided with a cap 3 for preventing ingress of furnace core coke at the tip was driven into the furnace core 6 from the tuyere 5 using the driving jig 2. Next, the tip of the hollow pipe 7 having a length of 1 m was connected to the rear end of the hollow pipe 4 and then driven so that the tip of the hollow pipe 4 had a depth of 3 m from the furnace wall.

【0029】なお、先端部の長さが2mの中空パイプ4
と長さが1mの中空パイプ7との繋ぎ目部分は、図3に
示すような切削加工を行って肉厚を変化させ、嵌め合い
がうまくいくようにした。また、炉芯コークス侵入防止
用キャップ3の材質は、炉壁から3mの深度まで中空パ
イプ4を打ち込んだ時点で溶融するようにSTPG(普
通鋼)とした。さらに、送風立ち上げ時に羽口から送ら
れる800〜1300℃の熱風が直接的かつ強制的に炉
芯に吹き込まれるように、パイプの打ち込み完了時点
で、中空パイプ7と羽口5の間の隙間にボタ8を詰め
た。
The hollow pipe 4 having a tip portion of 2 m in length is used.
The joint between the hollow pipe 7 and the hollow pipe 7 having a length of 1 m was subjected to a cutting process as shown in FIG. 3 to change the wall thickness so that the fitting was successful. The material of the core 3 for preventing coke from entering the furnace core was STPG (normal steel) so that it was melted when the hollow pipe 4 was driven into the furnace wall to a depth of 3 m. Further, the gap between the hollow pipe 7 and the tuyere 5 at the time of completion of the driving of the pipe so that the hot air of 800 to 1300 ° C. sent from the tuyere is directly and forcibly blown into the furnace core when the blower is started. Was filled with Bota 8.

【0030】休風が終了して送風立ち上げの際、中空パ
イプを打ち込んだ以外の29箇所の羽口(No.3〜
7,No.11〜23,No.27〜37)の熱風制御
弁を絞り、中空パイプを打ち込んだ9箇所の羽口の相対
送風支管風量が0.5以上になるようにした。こうし
て、休風後の送風立ち上げは順調に推移し、相対送風支
管風量が0.9以下であった3箇所の羽口の相対送風支
管風量は、送風立ち上げ1日後から大幅に改善されてい
ずれも1.0前後となり、図6に示すように、休風前に
は多かったスリップ等の荷下がり変動や風圧変動が休風
後は減少傾向を示した。そして、送風立ち上げ1週間後
からは、休風前まで低下傾向であった炉底の底盤レンガ
温度が上昇しはじめ、3週間後には好調時の温度レベル
まで到達し、炉芯が活性化されたことがわかった。溶銑
と同時にスラグの排出が順調になり、出銑時間内にスラ
グが排出される割合を示す出滓率が60%から90%に
向上した。また、炉底の底盤レンガ温度の上昇に伴い炉
底側壁レンガ温度も上昇し、炉寿命短縮の主要因である
環状流を抑制することができた。
At the time of the start of air blowing after the suspension of the wind, 29 tuyeres (No. 3 to No. 3) except for driving the hollow pipe were used.
7, No. Nos. 11 to 23, No. The hot air control valves of Nos. 27 to 37) were squeezed so that the relative air blowing air volume at nine tuyeres into which hollow pipes were driven was 0.5 or more. Thus, the start-up of the blast after the cessation of the wind was smooth, and the relative blast-branch airflow of the three tuyeres whose relative blast-branch airflow was 0.9 or less was significantly improved one day after the blast-start. Both were around 1.0, and as shown in FIG. 6, the load fluctuation such as slip and the wind pressure fluctuation, which were often before the wind shuts down, showed a decreasing tendency after the wind shuts down. Then, one week after the start of the ventilation, the temperature of the bottom brick of the furnace bottom, which had been decreasing until before the closing of the wind, started to rise, and reached the temperature level at the time of good condition three weeks later, the furnace core was activated. I knew that The discharge of slag became smooth at the same time as the hot metal, and the slag rate, which indicates the rate of slag discharge within the tapping time, improved from 60% to 90%. In addition, the temperature of the bottom wall of the furnace rose along with the rise of the temperature of the bottom brick of the furnace bottom, and the annular flow, which is the main factor of shortening the life of the furnace, could be suppressed.

【0031】[0031]

【発明の効果】本発明法によれば、高炉の炉芯の状態が
悪いと判断された場合、その休風時に羽口から中空パイ
プまたは金棒を打ち込み、送風立ち上げ時に中空パイプ
または金棒を打ち込んだ羽口以外の羽口の熱風制御弁の
開度を絞ることにより、2000℃前後の高温ガスの炉
芯内への流通量を大幅に増加させ、これによって、効率
的かつ迅速に炉芯および炉床部を活性化させることがで
きる。
According to the method of the present invention, when it is determined that the state of the core of the blast furnace is bad, a hollow pipe or a metal rod is driven into the tuyere when the blast furnace is closed, and a hollow pipe or a metal rod is driven when the blast is started. By narrowing the opening of the hot air control valve of the tuyere other than the tuyere, the flow rate of the high temperature gas of about 2000 ° C into the furnace core is greatly increased, thereby efficiently and promptly increasing the temperature of the furnace core and the core. The hearth can be activated.

【0032】本発明の方法を実施すれば、従来のような
長時間にわたって燃料比を高くする操業を継続したり、
炉況を早期に立て直せないために出銑量が長期間にわた
り低下するような問題は完全に解消できる。今後、安価
原燃料使用操業時や高微粉炭比操業時のように、鉱石や
コークスの粉化が促進され、未燃焼チャーの生成等によ
り炉下部での粉率が上昇して、炉芯部の通気性・通液性
の確保が困難となりやすい場合においても安定操業を維
持することができる。さらに、本発明により環状流を解
消できることから、環状流対策として燃料比アップや出
銑量の抑制をする必要がなくなるため、高炉の制御性が
向上する。
By implementing the method of the present invention, it is possible to continue the operation for increasing the fuel ratio over a long period of time as in the prior art,
The problem that the tapping rate decreases over a long period of time because the furnace condition cannot be restored early can be completely solved. In the future, as at the time of operation using low-cost raw fuel and high pulverized coal ratio, the ore and coke will be pulverized, and the unburned char will increase the powder rate at the lower part of the furnace. The stable operation can be maintained even when it is difficult to ensure the air permeability and the liquid permeability of the liquid. Furthermore, since the annular flow can be eliminated by the present invention, it is not necessary to increase the fuel ratio or suppress the tapping amount as a countermeasure against the annular flow, so that the controllability of the blast furnace is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における炉芯部への中空パイプ打ち込み
方法の概要説明図
FIG. 1 is a schematic explanatory view of a method of driving a hollow pipe into a furnace core according to the present invention.

【図2】本発明の実施例で用いた高炉の羽口状況および
実施例1において絞りの操作を行った熱風制御弁(B)
の位置関係を示す説明図
FIG. 2 is a tuyere condition of a blast furnace used in an embodiment of the present invention and a hot air control valve (B) in which a throttle operation is performed in the first embodiment.
Explanatory diagram showing the positional relationship of

【図3】炉芯打ち込み用中空パイプの繋ぎ状況を示す説
明図
FIG. 3 is an explanatory view showing a connection state of hollow pipes for driving a furnace core.

【図4】実施例1における本発明実施前後の操業指標の
推移図
FIG. 4 is a transition diagram of the operation index before and after the present invention is implemented in the first embodiment.

【図5】実施例2における本発明実施前後の操業指標の
推移図
FIG. 5 is a transition diagram of an operation index before and after implementation of the present invention in a second embodiment.

【図6】実施例3における本発明実施前後の操業指標の
推移図
FIG. 6 is a transition diagram of an operation index before and after implementation of the present invention in a third embodiment.

【符号の説明】[Explanation of symbols]

1 可搬型のパイプ打ち込み装置 2 パイプ打ち込み用治具 3 キャップ 4 中空パイプ(2m) 5 羽口 6 炉芯部 7 中空パイプ(1m) 8 ボタ 9 環状管 A 中空パイプまたは金棒を打ち込んだ羽口 B 熱風制御弁の開度を絞った羽口 DESCRIPTION OF SYMBOLS 1 Portable pipe driving apparatus 2 Pipe driving jig 3 Cap 4 Hollow pipe (2 m) 5 Tuyere 6 Furnace core 7 Hollow pipe (1 m) 8 Button 9 Annular pipe A Tuyere into which hollow pipe or metal rod was driven Tuyere with narrow opening of hot air control valve

フロントページの続き (72)発明者 中山 正章 千葉県君津市君津1番地 新日本製鐵株 式会社 君津製鐵所内 (72)発明者 土岐 正弘 千葉県君津市君津1番地 新日本製鐵株 式会社 君津製鐵所内 (72)発明者 篠竹 昭彦 千葉県富津市新富20−1 新日本製鐵株 式会社 技術開発本部内 (56)参考文献 特開 平3−260004(JP,A) 特開 平6−122907(JP,A) 特開 平8−302407(JP,A) 特開 昭63−118005(JP,A) 特開 平9−170006(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21B 5/00 C21B 7/24 Continued on the front page (72) Inventor Masaaki Nakayama 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corporation Inside the Kimitsu Works (72) Inventor Masahiro Toki 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corporation Inside Kimitsu Works (72) Inventor Akihiko Shinotake 20-1 Shintomi, Futtsu-shi, Chiba Nippon Steel Corporation Technology Development Division (56) References JP-A-3-260004 (JP, A) JP-A-6 -122907 (JP, A) JP-A-8-302407 (JP, A) JP-A-63-118005 (JP, A) JP-A-9-170006 (JP, A) (58) Fields investigated (Int. . 7, DB name) C21B 5/00 C21B 7/24

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 高炉の操業時または休風時に炉芯状態を
測定し、炉芯状態が悪いと判断された場合に、高炉の休
風時に羽口から中空パイプを炉芯内に打ち込み、この中
空パイプを炉芯内に残留させたまま送風立ち上げを行っ
て、中空パイプより炉芯内に送風すると共に、中空パイ
プを打ち込んだ羽口の送風立ち上げ時の相対送風支管風
量(送風支管風量を平均の送風支管風量で除した値)が
0.5以上となるように、中空パイプを打ち込んだ羽口
以外の羽口の送風支管に設置された熱風制御弁の1個ま
たは2個以上の開度を絞って、各羽口の送風支管風量を
制御することを特徴とする高炉操業法。
1. The furnace core state is measured during operation of the blast furnace or when the wind is shut off, and when it is judged that the furnace core state is bad, a hollow pipe is driven into the furnace core from the tuyere when the blast furnace is shut down. Ventilation start-up is performed with the hollow pipe remaining in the furnace core, and air is blown into the furnace core from the hollow pipe, and the relative air supply pipe air volume at the time of air supply startup of the tuyere into which the hollow pipe is driven (air supply pipe air volume) Is divided by the average air volume of the blower pipe) to be 0.5 or more, so that one or two or more hot air control valves installed in the blower pipes of tuyeres other than the tuyeres into which the hollow pipes are driven are installed. A blast furnace operation method characterized by controlling the air flow rate of each tuyere by narrowing the opening.
【請求項2】 高炉の操業時または休風時に炉芯状態を
測定し、炉芯状態が悪いと判断された場合に、高炉の休
風時に羽口から金棒を炉芯内に打ち込み、この金棒を炉
芯内に残留させたまま送風立ち上げを行い、金棒を溶解
させて炉芯内に通気孔を形成し、この通気孔より炉芯内
に送風すると共に、金棒を打ち込んだ羽口の送風立ち上
げ時の相対送風支管風量(送風支管風量を平均の送風支
管風量で除した値)が0.5以上となるように、金棒を
打ち込んだ羽口以外の羽口の送風支管に設置された熱風
制御弁の1個または2個以上の開度を絞って、各羽口の
送風支管風量を制御することを特徴とする高炉操業法。
2. The state of the mandrel is measured during operation of the blast furnace or when the wind is shut off. If it is determined that the state of the mandrel is bad, a metal rod is driven into the furnace core from the tuyere when the blast furnace is shut down, Is blown up with the steel remaining in the furnace core, the metal rod is melted to form a vent hole in the furnace core, and air is blown into the furnace core from this vent hole and air is blown from the tuyere into which the metal rod is driven. It was installed in the tuyere of the tuyere other than the tuyere into which the metal rod was driven so that the relative blower pipe airflow at startup (the value obtained by dividing the air blower pipe airflow by the average blower pipe airflow) was 0.5 or more. A method for operating a blast furnace, characterized in that the opening degree of one or more hot air control valves is reduced to control the air flow rate of a blow branch pipe of each tuyere.
【請求項3】 高炉の操業時または休風時に、プローブ
により炉芯部の温度および/または粉率を測定し、少な
くとも炉芯温度が1350℃以下の場合または粉率が3
0%以上の場合に炉芯状態が悪いと判断することを特徴
とする請求項1または2記載の高炉操業法。
3. A probe for measuring the temperature and / or powder rate of the core at the time of operation of the blast furnace or when the air is shut off, and when the temperature of the core is at least 1350 ° C. or the powder rate is 3
The blast furnace operating method according to claim 1 or 2, wherein the core state is determined to be bad when the blast furnace state is 0% or more.
【請求項4】 高炉の操業時または休風時に、プローブ
を炉芯に挿入する際に必要とされる推力および/または
その際の挿入速度を測定し、少なくとも挿入時の推力が
5t以上の場合または挿入時の速度が炉芯温度1400
℃における挿入速度の0.7倍以下の場合に炉芯状態が
悪いと判断することを特徴とする請求項1または2記載
の高炉操業法。
4. The thrust required for inserting the probe into the furnace core and / or the insertion speed at the time of operation of the blast furnace or when the wind is shut off is measured, and at least the thrust at the time of insertion is 5t or more. Or the speed at the time of insertion is furnace temperature 1400
3. The blast furnace operating method according to claim 1, wherein the furnace core state is determined to be bad when the insertion speed at 0.7 [deg.] C. is 0.7 times or less.
【請求項5】 高炉の操業時に、羽口毎に設置してある
送風支管風量計により各羽口の送風支管風量を測定し、
これを平均送風支管風量で除した相対送風支管風量が
0.9以下の羽口が存在する場合に炉芯状態が悪いと判
断することを特徴とする請求項1または2記載の高炉操
業法。
5. When operating a blast furnace, measure the air flow of each tuyere with an air blower air flow meter installed for each tuyere,
The blast furnace operating method according to claim 1 or 2, wherein when there is a tuyere having a relative air blowing branch air volume of 0.9 or less, which is obtained by dividing the average air blowing air volume, the blast furnace state is determined to be bad.
JP34856595A 1995-12-20 1995-12-20 Blast furnace operation method Expired - Fee Related JP3247289B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34856595A JP3247289B2 (en) 1995-12-20 1995-12-20 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34856595A JP3247289B2 (en) 1995-12-20 1995-12-20 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH09170007A JPH09170007A (en) 1997-06-30
JP3247289B2 true JP3247289B2 (en) 2002-01-15

Family

ID=18397880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34856595A Expired - Fee Related JP3247289B2 (en) 1995-12-20 1995-12-20 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP3247289B2 (en)

Also Published As

Publication number Publication date
JPH09170007A (en) 1997-06-30

Similar Documents

Publication Publication Date Title
CN201437541U (en) Iron port blow-burning oxygen lance
JP3247289B2 (en) Blast furnace operation method
JPH08302407A (en) Operating method of furnace
JPH10310808A (en) Operation of blast furnace
CN102472587B (en) Method for processing oxidizable materials
JP3561982B2 (en) Blast furnace operation method
JP3051291B2 (en) Repair method of cooling water leak of cooling pipe provided in blast furnace floor
KR960006322B1 (en) Method for removing stuck material on furnace wall in blast-furnace
WO2023233957A1 (en) Blast-furnace operation method and blast furnace
CN110499402A (en) A kind of metallurgical equipment uses improvement project
JP2741140B2 (en) Blast furnace operation method
JP2694590B2 (en) Method for diagnosing core active state and method for core activation
JPH03260004A (en) Method for operating blast furnace
JP3615673B2 (en) Blast furnace operation method
JPH05295415A (en) Method for operating blast furnace
JPH11124609A (en) Operation of blast furnace accompanied with injection of pulverized fine coal fuel
JPH08260010A (en) Operation for blowing large quanty of pulverized coal in blast furnace
JP2606507B2 (en) Tuyere for blast furnace
JP2694589B2 (en) Method for diagnosing core filling state and method for activating core
JP2023172090A (en) Blast furnace operating method
JPH0280503A (en) Method for operating blast furnace
JP2022152721A (en) Operation method of blast furnace
JPH0285309A (en) Method for operating blast furnace
JP2000212614A (en) Control of furnace condition at stopping time of blasting in blast furnace and jig for plugging coal waste
JP2000119717A (en) Method for preventing natural opening of tuyere utilizing hot blasting control valve

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011002

LAPS Cancellation because of no payment of annual fees