JPH08302407A - Operating method of furnace - Google Patents

Operating method of furnace

Info

Publication number
JPH08302407A
JPH08302407A JP20930695A JP20930695A JPH08302407A JP H08302407 A JPH08302407 A JP H08302407A JP 20930695 A JP20930695 A JP 20930695A JP 20930695 A JP20930695 A JP 20930695A JP H08302407 A JPH08302407 A JP H08302407A
Authority
JP
Japan
Prior art keywords
core
furnace
tuyere
air
blast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20930695A
Other languages
Japanese (ja)
Inventor
Morimasa Ichida
守政 一田
Kazuya Kunitomo
和也 国友
Kazuyuki Morii
和之 森井
Takashi Kumaoka
尚 熊岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20930695A priority Critical patent/JPH08302407A/en
Publication of JPH08302407A publication Critical patent/JPH08302407A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Blast Furnaces (AREA)

Abstract

PURPOSE: To activate the core part in furnace in starting the operation when the air-blowing is stopped in the case where any abnormality is diagnosed in the core part. CONSTITUTION: A hollow tube 4 on a metallic rod is driven in a core part of furnace from a tuyere 5 when the air-blowing is stopped in a blast furnace, the air-blowing is started while the hollow tube 4 or the metallic rod is left in the core part, and the hot gas is fed therein to activate a core part 6 and/or a hearth. The core part and/or the hearth is efficiently activated through the combination with the furnace core measuring method. In addition, the air volume in the air-blowing branch tube of each tuyere 5 is measured by an airflow meter of the air-blowing branch tube installed on each tuyere 5, and the circumferential balance of the core part is evaluated by the mean air volume of the air-blowing branch tube to more efficiently activate the core part 6 and/or the hearth.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、操業時に炉芯部状
態を測定し、変調の徴候があれば休風時から送風立ち上
げ時に炉芯部を活性化する高炉の操業方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for operating a blast furnace, in which the state of the furnace core is measured during operation, and if there is a sign of modulation, the furnace core is activated when the air is blown up and when air is blown up. .

【0002】[0002]

【従来の技術】製鉄用高炉は大量の銑鉄を生産できしか
も熱効率が90%と高い。このため現在でも銑鉄製造の
主流を維持している。しかし、高炉は巨大な向流移動層
であるために、生産性、生産弾力性等に問題があり、安
定した生産量と溶銑品質の確保のためにはより一層の制
御性の向上が望まれている。一方、高炉では、鉄源コス
ト競争力強化の観点から、安価原燃料使用操業や高微粉
炭比操業が実施されつつある。上記の操業下では、鉱石
・コークスの粉比率が増加し未燃焼チャーを含む炉下部
での粉率が上昇して炉芯部の通気性・通液性の確保が困
難となりやすい。したがって、有効な炉芯の活性化技術
の確立が望まれている。
2. Description of the Related Art A blast furnace for iron making can produce a large amount of pig iron and has a high thermal efficiency of 90%. Therefore, the mainstream of pig iron production is still maintained. However, since the blast furnace is a huge countercurrent moving bed, it has problems in productivity, production elasticity, etc., and further improvement of controllability is desired in order to secure a stable production amount and hot metal quality. ing. On the other hand, in the blast furnace, from the viewpoint of strengthening the cost competitiveness of the iron source, cheap raw fuel operation and high pulverized coal ratio operation are being implemented. Under the above-mentioned operation, the powder ratio of ore / coke increases, and the powder ratio in the lower part of the furnace containing unburned char increases, which makes it difficult to secure air permeability and liquid permeability of the furnace core. Therefore, establishment of an effective furnace core activation technique is desired.

【0003】上記炉芯部の通気性・通液性が低下した場
合の炉芯の活性化方法としては、従来技術の燃料比上昇
や水蒸気添加のほかに、いくつかの炉芯活性化方法が開
示されている。特開平6−93319号公報、特開平6
−93320号公報では、休風毎に複数の羽口を介して
炉芯部の特性を測定して炉芯部の状態を判定し、要加熱
部位の近傍の羽口から中空パイプを挿入して炉芯内コー
クスをサンプリングすることにより炉芯内に通気孔を設
ける方法が開示されている。また、特願平6−8378
3号公報では、休風時あるいは操業時に炉芯粉率を測定
し、粉率が20%以上の場合に要加熱・粉除去部位の近
傍の羽口から中空パイプを挿入して炉芯内コークスをサ
ンプリングすることにより炉芯内に空洞の通気孔を設け
る方法が提示されている。
As a method for activating the core when the air permeability and liquid permeability of the core are lowered, there are several core activation methods other than the conventional fuel ratio increase and steam addition. It is disclosed. JP-A-6-93319 and JP-A-6-93319
In Japanese Patent No. 93320, the characteristics of the furnace core portion are measured through a plurality of tuyere for each wind break to determine the state of the furnace core portion, and a hollow pipe is inserted from the tuyere in the vicinity of a required heating portion. A method is disclosed in which a vent is provided in the core by sampling coke in the core. Also, Japanese Patent Application No. 6-8378
According to the publication No. 3, the core powder ratio is measured at rest or during operation, and when the powder ratio is 20% or more, a hollow pipe is inserted from a tuyere in the vicinity of the heating-required / powder-removed portion to form coke in the core. A method for providing a hollow vent hole in the furnace core by sampling is proposed.

【0004】[0004]

【発明が解決しようとする課題】上記特開平6−933
19号公報、特開平6−93320号公報、特願平6−
83783号で示されている方法、すなわち羽口コーク
スサンプリングにより炉芯内コークスを取り出して炉芯
内に空洞の通気孔を設ける方法では、羽口コークスサン
プリングにより形成された炉芯内の空洞の通気孔が送風
立ち上げ時に確実に維持されている保証はない。したが
って、上記の方法では、炉芯内へ高温ガスの一部を吹込
むことによる炉芯内コークス・メタル・スラグの加熱効
果や粉除去効果にバラツキが生じ、効果が予想通りの場
合と効果が小さい場合が生じる。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
19, Japanese Patent Application Laid-Open No. 6-93320, Japanese Patent Application No. 6-
In the method shown in No. 83783, that is, the method of taking out the coke in the core by the tuyere coke sampling and providing a hollow vent hole in the furnace core, the passage of the cavity in the core formed by the tuyere coke sampling is performed. There is no guarantee that the pores will be reliably maintained when the air is blown up. Therefore, in the above method, the heating effect and the powder removal effect of the coke-metal slag in the core caused by blowing a part of the high-temperature gas into the core of the core vary, and the effect is as expected and the effect is expected. Small cases occur.

【0005】本発明は、このような従来の問題点に鑑
み、炉芯の通気性に悪影響を及ぼしている鳥の巣と炉芯
表層部に確実に空洞の通気孔を形成し、炉芯内へ効率的
に高温の熱風を吹き込むことにより、上記問題点を解決
することを目的としている。
In view of such conventional problems, the present invention surely forms hollow vent holes in the bird's nest and the core surface layer, which adversely affect the permeability of the core, The object of the present invention is to solve the above-mentioned problems by efficiently blowing hot air at high temperature.

【0006】[0006]

【課題を解決するための手段】すなわち本発明は、上記
課題を解決するためになされたものであって、その要旨
とするところは(1)高炉の休風時に羽口から中空パイ
プを炉芯内に打ち込み、前記中空パイプを炉芯内に残留
させたまま送風立上げを行い、前記中空パイプより炉芯
内に送風することを特徴とする。また、(2)高炉の休
風時に羽口から金棒を炉芯内に打ち込み、前記金棒を炉
芯内に残留させたまま送風立ち上げを行い、前記金棒を
溶解させて炉芯内に通気孔を形成し、該通気孔から炉芯
内に送風することを特徴とする。
Means for Solving the Problems That is, the present invention has been made to solve the above-mentioned problems, and the gist thereof is (1) a hollow pipe from a tuyere to a core of a blast furnace when the wind is off. It is characterized in that the air is blown into the furnace core, air is blown up while the hollow pipe remains inside the furnace core, and the air is blown from the hollow pipe into the furnace core. (2) When the blast furnace is in a blast, a gold rod is driven into the furnace core from the tuyere, air is blown up while the gold rod remains in the furnace core, the gold rod is melted, and a vent hole is formed in the furnace core. Is formed, and the air is blown into the furnace core through the ventilation holes.

【0007】また、(3)高炉の操業中または休風中に
炉芯状態を測定し、炉芯状態が悪いと判断された場合
に、高炉の休風時に羽口から中空パイプを炉芯内に打ち
込み、前記中空パイプを炉芯内に残留させたまま送風立
上げを行い、前記中空パイプより炉芯内に送風すること
を特徴とする。また、(4)高炉の操業中または休風中
に炉芯状態を測定し、炉芯状態が悪いと判断された場合
に、高炉の休風時に羽口から金棒を炉芯内に打ち込み、
前記金棒を炉芯内に残留させたまま送風立上げを行い、
前記金棒を溶解させて炉芯内に通気孔を形成し、該通気
孔から炉芯内に送風することを特徴とする。また、
(5)前記(3)において、高炉操業中に羽口毎に設置
した送風支管風量計より各羽口の送風支管風量を測定
し、平均送風支管風量で除した相対送風支管風量が0.
9以下の羽口を検知し、高炉の休風時に、前記相対送風
支管風量が0.9以下の羽口および/またはその近傍の
羽口から中空パイプを炉芯内に打ち込むことを特徴とす
る。
(3) When the core state is measured during operation of the blast furnace or while the wind is off and it is determined that the core state is poor, the hollow pipe is inserted from the tuyere into the core when the blast furnace is off. It is characterized in that the air is blown into the furnace core while the air is blown into the furnace core while the hollow pipe is left inside the furnace core. Further, (4) when the core state is measured during the operation of the blast furnace or during idle time, and when it is determined that the core state is poor, a gold rod is driven into the core from the tuyere when the blast furnace is idle,
Blast start-up with the gold rod remaining in the furnace core,
It is characterized in that the gold rod is melted to form a vent hole in the furnace core, and air is blown into the furnace core through the vent hole. Also,
(5) In the above (3), the relative air flow amount of each air duct measured by the air flow amount of each tuyere was measured by the air flow amount meter of each air duct installed in each tuyere during the operation of the blast furnace, and the relative air flow amount of the air flow was divided by the average air flow amount.
It is characterized in that a tuyere of 9 or less is detected, and a hollow pipe is driven into the furnace core from a tuyere having a relative air flow amount of 0.9 or less and / or a tuyere in the vicinity thereof when the blast furnace is in a blast. .

【0008】また、(6)前記(4)において、高炉操
業中に羽口毎に設置した送風支管風量計より各羽口の送
風支管風量を測定し、平均送風支管風量で除した相対送
風支管風量が0.9以下の羽口を検知し、高炉の休風時
に、前記相対送風支管風量が0.9以下の羽口および/
またはその近傍の羽口から金棒を炉芯内に打ち込むこと
を特徴とする。また、(7)前記(1)または(3)ま
たは(5)において、中空パイプの先端および/または
中空パイプに開孔した孔から送風することを特徴とす
る。また、(8)前記(1)または(3)または(5)
または(7)において、中空パイプとして、セラミック
スリーブを内装した金属パイプを使用することを特徴と
するものである。
(6) In the above (4), a relative blast branch pipe obtained by measuring the blast tributary air volume of each tuyere with a blast tributary air flow meter installed for each tuyere during blast furnace operation and dividing by the average blast tributary air volume A tuyere with an air volume of 0.9 or less is detected, and when the blast furnace is inactive, the relative blast branch pipe air volume of 0.9 or less and / or
Alternatively, it is characterized in that a gold rod is driven into the furnace core from a tuyere in the vicinity thereof. (7) In the above (1), (3) or (5), the air is blown from the tip of the hollow pipe and / or the hole opened in the hollow pipe. Further, (8) the above (1) or (3) or (5)
Alternatively, in (7), a metal pipe containing a ceramic sleeve is used as the hollow pipe.

【0009】[0009]

【作用】本発明では、高炉の休風時に、羽口から炉芯内
に中空パイプを可搬型の打ち込み装置により打ち込む。
この中空パイプはレースウェイ奥に形成される粉とAs
hをバインダーにしたコークスのシェルである鳥の巣と
炉芯表層部の通気性の悪い領域を掘削するため、通常で
は高温のガス流通量の少ない炉芯内に、送風立上げ時に
羽口から送風される800℃〜1300℃の熱風をこの
中空パイプを介して直接的かつ強制的に吹き込むことが
できる。炉芯内に吹き込まれた熱風は炉芯内のコークス
と反応して粉コークスを消費すると同時に2000℃近
傍のCOリッチな還元ガスになり、炉芯内コークスを加
熱すると同時に炉芯内にホールドアップしているメタル
・スラグを溶解する。
In the present invention, when the blast furnace is in a blast, the hollow pipe is driven into the furnace core from the tuyere by a portable driving device.
This hollow pipe is composed of powder and As
In order to excavate the bird's nest, which is a shell of coke using h as a binder, and the area with poor air permeability in the surface layer of the furnace core, it is normally used in the furnace core with a small amount of high-temperature gas flow from the tuyere when the blast is started. The blown hot air of 800 ° C to 1300 ° C can be blown directly and forcibly through the hollow pipe. The hot air blown into the furnace core reacts with the coke in the furnace core to consume the powder coke, and at the same time becomes a CO-rich reducing gas near 2000 ° C., which heats the coke in the furnace core and simultaneously holds up in the furnace core. Dissolves the metal slag that is playing.

【0010】炉芯内コークスの加熱により炉芯内での粉
コークスのソリューションロス反応も進行するため、炉
芯内の加熱・粉除去を確実に進めることができる。した
がって、炉芯の通気性・通液性が改善される。上記のよ
うに送風立上げ時に羽口から吹き込まれる800℃〜1
300℃の熱風をこの中空パイプを介して直接的かつ強
制的に吹き込むことができるのは、送風立ち上げ後の3
0分前後と推定される。すなわち、送風後30分前後の
間には、中空パイプを打ち込んだ羽口から800℃〜1
300℃の熱風が100〜200Nm3 /min炉芯内
へ吹き込まれることになる。
By heating the coke in the furnace core, the solution loss reaction of the powder coke in the furnace core also proceeds, so that the heating and powder removal in the core can be reliably advanced. Therefore, the air permeability and liquid permeability of the furnace core are improved. As mentioned above, 800 ° C to 1 that is blown from the tuyere when the air blow is started
Hot air at 300 ° C can be blown directly and forcibly through this hollow pipe in 3
It is estimated to be around 0 minutes. That is, within about 30 minutes after blowing air, 800 ° C to 1 ° C from the tuyere into which the hollow pipe was driven.
Hot air of 300 ° C. is blown into the core of 100 to 200 Nm 3 / min.

【0011】本発明では、数ケ所の羽口から中空パイプ
を打ち込むため、送風後30分前後の間に800℃〜1
300℃の熱風が20,000〜30,000Nm3
芯内へ吹き込まれ、炉芯内のコークスと反応して粉コー
クスを消費すると同時に発生した2000℃前後の高温
ガスが炉芯内のコークスを昇温し溶融物を昇温溶融さ
せ、通気性・通液性を改善する。中空パイプの溶融消滅
後も炉芯内に形成された空洞の形状は1日から数日の間
保持されるため、レースウェイ内のコークスと反応して
発生した2000℃前後の高温ガスの炉芯内への通気性
はある程度確保され、炉芯内の加熱・粉除去により、炉
芯部を迅速に活性化することができる。
In the present invention, since hollow pipes are driven from several tuyeres, 800 ° C. to 1 ° C. within about 30 minutes after blowing air.
Hot air at 300 ° C. is blown into the core of 20,000 to 30,000 Nm 3 and reacts with the coke in the core to consume the powder coke, and at the same time, the high temperature gas of around 2000 ° C. generated the coke in the core. The temperature is raised and the melt is heated and fused to improve air permeability and liquid permeability. Even after the hollow pipe melts and disappears, the shape of the cavity formed in the core is maintained for 1 to several days. Therefore, the core of the high temperature gas around 2000 ℃ generated by reacting with the coke in the raceway The air permeability to the inside is ensured to some extent, and the furnace core can be quickly activated by heating and removing powder in the furnace core.

【0012】上記の炉芯改善効果は、中空パイプの代わ
りに金棒を打ち込むことによっても発揮される。この場
合には、羽口より炉芯内に打ち込まれた金棒が、送風立
上げ時に羽口から吹き込まれる800℃〜1300℃の
熱風がレースウェイでコークスと反応して発生した20
00℃前後の高温ガスにより加熱溶解されて、炉芯内に
空洞の通気孔が形成され、高温の還元ガスの一部が炉芯
内に形成された空洞の通気孔へ流れて炉芯内コークス・
メタル・スラグが加熱されて、炉芯改善効果が発揮され
る。
The above-mentioned effect of improving the core is also exhibited by driving a gold rod instead of the hollow pipe. In this case, a gold rod driven into the furnace core from the tuyere generated hot air of 800 ° C. to 1300 ° C. blown from the tuyere when the air was blown up by reacting with coke in the raceway.
It is heated and melted by a high temperature gas of around 00 ° C to form a hollow vent hole in the furnace core, and a part of the high-temperature reducing gas flows into the hollow vent hole formed in the furnace core to form coke in the furnace core.・
The metal slag is heated and the core improvement effect is exhibited.

【0013】炉芯改善効果の観点からは、中空パイプま
たは金棒を炉芯内へ掘削する羽口数は最低4箇所以上必
要で、炉芯内へ掘削する羽口数が多い程炉芯改善効果が
大きい。休風中に中空パイプまたは金棒を炉芯内へ掘削
できる羽口数は休風時間により異なり、休風時間が24
時間以下の場合の掘削できる羽口数の上限は30箇所で
ある。また、中空パイプまたは金棒の最低打ち込み深度
は、鳥の巣と炉芯表層部の通気性の悪い領域を掘削する
必要から2mであり、打ち込み深度としては2mから7
mの範囲にすることが望ましい。
From the viewpoint of the core improvement effect, the number of tuyere for digging a hollow pipe or a gold rod into the furnace core is required to be at least 4 or more, and the larger the number of tuyere for digging into the core, the greater the effect of improving the core. . The number of tuyere that can be used to excavate a hollow pipe or a gold rod into the furnace core during rest time depends on the rest time.
The maximum number of tuyere that can be excavated when the time is less than 30 is 30. In addition, the minimum driving depth of the hollow pipe or gold rod is 2 m because it is necessary to excavate the bird's nest and the area with poor air permeability of the core surface layer, and the driving depth is 2 m to 7 m.
It is desirable to set it in the range of m.

【0014】炉芯内に打ち込まれた中空パイプまたは金
棒は休風中でも常に1400℃近い温度領域にさらされ
るため、座屈する可能性が大きい。したがって、中空パ
イプまたは金棒の材質は高温強度の強い品質のもの例え
ばSUS304またはSUS304以上のものを使用す
ることが望ましい。
The hollow pipe or the gold rod driven into the core of the furnace is always exposed to a temperature range of about 1400 ° C. even when the wind is off, so that it is likely to buckle. Therefore, it is desirable to use, as the material of the hollow pipe or the gold rod, a material having high strength at high temperature, such as SUS304 or SUS304 or higher.

【0015】本発明法を、高炉の休風時に定期的に実施
することにより、炉芯は休風時に定期的に加熱されるこ
とになるため、炉芯に起因した操業の不安定化を防止す
ることができる。本発明法の炉芯改善効果は確実である
が、休風時毎に多数の羽口から中空パイプまたは金棒を
炉芯内へ掘削しており、休風時の作業負荷が大きく費用
が増大する。炉芯の状態すなわち炉芯の通気性・通液性
は操業条件・原燃料条件により変化しており、常時炉芯
の通気性・通液性が悪いわけではない。したがって、炉
芯の通気性・通液性が悪くなった場合に上記発明を実施
すればよく、休風時毎に毎回実施する必要はない。その
ためには、炉芯の状態を測定し的確に評価できることが
必要である。
By carrying out the method of the present invention periodically when the blast furnace is in a blast, the core will be heated regularly during a blast, so that the instability of the operation due to the core is prevented. can do. Although the core improvement effect of the method of the present invention is certain, hollow pipes or gold rods are excavated into the core from a large number of tuyere every time the wind is blown off, and the work load during the wind blow is large and the cost is increased. . The state of the core, that is, the air permeability and liquid permeability of the core vary depending on the operating conditions and raw fuel conditions, and the air permeability and liquid permeability of the core are not always poor. Therefore, the invention described above may be carried out when the air permeability and liquid permeability of the furnace core are deteriorated, and it is not necessary to carry out the invention every time when the wind blows. For that purpose, it is necessary to be able to measure the state of the furnace core and evaluate it accurately.

【0016】炉芯の状態の測定法としては、公知の方法
を適用することができる。例えば、熱電対を内装したプ
ローブを羽口から炉芯内に挿入して測温する方法、光フ
ァイバーを内装したプローブを羽口から炉芯内に挿入し
て放射温度計により測温する方法、中空パイプのプロー
ブを羽口から炉芯内に挿入して炉芯コークスを採取し、
そのコークスの履歴温度あるいは粉率(例えば、3mm
以下のコークスの割合)を測定する方法、あるいは上記
コークスサンプリングと同様に採取されたスラグの組
成、たとえばAl23 /CaOの値と高炉へ装入され
た平均スラグのAl23 /CaOを比較することによ
り炉芯部の活性度を間接的に判定する方法、あるいは羽
口部からプローブを挿入する時の挿入抵抗値から炉芯部
の活性度を判定する方法等の測定方法が採用できる。以
上の測定方法は基本的には休風時に実施するものである
が、操業中にサンプリングや測温ができる炉芯ゾンデが
ある高炉では、操業時にも実施できる。
As a method of measuring the state of the furnace core, a known method can be applied. For example, a method of inserting a probe with a thermocouple into the furnace core from the tuyere to measure the temperature, a method of inserting a probe with an optical fiber into the furnace core from the tuyere to measure the temperature with a radiation thermometer, and a hollow Insert the probe of the pipe from the tuyere into the core and collect the core coke,
History temperature or powder ratio of the coke (for example, 3 mm
How to determine the percentage) of the following coke or composition of the slag taken as above coke sampling, for example, Al 2 O 3 / Al of CaO values and average slag are charged into the blast furnace 2 O 3 / CaO, A method of indirectly determining the activity of the furnace core by comparing the two, or a method of determining the activity of the furnace core from the insertion resistance value when inserting the probe from the tuyere is used. it can. The above measurement method is basically carried out during a blast, but it can also be carried out during operation in a blast furnace with a cored sonde that allows sampling and temperature measurement during operation.

【0017】上記の公知の方法による炉芯状態の測定法
では、休風時の測定であるため操業中の炉芯状態を知る
ことができない。また、温度情報以外の情報は解析に数
日間が必要であるため、タイムリーな炉芯改善アクショ
ンが遅れる可能性が大きい。炉芯ゾンデが装備されてい
る高炉では、操業中の炉芯状態(粉率、温度)を測定で
きるが、1箇所のみの羽口からの測定のため、炉芯全体
の状態を評価するには精度上の問題が大きい。したがっ
て、炉芯状態の円周バランスを操業中に測定できれば、
炉芯全体の状態を精度よくかつタイムリーに評価するこ
とができ、炉芯活性化技術の確度が向上する。
In the method for measuring the state of the core according to the above-mentioned known method, it is impossible to know the state of the core during the operation because the measurement is performed when the wind is down. In addition, since information other than temperature information requires several days for analysis, there is a high possibility that timely core improvement actions will be delayed. With a blast furnace equipped with a core sonde, the core condition (powder ratio, temperature) during operation can be measured, but since the measurement is from only one tuyere, the condition of the entire core can be evaluated. There is a big problem in accuracy. Therefore, if the circumferential balance of the furnace core can be measured during operation,
The overall condition of the core can be evaluated accurately and in a timely manner, improving the accuracy of the core activation technology.

【0018】本発明では、炉芯状態の円周バランスを操
業中に測定できる指標として、相対送風支管風量を用い
た。ここで、相対送風支管風量とは、各羽口の送風支管
風量を平均送風支管風量で除した値であり、平均送風支
管風量は送風量を羽口数で除した値である。相対送風支
管風量が0.9超の場合には炉芯の通気性・通液性に問
題はないが、相対送風支管風量が低下した場合、特に相
対送風支管風量が0.9以下になった場合には、その羽
口に対応する部分の炉芯の通気性・通液性が大幅に低下
し、いずれ炉芯全体の通気性・通液性の低下につながる
可能性が大きい。したがって、相対送風支管風量が0.
9以下になると、炉芯の通気性・通液性を改善する手段
を講じることが必要となる。
In the present invention, the relative air flow amount is used as an index for measuring the circumferential balance in the core state during operation. Here, the relative blast-branch air volume is a value obtained by dividing the blast-branch air volume of each tuyere by the average blast-branch air volume, and the average blast-branch air volume is a value obtained by dividing the blast volume by the number of tuyere. There is no problem in the air permeability and liquid permeability of the furnace core when the relative blast branch pipe air volume exceeds 0.9, but when the relative blast tributary air volume decreases, especially the relative blast tributary air volume becomes 0.9 or less. In this case, the air permeability and liquid permeability of the core corresponding to the tuyere will be significantly reduced, and there is a high possibility that the air permeability and liquid permeability of the entire core will eventually be reduced. Therefore, the relative air flow amount of the branch pipe is 0.
If it is 9 or less, it is necessary to take measures to improve the air permeability and liquid permeability of the furnace core.

【0019】本発明では、相対送風支管風量が0.9以
下の羽口およびその羽口の近傍の羽口から炉芯内に中空
パイプを、可搬型のパイプ打ち込み装置により打ち込
む。この中空パイプはレースウェイ奥に形成される鳥の
巣と炉芯表層部の通気性の悪い領域を掘削するため、通
常では高温のガス流通量の少ない炉芯内に、送風立上げ
時に羽口から吹き込まれる800〜1300℃の熱風を
中空パイプを介して直接的かつ強制的に吹き込むことが
できる。炉芯内に送風される熱風は炉芯内のコークスと
反応して粉コークスを消費すると同時に2000℃前後
の高温ガスになり、炉芯内コークスを加熱すると同時に
炉芯内にホールドアップしているメタル・スラグを溶解
する。炉芯内コークスの加熱により炉芯内での粉コーク
スのソリューションロス反応も進行するため、炉芯内の
加熱・粉除去を確実に進めることができる。したがっ
て、炉芯の通気性・通液性が改善され、0.9以下であ
った相対送風支管風量が大幅に改善される。
In the present invention, a hollow pipe is driven into the furnace core from a tuyere having a relative air flow amount of 0.9 or less and a tuyere in the vicinity of the tuyere by a portable pipe driving device. Since this hollow pipe excavates the bird's nest formed in the interior of the raceway and the area with poor air permeability of the furnace core surface layer, the tuyere is usually placed inside the furnace core with a small amount of high-temperature gas flow when starting up the blast. It is possible to directly and forcibly blow hot air of 800 to 1300 ° C. blown from the through the hollow pipe. The hot air blown into the furnace core reacts with the coke in the furnace core to consume the powdered coke, and at the same time becomes a high temperature gas of around 2000 ° C., which heats the coke in the furnace core and simultaneously holds it up in the furnace core. Dissolve metal slag. Since the solution loss reaction of the powder coke in the furnace core also progresses due to the heating of the coke in the furnace core, it is possible to reliably perform the heating and powder removal in the core. Therefore, the air permeability and liquid permeability of the furnace core are improved, and the relative air flow amount of the relative air blow branch pipe, which was 0.9 or less, is significantly improved.

【0020】上記の炉芯改善効果は、中空パイプの代わ
りに金棒を打ち込むことによっても発揮される。この場
合には、羽口より炉芯内に打ち込まれた金棒が、送風立
上げ時に羽口から吹き込まれる800℃〜1300℃の
熱風がレースウェイでコークスと反応して発生した20
00℃前後の高温ガスにより加熱溶解された後に、高温
ガスの一部が炉芯内に形成された空洞の通気孔へ流れて
炉芯内コークス・メタル・スラグが加熱されて、炉芯改
善効果が発揮される。
The above-mentioned effect of improving the core is also exhibited by driving a gold rod instead of the hollow pipe. In this case, a gold rod driven into the furnace core from the tuyere generated hot air of 800 ° C. to 1300 ° C. blown from the tuyere when the air was blown up by reacting with coke in the raceway.
After being heated and melted by the high temperature gas of around 00 ° C, a part of the high temperature gas flows into the vent holes of the cavity formed in the core, and the coke, metal and slag in the core are heated to improve the core improvement effect. Is demonstrated.

【0021】また、羽口から中空パイプを炉芯内へ打ち
込む場合には、炉芯の加熱したい部位によって、先端キ
ャップの材質や中空パイプの先端部分に開孔する孔の位
置を変更することにより、炉芯改善効果の効率を上昇す
ることができる。羽口からの中空パイプの打ち込み時に
中空パイプの先端からコークスが入らないように取り付
ける先端キャップの材質は、炉芯内に打ち込んだ中空パ
イプの前方の炉芯の加熱を主目的とする場合には、中空
パイプの打ち込みが完了する時点で先端キャップが溶融
するように、高温強度の弱いSTPG(普通鋼)とする
ことが望ましい。
When the hollow pipe is driven into the core from the tuyere, the material of the tip cap and the position of the hole to be opened at the tip of the hollow pipe are changed depending on the portion of the core to be heated. The efficiency of the core improvement effect can be increased. The material of the tip cap, which is attached so that coke does not enter from the tip of the hollow pipe when driving the hollow pipe from the tuyere, is used when the main purpose is to heat the core in front of the hollow pipe driven into the core. It is desirable to use STPG (ordinary steel) having low high temperature strength so that the tip cap melts at the time when the driving of the hollow pipe is completed.

【0022】ここで、炉底の熱レベルを示すいくつかの
指標が低下し炉床部の熱が不足と判断した場合、例えば
炉底底盤温度が低下傾向にある場合あるいは高炉に入る
S量の中でスラグ中へ排出されるS量の比率を示す脱硫
率や出銑時間内の出滓時間の比率を示す出滓率が低い場
合には、炉芯内に打ち込んだ中空パイプより下の炉床部
分の加熱を主目的とする。
Here, when it is judged that the heat level in the hearth is insufficient due to a decrease in some indicators indicating the heat level of the hearth, for example, when the temperature of the bottom of the hearth tends to decrease, or the amount of S entering the blast furnace In the case where the desulfurization rate, which indicates the ratio of the amount of S discharged into the slag, and the slag rate, which indicates the ratio of the slag time within the tapping time, are low, the furnace below the hollow pipe driven into the core The main purpose is to heat the floor.

【0023】炉芯内に打ち込んだ中空パイプより下の炉
床部分の加熱を主目的とする場合には、中空パイプの先
端から1mの範囲に垂直下向きに開孔した数十箇所の孔
から、送風立上げ時に羽口から送風される800〜13
00℃の熱風を炉床方向に吹き込めるようにする必要が
あるため、送風立ち上げの時点でも先端のキャップが溶
融しないようにする必要があり、先端キャップの材質は
高温強度の強いSUS304またはSUS304以上の
品質のものを使用することが望ましい。孔の径について
はできるだけ大きい方が望ましいが、中空パイプの強度
を考えると10〜20φが適正範囲である。孔の個数
は、孔の開孔面積が中空パイプの内径断面積の0.5倍
〜3倍の範囲になるように設定することが望ましい。
When the main purpose is to heat the hearth portion below the hollow pipe driven into the furnace core, dozens of holes vertically downwardly opened within a range of 1 m from the tip of the hollow pipe, 800-13 blown from the tuyere when the blast is set up
Since it is necessary to blow hot air of 00 ° C in the direction of the hearth, it is necessary to prevent the cap at the tip from melting even at the start of blowing air. The material of the tip cap is SUS304 or SUS304, which has high high temperature strength. It is desirable to use those of the above quality. The diameter of the hole is preferably as large as possible, but 10 to 20φ is an appropriate range considering the strength of the hollow pipe. The number of holes is preferably set so that the open area of the holes is in the range of 0.5 to 3 times the inner diameter cross-sectional area of the hollow pipe.

【0024】炉芯内に打ち込んだ中空パイプは、休風中
の羽口からの空気の吸い込みにより、羽口からレースウ
ェイ内の部分では冷却されるが、炉芯内の部分では空気
と1300〜1400℃のコークスの反応熱により、休
風中に溶融する可能性が大きい。炉芯内に打ち込まれた
中空パイプが溶融しても炉芯内の空洞は維持される可能
性が大きいが消滅する可能性もある。その場合には、送
風立ち上げ時に羽口から送風される800〜1300℃
の熱風を中空パイプを介して確実に炉芯内へ吹き込むこ
とが難しくなり、炉芯加熱効果が半減する。したがっ
て、炉芯への打ち込み後の耐熱強度を改善することが、
本発明による炉芯加熱効果を最大限に発揮するために必
要である。
The hollow pipe driven into the furnace core is cooled in the portion inside the raceway from the tuyere by the intake of air from the tuyere while the air is resting, but in the portion inside the furnace core, it is cooled to 1300 to air. Due to the reaction heat of the coke at 1400 ° C., there is a high possibility that it will be melted during a blast. Even if the hollow pipe driven into the furnace core melts, the cavity in the furnace core is likely to be maintained but may disappear. In that case, 800 to 1300 ℃, which is blown from the tuyere when the air blow is started
It becomes difficult to surely blow the hot air into the furnace core through the hollow pipe, and the furnace core heating effect is halved. Therefore, it is possible to improve the heat resistance strength after driving into the core.
It is necessary to maximize the effect of heating the core according to the present invention.

【0025】セラミックスリーブを内装した金属パイプ
では、炉芯への打ち込み時の高温強度をSUSパイプが
保証し、炉芯への打ち込み後の耐熱強度は内装したセラ
ミックスリーブが保証する。そのため、送風立ち上げ後
も炉芯内の空洞はセラミックスリーブにより保証され、
送風立上げ時に羽口から送風される800〜1300℃
の熱風を中空パイプを介して、炉芯内へ確実かつ長時間
吹き込むことができるようになる。セラミックスリーブ
の材質としては、耐熱温度1600℃以上、曲げ強度1
000kg/cm2 で、最終的には溶融してスラグ成分
として炉外に排出されることが必要であり、例えば、A
23 /SiO2 系のセラミックスリーブが望まし
い。なお、セラミックスリーブを内装した金属パイプの
ほかに、内面あるいは外面にキャスタブルコーティング
した金属パイプも使用できる。
In the case of a metal pipe containing a ceramic sleeve, the SUS pipe guarantees high-temperature strength when driving into the furnace core, and the heat resistance strength after driving into the furnace core is guaranteed by the ceramic sleeve. Therefore, the cavity in the furnace core is guaranteed by the ceramic sleeve even after the air blow is started.
800-1300 ℃, which is blown from the tuyere when the blow-up is started
The hot air can be blown into the furnace core reliably and for a long time through the hollow pipe. The material of the ceramic sleeve is a heat resistant temperature of 1600 ° C or higher and a bending strength of 1
At 000 kg / cm 2 , it is necessary to finally melt and discharge it as a slag component out of the furnace.
A ceramic sleeve of the type l 2 O 3 / SiO 2 is desirable. In addition to the metal pipe in which the ceramic sleeve is installed, a metal pipe having a castable coating on the inner surface or the outer surface can be used.

【0026】相対送風支管風量が0.9以下の羽口を検
知した場合には、その羽口の前方の通気性・通液性が悪
い炉芯部分を改善するために、相対送風支管風量が0.
9以下の羽口から中空パイプまたは金棒を打ち込む。そ
して、できれば、相対送風支管風量が0.9以下の羽口
の前方の通気性・通液性が悪い炉芯部分とその近傍を改
善することが望ましい。その場合には、相対送風支管風
量が0.9以下の羽口およびその近傍の羽口、すなわち
相対送風支管風量が0.9以下の羽口の両方向3本の羽
口までの間において、両方向に少なくとも1本ずつの羽
口から、中空パイプまたは金棒を打ち込む方がさらに炉
芯への送風量を増加できるので好ましい。
When a tuyere with a relative blast branch pipe air volume of 0.9 or less is detected, the relative blast tributary air flow rate is increased in order to improve the core portion in front of the tuyere which has poor air permeability and liquid permeability. 0.
Drive a hollow pipe or a gold rod through tuyere 9 or less. Then, if possible, it is desirable to improve the furnace core portion in front of the tuyere where the relative air flow amount is 0.9 or less and the air permeability and liquid permeability are poor, and the vicinity thereof. In that case, the relative blast branch air volume is 0.9 or less and the adjacent tuyere, that is, the relative blast branch air volume is 0.9 or less in both directions. It is preferable to drive a hollow pipe or a gold rod from at least one tuyere since the amount of air blown to the furnace core can be further increased.

【0027】ここで、熱風とは、高炉の羽口から吹き込
まれる熱風炉で加熱された高温の空気またはガスであ
る。熱風の温度範囲は以下の理由により、800〜13
00℃が望ましい。熱風は炉芯内に打ち込んだ中空パイ
プを介して炉芯部のコークスを燃焼して高温の還元ガス
になるが、その温度を2000℃以上に確保するために
は、熱風の下限温度は800℃である。また、熱風の温
度が1300℃以上になると、炉芯内に打ち込んだ中空
パイプを介して炉芯部のコークスを燃焼してできる還元
ガス温度が高温になりすぎ、コークス中の灰中のSiO
2 を揮発して炉芯の通気性を逆に悪化させる。
Here, the hot air is high temperature air or gas heated in a hot air stove blown from the tuyere of the blast furnace. The temperature range of hot air is 800 to 13 for the following reasons.
00 ° C is desirable. The hot air burns the coke in the furnace core through a hollow pipe driven into the furnace core to form a high-temperature reducing gas, but in order to keep the temperature above 2000 ° C, the lower limit temperature of the hot air is 800 ° C. Is. When the temperature of the hot air becomes 1300 ° C. or higher, the reducing gas temperature generated by burning the coke in the furnace core through the hollow pipe driven into the furnace core becomes too high, and the SiO in the ash in the coke becomes too hot.
Volatilize 2 to worsen the air permeability of the furnace core.

【0028】[0028]

【実施例】以下、図面に示す実施例に基づいて具体的に
説明する。 (実施例1)内容積が4000m3 以上で羽口数が38
本の大型高炉において、休風毎に、羽口取り替え予定の
羽口および任意の羽口を合わせて6箇所の羽口から、図
1に示すような方式で中空パイプ4を炉芯部に打ち込ん
だ。エアーハンマーと油圧を組み合わせで打ち込む可搬
型のパイプ打ち込み装置1とパイプ打ち込み用治具2を
用いて、まず先端に炉芯コークスの侵入防止用のキャッ
プ3を設置した長さ2mの中空パイプ4を、羽口5から
炉芯部6に打ち込んだ。次に長さが1mの中空パイプ7
の先端を前記中空パイプ4の末端に接続した後に打ち込
み、炉壁から3mの深度まで中空パイプを打ち込んだ。
なお、図中9はレースウェイ、10は鳥の巣である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A concrete description will be given below based on the embodiments shown in the drawings. (Example 1) The inner volume is 4000 m 3 or more and the number of tuyere is 38.
In the large-scale blast furnace of this book, hollow pipes 4 are driven into the core of the furnace from a total of 6 tuyeres, including tuyeres to be replaced and arbitrary tuys, every time the wind blows. It is. First, using a portable pipe driving device 1 and a pipe driving jig 2 for driving a combination of an air hammer and hydraulic pressure, a hollow pipe 4 having a length of 2 m and having a cap 3 for preventing intrusion of furnace core coke at the tip is installed. It was driven into the furnace core 6 from the tuyere 5. Next, a hollow pipe 7 with a length of 1 m
After the tip of was connected to the end of the hollow pipe 4, it was driven in, and the hollow pipe was driven to a depth of 3 m from the furnace wall.
In the figure, 9 is a raceway and 10 is a bird's nest.

【0029】ここで、先端部の長さが2mのパイプ4と
長さが1mの中空パイプ7の繋ぎ目部分は、嵌め合いが
上手くいくように、図2に示すように切削加工にて中空
パイプ7の方が厚くなるように肉厚を変化させた。な
お、先端のキャップ3の材質は、炉壁から3mの深度ま
で中空パイプを打ち込んだ時点で溶融するようにSTP
G(普通鋼)とした。そして、送風立ち上げ時に羽口か
ら送風される800〜1300℃の熱風が直接的かつ強
制的に炉芯に吹き込まれるように、パイプの打ち込み完
了時点で、中空パイプと羽口の隙間にボタ8を詰めた。
本発明法の実施により炉芯が改善され、図3に示すよう
に、本発明法実施前には多かったスリップ等の荷下がり
変動や風圧変動が低下し操業状態が安定した。また、休
風時に、中空パイプ7の代わりに金棒を炉芯部に打ち込
んだ場合にも、図3に示すように、スリップ等の荷下が
り変動や風圧変動は低いレベルで推移し、中空パイプ打
ち込み時とほぼ同様な炉芯改善効果が得られた。
Here, the joint portion of the pipe 4 having a length of 2 m at the tip portion and the hollow pipe 7 having a length of 1 m is hollowed by cutting as shown in FIG. 2 so that the fitting is successful. The wall thickness was changed so that the pipe 7 was thicker. The material of the cap 3 at the tip is STP so that it melts when the hollow pipe is driven to a depth of 3 m from the furnace wall.
G (normal steel) was used. Then, so that the hot air of 800 to 1300 ° C. blown from the tuyere at the time of start-up of the blown air is blown directly and forcibly into the furnace core, at the time of completion of driving the pipe, there is a button 8 in the gap between the hollow pipe and the tuyere. Packed.
By carrying out the method of the present invention, the core was improved, and as shown in FIG. 3, fluctuations in load drop such as slip and wind pressure fluctuations, which were many before the method of the present invention, were reduced, and the operating state was stabilized. Also, when a gold rod is driven into the furnace core instead of the hollow pipe 7 at the time of rest, as shown in FIG. 3, fluctuations in the load such as slip and fluctuations in wind pressure change at a low level, and the hollow pipe is driven. Almost the same effect as the core improvement effect was obtained.

【0030】(実施例2)内容積が4000m3 以上で
羽口数が38本の大型高炉において、操業中に相対送風
支管風量が0.9以下の羽口が3箇所で検知され、炉芯
の通気性・通液性が悪化していると判断された。そこ
で、次回の高炉の休風時に、3箇所の相対送風支管風量
が0.9以下の羽口とその近傍の羽口、すなわち相対送
風支管風量が0.9以下の羽口の両隣の羽口の計9箇所
の羽口から、図1に示すような方式で中空パイプを炉芯
部に打ち込んだ。エアーハンマーと油圧を組み合わせで
打ち込む可搬型のパイプ打ち込み装置1と打ち込み用治
具2を用いて、まず長さが2mの先端に炉芯コークスの
侵入防止用のキャップ3を設置した長さ2mの中空パイ
プ4を、羽口5から炉芯部6に打ち込んだ。
(Example 2) In a large blast furnace having an inner volume of 4000 m 3 or more and 38 tuyeres, three tuyeres having a relative air flow rate of 0.9 or less were detected during operation, and It was judged that the breathability and liquid permeability had deteriorated. Therefore, at the next blast furnace blast, the tuyeres with a relative blast tributary air volume of 0.9 or less at three locations and the tuyere in the vicinity thereof, that is, the tuyeres on both sides of the tuyere with the relative blast tributary air volume of 0.9 or less. Hollow pipes were driven into the furnace core from a total of nine tuyere by the method as shown in FIG. Using a portable pipe driving device 1 and a driving jig 2 for driving a combination of an air hammer and hydraulic pressure, first, a cap 3 for preventing intrusion of core coke is installed at a tip having a length of 2 m. The hollow pipe 4 was driven into the furnace core 6 from the tuyere 5.

【0031】次に長さが1mの中空パイプ7の先端を前
記中空パイプ4の末端に接続した後に打ち込み、炉壁か
ら3mの深度まで中空パイプを打ち込んだ。ここで、先
端部の長さが2mのパイプ4と長さが1mの中空パイプ
7の繋ぎ目部分は、嵌め合いが上手くいくように、図2
に示すように切削加工にて肉厚を変化させた。なお、先
端のキャップの材質は、炉壁から3mの深度まで中空パ
イプを打ち込んだ時点で溶融するようにSTPG(普通
鋼)とした。そして、送風立ち上げ時に羽口から送風さ
れる800〜1300℃の熱風が直接的かつ強制的に炉
芯に吹き込まれるように、パイプの打ち込み完了時点
で、中空パイプと羽口の隙間にボタ8を詰めた。
Next, the end of the hollow pipe 7 having a length of 1 m was connected to the end of the hollow pipe 4 and then driven, and the hollow pipe was driven to a depth of 3 m from the furnace wall. Here, the joint portion between the pipe 4 having a length of 2 m at the tip and the hollow pipe 7 having a length of 1 m is shown in FIG.
As shown in, the wall thickness was changed by cutting. The material of the cap at the tip was STPG (normal steel) so that it melts when the hollow pipe is driven to a depth of 3 m from the furnace wall. Then, so that the hot air of 800 to 1300 ° C. blown from the tuyere at the time of start-up of the blown air is blown directly and forcibly into the furnace core, at the time of completion of driving the pipe, there is a button 8 in the gap between the hollow pipe and the tuyere. Packed.

【0032】休風後の送風立ち上げは順調に推移し、3
箇所の相対送風支管風量が0.9以下の羽口の相対送風
支管風量は、図4に示すように、送風立ち上げ1日後か
ら大幅に改善され、いずれも1前後となり、炉芯が活性
化方向に向かった。その結果、図5に示すように、休風
前には多かったスリップ等の荷下がり変動や風圧変動が
休風立ち上げ後に低下傾向を示し操業状態が安定化し
た。また、休風時に中空パイプ7の代わりに金棒を炉芯
部に打ち込んだ場合にも、図4、図5に示すように、ス
リップ等の荷下がり変動や風圧変動は低いレベルで推移
し、中空パイプ打ち込み時とほぼ同様な炉芯改善効果が
得られた。
The start-up of blast after a break has been steadily progressing, and 3
As shown in Fig. 4, the relative blast tributary air volume of the tuyere where the relative blast tributary air volume of 0.9 or less was significantly improved one day after the blast was started, and in all cases, it became around 1 and the core was activated. Headed for the direction. As a result, as shown in FIG. 5, load drop fluctuations such as slips and wind pressure fluctuations, which were common before the wind breaks, tended to decrease after the start of the wind breaks, and the operating conditions were stabilized. Also, when a gold rod is driven into the furnace core instead of the hollow pipe 7 when there is no wind, as shown in FIGS. 4 and 5, fluctuations in the load such as slips and fluctuations in wind pressure change at a low level. The effect of improving the core was almost the same as when the pipe was driven.

【0033】(実施例3)内容積が4000m3 以上で
羽口数が38本の大型高炉において、相対送風支管風量
が0.9以下の羽口が4箇所で検知された。さらに、脱
硫率が70%台、出滓率が60%台と低く炉床の熱不足
で炉芯の通気性・通液性が悪化していると判断された。
そこで、次回の高炉の休風時に、4箇所の相対送風支管
風量が0.9以下の羽口とその近傍の羽口、すなわち相
対送風支管風量が0.9以下の羽口の両隣の羽口の計1
2箇所の羽口から、図1に示すような方式で中空パイプ
を炉芯部に打ち込んだ。エアーハンマーと油圧を組み合
わせで打ち込む可搬型のパイプ打ち込み装置1と打ち込
み用治具2を用いて、まず、図6に示すような先端から
1mの範囲の一方向に10〜15φの孔を10箇所以上
開孔した長さ2mの中空パイプ4を、その先端に炉芯コ
ークスの侵入防止用のキャップ3を設置し孔が垂直下向
きになるようにして、羽口5から炉芯部6に打ち込ん
だ。
(Example 3) In a large blast furnace having an inner volume of 4000 m 3 or more and 38 tuyere, four tuyere with a relative blast branch pipe air volume of 0.9 or less were detected. Further, the desulfurization rate was in the 70% range and the slag removal rate was in the 60% range, and it was judged that the air permeability and liquid permeability of the furnace core were deteriorated due to insufficient heat in the hearth.
Therefore, at the next blast furnace blast, the tuyere at the four locations with relative blast branch airflow of 0.9 or less and the tuyere near it, that is, the tuyere on both sides of the tuyere with relative blast branch airflow of 0.9 or less. Of 1
Hollow pipes were driven into the furnace core from two tuyere by the method as shown in FIG. First, using a portable pipe driving device 1 and a driving jig 2 for driving a combination of an air hammer and hydraulic pressure, first, as shown in FIG. 6, ten holes of 10 to 15φ are formed in one direction within a range of 1 m from the tip. The hollow pipe 4 having a length of 2 m, which was opened as described above, was driven into the furnace core portion 6 from the tuyere 5 with the cap 3 for preventing the intrusion of the furnace core coke installed at the tip of the hollow pipe 4 so as to face vertically downward. .

【0034】次に長さが1.5mの中空パイプ7の先端
を中空パイプ4の末端に接続した後に打ち込み、炉壁か
ら3.5mの深度まで中空パイプを打ち込んだ。ここ
で、先端部の長さが2mのパイプ4と長さが1.5mの
中空パイプ7の繋ぎ目部分は、嵌め合いが上手くいくよ
うに、図2に示すように切削加工にて肉厚を変化させ
た。なお、先端のキャップの材質は、送風立ち上げ時点
でも先端のキャップが溶融しないように、中空パイプと
同じ材質のSUS304とした。そして、送風立ち上げ
時に羽口から吹き込まれる800〜1300℃の熱風が
直接的かつ強制的に炉芯に吹き込まれるように、パイプ
の打ち込み完了時点で、中空パイプと羽口の隙間にボタ
8を詰めた。
Next, the end of the hollow pipe 7 having a length of 1.5 m was connected to the end of the hollow pipe 4 and then driven, and the hollow pipe was driven to a depth of 3.5 m from the furnace wall. Here, the joint portion of the pipe 4 having a length of 2 m at the tip and the hollow pipe 7 having a length of 1.5 m is thickened by cutting as shown in FIG. 2 so that the fitting is successful. Was changed. The material of the cap at the tip was SUS304, which was the same material as the hollow pipe so that the cap at the tip did not melt even when the air was blown up. Then, at the time when the driving of the pipe is completed, the button 8 is placed in the gap between the hollow pipe and the tuyere so that the hot air of 800 to 1300 ° C. blown from the tuyere at the time of starting the air blow is blown directly and forcibly into the furnace core. Stuffed.

【0035】休風後の送風立ち上げは順調に推移し、4
箇所の相対送風支管風量が0.9以下の羽口の相対送風
支管風量は、図7に示すように、送風立ち上げ1日後か
ら大幅に改善され、いずれも1前後となり、図8に示す
ように、休風前には多かったスリップ等の荷下がり変動
や風圧変動が低下傾向を示した。そして、図8に示すよ
うに、送風立ち上げ1週間後から休風前まで低下傾向で
あった炉底の底盤レンガ温度が上昇しはじめ、1ヵ月後
には好調時の温度レベルに到達し、炉芯が活性化され
た。その結果、溶銑と同時にスラグの排出が順調にな
り、出銑時間内にスラグが排出されている割合を示す出
滓率が60%から80%に向上し、脱硫率も上昇した。
また、炉底の底盤レンガ温度の上昇に伴い炉底側壁温度
が低下し、炉寿命短縮の主要因である環状流を抑制する
ことができた。
The start-up of the blown air after a break has been steadily increasing, and
As shown in FIG. 7, the relative blast branch air volume of the tuyere where the relative blast branch air volume of 0.9 or less is significantly improved from one day after the start of the blast, and is about 1 in each case, as shown in FIG. In addition, there was a tendency for load fluctuations such as slips and wind pressure fluctuations, which were common before the wind blew. Then, as shown in FIG. 8, the temperature of the bottom brick of the furnace bottom, which had been decreasing from one week after the start of air blowing to before the rest of the air, began to rise, and one month later, the temperature level at the time of favorable conditions was reached, The wick has been activated. As a result, the slag was discharged smoothly at the same time as the hot metal, and the slag ratio, which shows the ratio of slag discharged within the tapping time, was improved from 60% to 80%, and the desulfurization ratio was also increased.
In addition, the temperature of the bottom wall of the furnace bottom decreased with the rise of the temperature of the bottom brick of the furnace bottom, and it was possible to suppress the annular flow, which is the main factor of shortening the furnace life.

【0036】(実施例4)内容積が4000m3 以上で
羽口数が38本の大型高炉において、相対送風支管風量
が0.9以下の羽口が4箇所で検知された。さらに、脱
硫率が70%台、出滓率が60%台と低く炉床の熱不足
で炉芯の通気性・通液性が悪化していると判断された。
そこで、次回の高炉の休風時に、4箇所の相対送風支管
風量が0.9以下の羽口とその近傍の羽口、すなわち相
対送風支管風量が0.9以下の羽口の両隣の羽口の計1
2箇所の羽口から、図1に示すような方式でセラミック
スリーブを内装した中空パイプを炉芯部に打ち込んだ。
エアーハンマーと油圧を組み合わせで打ち込む可搬型の
パイプ打ち込み装置1と打ち込み用治具2を用いて、ま
ず、図9に示すようなセラミックシート12をクッショ
ン材としたセラミックスリーブ11を内装した長さ2m
の中空の金属パイプ4を、羽口5から炉芯部6に打ち込
んだ。
(Example 4) In a large blast furnace having an internal volume of 4000 m 3 or more and 38 tuyere, four tuyere with a relative air flow amount of 0.9 or less were detected. Further, the desulfurization rate was in the 70% range and the slag removal rate was in the 60% range, and it was judged that the air permeability and liquid permeability of the furnace core were deteriorated due to insufficient heat in the hearth.
Therefore, at the next blast furnace blast, the tuyere at the four locations with relative blast branch airflow of 0.9 or less and the tuyere near it, that is, the tuyere on both sides of the tuyere with relative blast branch airflow of 0.9 or less. Of 1
A hollow pipe containing a ceramic sleeve was driven into the furnace core from two tuyere by the method shown in FIG.
Using a portable pipe driving device 1 and a driving jig 2 for driving a combination of an air hammer and hydraulic pressure, first, a ceramic sleeve 11 having a ceramic sheet 12 as a cushion material as shown in FIG.
The hollow metal pipe 4 was driven into the furnace core 6 from the tuyere 5.

【0037】次に長さが1.5mの中空パイプ7の先端
をセラミックスリーブを内装した中空の金属パイプ4の
末端に接続した後に打ち込み、炉壁から3.5mの深度
まで中空パイプを打ち込んだ。ここで、先端部の長さが
2mのパイプ4と長さが1.5mの中空パイプ7の繋ぎ
目部分は、嵌め合いが上手くいくように、図2に示すよ
うに切削加工にて肉厚を変化させた。そして、送風立ち
上げ時に羽口から吹き込まれる800〜1300℃の熱
風が直接的かつ強制的に炉芯に吹き込まれるように、パ
イプの打ち込み完了時点で、中空パイプと羽口の隙間に
ボタ8を詰めた。
Next, the end of a hollow pipe 7 having a length of 1.5 m was connected to the end of a hollow metal pipe 4 containing a ceramic sleeve, and then the pipe was driven in, and the hollow pipe was driven to a depth of 3.5 m from the furnace wall. . Here, the joint portion of the pipe 4 having a length of 2 m at the tip and the hollow pipe 7 having a length of 1.5 m is thickened by cutting as shown in FIG. 2 so that the fitting is successful. Was changed. Then, at the time when the driving of the pipe is completed, the button 8 is placed in the gap between the hollow pipe and the tuyere so that the hot air of 800 to 1300 ° C. blown from the tuyere at the time of starting the air blow is blown directly and forcibly into the furnace core. Stuffed.

【0038】休風後の送風立ち上げの2時間後において
も、炉芯内でのセラミックスリーブの存在が羽口から確
認され、図10に示すように、送風立ち上げ1週間後に
は、炉底の底盤レンガ温度が好調時の温度レベルに到達
し、セラミックスリーブを内装しない中空パイプの炉芯
内への打ち込み時に比べて、1/3〜1/4の短時間で
炉芯が活性化された。その結果、短期間で溶銑と同時に
スラグの排出が順調になり、出銑時間内にスラグが排出
されている割合を示す出滓率が60%から80%に向上
し、脱硫率も上昇した。また、炉底の底盤レンガ温度の
上昇に伴い炉底側壁温度が低下し、炉寿命短縮の主要因
である環状流を抑制することができた。
The presence of the ceramic sleeve in the furnace core was confirmed from the tuyere even after 2 hours from the start of the air blowing after the rest of the air. As shown in FIG. Bottom brick temperature reached a temperature level at the time of favorable conditions, and the furnace core was activated in a short time of 1/3 to 1/4 as compared with when the hollow pipe without the ceramic sleeve was driven into the furnace core. . As a result, the discharge of slag at the same time as the hot metal became smooth in a short period of time, the slag ratio indicating the ratio of slag discharged within the tapping time was improved from 60% to 80%, and the desulfurization ratio was also increased. In addition, the temperature of the bottom wall of the furnace bottom decreased with the rise of the temperature of the bottom brick of the furnace bottom, and it was possible to suppress the annular flow, which is the main factor of shortening the furnace life.

【0039】[0039]

【発明の効果】本発明法によれば、休風時に定期的に羽
口から中空パイプまたは金棒を打ち込むことにより、送
風立上げ時に2000℃前後の高温ガスの炉芯内への流
通量を上昇させることができるので、炉芯内の加熱・粉
除去を確実に行うことができ、炉芯の通気性・通液性を
常時良好に維持し、安定な操業を維持することができ
る。また、公知の炉芯状態の測定法と組み合わせること
により炉芯状態を評価できる場合には、炉芯の状態が悪
い場合にのみ本発明を適用することができるため、効率
的に炉芯を活性化できる。さらに、各羽口の相対送風支
管風量を測定できる場合には、操業中に炉芯の円周バラ
ンスを評価できるため、より効率的に炉芯を活性化する
ことができる。
According to the method of the present invention, a hollow pipe or a gold rod is driven in periodically from the tuyere at the time of rest to increase the flow rate of high-temperature gas around 2000 ° C into the core of the furnace at the time of start-up of blast. As a result, it is possible to reliably perform heating and powder removal inside the furnace core, always maintain good air permeability and liquid permeability of the furnace core, and maintain stable operation. Further, when the core state can be evaluated by combining it with a known method for measuring the core state, the present invention can be applied only when the state of the core is poor, so that the core can be activated efficiently. Can be converted. Furthermore, when the relative air flow amount of each tuyere can be measured, the circumferential balance of the furnace core can be evaluated during the operation, so that the furnace core can be activated more efficiently.

【0040】本発明法を実施すれば、従来のような長時
間にわたって燃料比を高くする操業を継続したり、炉況
を早期に立て直せないために出銑量が長期間にわたり低
下するような問題は完全に解消できる。今後の安価原燃
料使用操業時や高微粉炭比操業時のように、鉱石・コー
クスの粉化が増加し未燃焼チャーを含む炉下部での粉率
が上昇して炉芯部の通気性・通液性の確保が困難となり
やすい場合においても安定操業を維持することができ
る。また、本発明法を実施すれば、環状流を解消できる
ことにより、環状流対策としての燃料上昇や出銑量抑制
をする必要がなくなるため、高炉の制御性を向上でき
る。
When the method of the present invention is carried out, there is a problem that the amount of tapped metal decreases for a long period of time because the operation for increasing the fuel ratio is continued for a long time as in the conventional case, or the reactor condition cannot be rebuilt early. Can be completely eliminated. As in the case of operations using cheap raw fuel and high pulverized coal ratio operation in the future, the pulverization of ore and coke will increase, and the powder rate in the lower part of the furnace including unburned char will increase, increasing the air permeability of the core. Stable operation can be maintained even when it is difficult to secure liquid permeability. Further, when the method of the present invention is carried out, the annular flow can be eliminated, so that it is not necessary to suppress the fuel rise and the amount of tapping as a countermeasure for the annular flow, so that the controllability of the blast furnace can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による炉芯部への中空パイプ打ち込み方
法の概要説明図
FIG. 1 is a schematic explanatory diagram of a method for driving a hollow pipe into a furnace core according to the present invention.

【図2】炉芯打ち込み用の中空パイプの繋ぎを示す説明
FIG. 2 is an explanatory view showing the connection of hollow pipes for driving the furnace core.

【図3】本発明法(1),(2)実施前後の操業指標の
推移図
FIG. 3 is a transition chart of operating indexes before and after the implementation of the method (1) and (2) of the present invention.

【図4】本発明法(5),(6)実施前後の相対送風支
管風量の変化を示す図
FIG. 4 is a diagram showing a change in relative air flow amount of a branch pipe before and after carrying out the methods (5) and (6) of the present invention.

【図5】本発明法(5),(6)実施前後の操業指標の
推移図
FIG. 5 is a transition chart of the operation index before and after the implementation of the method (5), (6) of the present invention.

【図6】炉床加熱用の中空パイプの孔位置を示す図FIG. 6 is a view showing hole positions of a hollow pipe for heating a hearth.

【図7】本発明法(7)実施前後の相対送風支管風量の
変化を示す図
FIG. 7 is a diagram showing changes in relative air flow amount of a branch pipe before and after carrying out the method (7) of the present invention.

【図8】本発明法(7)実施前後の操業指標の推移図FIG. 8 is a transition chart of the operation index before and after the implementation of the method (7) of the present invention.

【図9】セラミックスリーブを内装した中空パイプを示
す図
FIG. 9 shows a hollow pipe with a ceramic sleeve inside.

【図10】本発明法(8)実施前後の操業指標の推移図FIG. 10 is a transition chart of the operation index before and after the implementation of the method (8) of the present invention.

【符号の説明】[Explanation of symbols]

1 可搬型のパイプ打ち込み装置 2 パイプ打ち込み用治具 3 キャップ 4 中空パイプ 5 羽口 6 炉芯部 7 中空パイプ 8 ボタ 9 レースウェイ 10 鳥の巣 11 セラミックスリーブ 12 セラミックシート 13 セラミックボード 1 Portable pipe driving device 2 Pipe driving jig 3 Cap 4 Hollow pipe 5 Tuyere 6 Reactor core 7 Hollow pipe 8 Button 9 Raceway 10 Bird's nest 11 Ceramic sleeve 12 Ceramic sheet 13 Ceramic board

───────────────────────────────────────────────────── フロントページの続き (72)発明者 熊岡 尚 千葉県君津市君津1番地 新日本製鐵株式 会社君津製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takashi Kumaoka 1 Kimitsu, Kimitsu-shi, Chiba Nippon Steel Corporation Stock of Kimitsu Steel Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 高炉の休風時に羽口から中空パイプを炉
芯内に打ち込み、前記中空パイプを炉芯内に残留させた
まま送風立上げを行い、前記中空パイプより炉芯内に送
風することを特徴とする高炉操業法。
1. A hollow pipe is driven into a furnace core from a tuyere when the blast furnace is at rest, air is blown up while the hollow pipe remains in the furnace core, and the hollow pipe is blown into the furnace core. A blast furnace operating method characterized by that.
【請求項2】 高炉の休風時に羽口から金棒を炉芯内に
打ち込み、前記金棒を炉芯内に残留させたまま送風立ち
上げを行い、前記金棒を溶解させて炉芯内に通気孔を形
成し、該通気孔から炉芯内に送風することを特徴とする
高炉操業法。
2. When the blast furnace is in a blast, a gold rod is driven into the furnace core from the tuyere, blowing is started with the gold rod remaining in the furnace core, the gold rod is melted, and a vent hole is formed in the furnace core. Is formed, and air is blown into the furnace core through the ventilation holes.
【請求項3】 高炉の操業中または休風中に炉芯状態を
測定し、炉芯状態が悪いと判断された場合に、高炉の休
風時に羽口から中空パイプを炉芯内に打ち込み、前記中
空パイプを炉芯内に残留させたまま送風立上げを行い、
前記中空パイプより炉芯内に送風することを特徴とする
高炉操業法。
3. When the state of the core is measured during operation of the blast furnace or while the wind is off, and when it is determined that the state of the core is poor, a hollow pipe is driven into the core of the blast furnace from the tuyere when the air is off. Blow start-up with the hollow pipe left inside the furnace core,
A blast furnace operating method, characterized in that air is blown into the furnace core from the hollow pipe.
【請求項4】 高炉の操業中または休風中に炉芯状態を
測定し、炉芯状態が悪いと判断された場合に、高炉の休
風時に羽口から金棒を炉芯内に打ち込み、前記金棒を炉
芯内に残留させたまま送風立上げを行い、前記金棒を溶
解させて炉芯内に通気孔を形成し、該通気孔から炉芯内
に送風することを特徴とする高炉操業法。
4. The state of the core is measured during operation of the blast furnace or during the idle time, and when it is determined that the state of the core is poor, a gold rod is driven into the core from the tuyere when the blast furnace is idle, A blast furnace operating method characterized in that air blowing is started with the gold rod remaining in the furnace core, the gold rod is melted to form a vent hole in the furnace core, and air is blown from the vent hole into the furnace core. .
【請求項5】 高炉操業中に羽口毎に設置した送風支管
風量計より各羽口の送風支管風量を測定し、平均送風支
管風量で除した相対送風支管風量が0.9以下の羽口を
検知し、高炉の休風時に、前記相対送風支管風量が0.
9以下の羽口および/またはその近傍の羽口から中空パ
イプを炉芯内に打ち込むことを特徴とする請求項3記載
の高炉操業法。
5. A tuyere having a relative blast airflow amount of 0.9 or less obtained by measuring the blast airflow amount of each tuyere with a blast airflow meter installed at each tuyere during blast furnace operation and dividing by the average airflow amount Is detected, and the relative air flow amount of the relative blow branch pipe is 0.
The blast furnace operating method according to claim 3, wherein the hollow pipe is driven into the core from 9 or less tuyere and / or the tuyere in the vicinity thereof.
【請求項6】 高炉操業中に羽口毎に設置した送風支管
風量計より各羽口の送風支管風量を測定し、平均送風支
管風量で除した相対送風支管風量が0.9以下の羽口を
検知し、高炉の休風時に、前記相対送風支管風量が0.
9以下の羽口および/またはその近傍の羽口から金棒を
炉芯内に打ち込むことを特徴とする請求項4記載の高炉
操業法。
6. A tuyere having a relative blast branch air volume of 0.9 or less obtained by measuring the blast tributary air volume of each tuyere with a blast tributary air flow meter installed for each tuyere during blast furnace operation and dividing by the average blast tributary air volume Is detected, and the relative air flow amount of the relative blow branch pipe is 0.
The blast furnace operating method according to claim 4, wherein a gold rod is driven into the core from 9 or less tuyere and / or a tuyere in the vicinity thereof.
【請求項7】 中空パイプの先端および/または中空パ
イプに開孔した孔から送風することを特徴とする請求項
1または請求項3または請求項5記載の高炉操業法。
7. The blast furnace operating method according to claim 1, 3 or 5, wherein the air is blown from a tip of the hollow pipe and / or a hole opened in the hollow pipe.
【請求項8】 中空パイプとして、セラミックスリーブ
を内装した金属パイプを使用することを特徴とする請求
項1または請求項3または請求項5または請求項7記載
の高炉操業法。
8. The blast furnace operating method according to claim 1, wherein the hollow pipe is a metal pipe having a ceramic sleeve provided therein.
JP20930695A 1994-12-08 1995-07-26 Operating method of furnace Pending JPH08302407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20930695A JPH08302407A (en) 1994-12-08 1995-07-26 Operating method of furnace

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP33048394 1994-12-08
JP2771795 1995-01-25
JP6-330483 1995-03-07
JP7-72470 1995-03-07
JP7-27717 1995-03-07
JP7247095 1995-03-07
JP20930695A JPH08302407A (en) 1994-12-08 1995-07-26 Operating method of furnace

Publications (1)

Publication Number Publication Date
JPH08302407A true JPH08302407A (en) 1996-11-19

Family

ID=27458747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20930695A Pending JPH08302407A (en) 1994-12-08 1995-07-26 Operating method of furnace

Country Status (1)

Country Link
JP (1) JPH08302407A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442639B1 (en) * 2000-10-09 2004-08-02 주식회사 포스코 Fines cleaning apparatus for a blast furnace
KR101634037B1 (en) * 2015-03-26 2016-06-27 현대제철 주식회사 Tuyere apparatus of blast furnace
KR101655213B1 (en) * 2015-09-02 2016-09-07 주식회사 포스코 Device for activiting furnace center in blasst furnace, and thr method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100442639B1 (en) * 2000-10-09 2004-08-02 주식회사 포스코 Fines cleaning apparatus for a blast furnace
KR101634037B1 (en) * 2015-03-26 2016-06-27 현대제철 주식회사 Tuyere apparatus of blast furnace
KR101655213B1 (en) * 2015-09-02 2016-09-07 주식회사 포스코 Device for activiting furnace center in blasst furnace, and thr method

Similar Documents

Publication Publication Date Title
JP4745731B2 (en) Method of melting hot metal with cupola
JP5522326B1 (en) Blast furnace operation method and tube bundle type lance
CN201437541U (en) Iron port blow-burning oxygen lance
JPH08302407A (en) Operating method of furnace
JP7306421B2 (en) How to start up a blast furnace
JP6427829B2 (en) Cold iron source melting / smelting furnace, and melting / smelting furnace operating method
CN208187094U (en) Novel cokeless furnace cupola
JP3247289B2 (en) Blast furnace operation method
JP2694590B2 (en) Method for diagnosing core active state and method for core activation
JP2741140B2 (en) Blast furnace operation method
JP2694589B2 (en) Method for diagnosing core filling state and method for activating core
JP4161526B2 (en) Operation method of smelting reduction furnace
WO2023233957A1 (en) Blast-furnace operation method and blast furnace
JP2694588B2 (en) Blast furnace operation method
JPH07268416A (en) Operation of blast furnace
JP3075504B2 (en) Waste melting furnace and its operation method
CN110499402A (en) A kind of metallurgical equipment uses improvement project
JP2009235437A (en) Method for controlling blast furnace operation at blowing-stop time in large reduction of charged material level
JP7243677B2 (en) Furnace bottom temperature raising method and blast furnace start-up method
CN114908206B (en) Blast furnace tapping device and operation method
JP2022152721A (en) Operation method of blast furnace
JP3615673B2 (en) Blast furnace operation method
US3088821A (en) Open hearth steelmaking process
JPH08260010A (en) Operation for blowing large quanty of pulverized coal in blast furnace
JP2010037642A (en) Iron-bath type melting furnace

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020205