JP7243677B2 - Furnace bottom temperature raising method and blast furnace start-up method - Google Patents

Furnace bottom temperature raising method and blast furnace start-up method Download PDF

Info

Publication number
JP7243677B2
JP7243677B2 JP2020085666A JP2020085666A JP7243677B2 JP 7243677 B2 JP7243677 B2 JP 7243677B2 JP 2020085666 A JP2020085666 A JP 2020085666A JP 2020085666 A JP2020085666 A JP 2020085666A JP 7243677 B2 JP7243677 B2 JP 7243677B2
Authority
JP
Japan
Prior art keywords
furnace
burner
temperature
gas
blown
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020085666A
Other languages
Japanese (ja)
Other versions
JP2021179004A (en
Inventor
光輝 照井
明紀 村尾
寿幸 廣澤
晃太 盛家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020085666A priority Critical patent/JP7243677B2/en
Publication of JP2021179004A publication Critical patent/JP2021179004A/en
Application granted granted Critical
Publication of JP7243677B2 publication Critical patent/JP7243677B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Details (AREA)

Description

本発明は、操業が停止した高炉の炉底の内容物を昇温したのち送風を開始するために用いる炉底の昇温方法およびその方法を用いた高炉の立ち上げ方法に関する。 TECHNICAL FIELD The present invention relates to a method for raising the temperature of the bottom of a blast furnace whose operation has been stopped, which is used to start air blowing after raising the temperature of the contents of the bottom, and a method for starting up the blast furnace using the method.

高炉は、羽口と呼ばれる送風用の穴から吹き込んだ高温空気及び酸素とコークスおよび微粉炭の反応によって生成した高温還元ガスによって、鉄鉱石の昇温、還元、溶解を行い羽口下部に設置した出銑口から銑鉄とスラグを炉外に排出して生産する設備である。高炉の通常操業時においては、炉内の反応熱と羽口からの熱供給がバランスしているため、高炉の安定的な操業が可能である。しかしながら、操業トラブルや設備トラブル等に起因して、高炉への送風を止める必要が発生する場合がある。また、高炉の老朽化に伴う補修工事のため、高炉を長時間休風させることが必要となる場合もある。休風中、炉体からの抜熱、羽口からの空気の吸込み等により、炉内の装入物と溶融物の温度(以下、炉熱とする。)は低下する。 The blast furnace was installed at the lower part of the tuyeres, where the iron ore was heated, reduced, and melted using high-temperature air blown through holes called tuyeres and high-temperature reducing gas generated by the reaction of oxygen with coke and pulverized coal. This facility discharges pig iron and slag from the taphole to the outside of the furnace for production. During normal operation of the blast furnace, stable operation of the blast furnace is possible because the reaction heat in the furnace and the heat supply from the tuyeres are in balance. However, due to operational troubles, equipment troubles, etc., it may be necessary to stop blowing air to the blast furnace. In addition, it may be necessary to rest the blast furnace for a long period of time for repair work due to aging of the blast furnace. During the wind break, the temperature of the charged material and the molten material (hereinafter referred to as "furnace heat") in the furnace decreases due to heat removal from the furnace body and air intake from the tuyeres.

炉熱が低下するとスラグの粘性が上昇し、一部は凝固し、出銑口からの溶銑滓の排出が困難となる。そのような状態で送風を行うと、羽口前で発生した高温ガスにより生成される溶銑とスラグにより、炉下部の溶銑滓の液面レベルが上昇する。この時、羽口上部から供給される溶銑滓により炉底に滞留していた溶銑滓が昇温され、徐々に適切な炉熱レベルまで回復すれば問題は無い。しかしながら、炉熱が回復せず溶銑滓の液面レベルが羽口レベルに到達し、羽口を閉塞してしまうと炉内への熱供給手段が絶たれ炉冷事故に至り、多大な経済的損失をもたらす。 When the furnace heat is lowered, the viscosity of the slag increases, part of it solidifies, and it becomes difficult to discharge the hot metal slag from the tap hole. When air is blown in such a state, the molten iron and slag generated by the hot gas generated in front of the tuyere raise the liquid level of molten iron slag in the lower part of the furnace. At this time, the temperature of the molten iron slag remaining at the bottom of the furnace is raised by the molten iron slag supplied from the upper part of the tuyeres, and if the furnace heat level is gradually restored, there is no problem. However, if the furnace heat does not recover and the liquid level of the molten iron slag reaches the level of the tuyeres and the tuyeres are clogged, the means for supplying heat to the furnace will be cut off, leading to a furnace cooling accident, resulting in a huge economic loss. bring loss.

炉冷事故からの回復方法として、従来は、以下のような方法をとっていた。すなわち、まず、休風中に出銑口上の1-2本の羽口以外を耐火物等により閉塞させ、出銑口と閉塞していない羽口から酸素を吹き込む。これにより、出銑口と羽口間の半溶融物を出銑口から排出した後、炉内にできた空間にコークスを充填してから送風を開始する。そして、出銑口と羽口の間を流れる高温ガスによる炉底の昇温と、送風に伴って生成する溶銑滓の円滑な排出のサイクルを確立する。その後、隣接部の羽口を開口し、徐々に開口羽口本数を増やし通常の操業まで回復させる方法をとる。しかしながら、これらの工程は1-2ヵ月の時間を要する。また酸素の吹込み等は人力で行うため、安全上のリスクも高い作業となっている。 Conventionally, the following method has been used as a recovery method from a furnace cooling accident. That is, first, while the wind is not blowing, all but one or two tuyeres above the taphole are blocked with a refractory material or the like, and oxygen is blown in through the taphole and unblocked tuyeres. As a result, after the semi-molten material between the taphole and the tuyere is discharged from the taphole, the space created in the furnace is filled with coke, and then air blowing is started. Then, a cycle is established in which the temperature of the hearth bottom is raised by the hot gas flowing between the tap hole and the tuyeres, and the hot metal slag produced by the blowing of the air is smoothly discharged. After that, open the adjacent tuyeres and gradually increase the number of open tuyeres to restore normal operation. However, these steps take 1-2 months. In addition, since the blowing of oxygen is performed manually, it is a work with high safety risks.

休風からの立上げは炉熱が低下しているため、上述した炉冷事故に至るリスクが高い状態である。炉例事故を起こさずに休風などからの立ち上げを行うために、従来は、炉内のコークス比を上げて休風に入り、送風後に微粉炭の吹込みが開始できるまでの熱補償を行っていた。他の方法としては、出銑口から酸素ガスを吹き込んで炉内の炭材や銑鉄を燃焼、発熱させて炉底部を昇温させる方法や、高炉の炉底に設けられた出銑口にバーナを設置して燃料を燃焼させ、炉底を効率よく昇温し、長時間休風から短時間のうちに立ち上げることができる高炉の送風開始方法と炉底昇温用バーナが提案されている (特許文献1、2) 。 Since the furnace heat is low when the reactor is started up after a rest period, there is a high risk of the above-mentioned furnace cooling accident. Conventionally, in order to start the furnace without causing an accident, the coke ratio in the furnace was increased to enter a rest period, and after blowing air, heat compensation was performed until pulverized coal blowing could start. was going Other methods include blowing oxygen gas through the tap hole to burn the carbonaceous materials and pig iron in the furnace to generate heat to raise the temperature of the bottom of the blast furnace. A blast furnace blast start method and a hearth temperature raising burner have been proposed that can be installed to burn fuel, efficiently heat the hearth, and start up in a short time from a long pause. (Patent Documents 1 and 2).

特開2016-30833号公報JP 2016-30833 A 特開2013-221184号公報JP 2013-221184 A

炉底昇温用バーナを用いて炉底を昇温する方法は、炉底の低温化した溶融物あるいは凝固物に直接熱を供給し昇温させるため極めて効率が良い方法と言える。出銑口に設置した炉底昇温用バーナから天然ガスなどの可燃性ガスと、酸素を含む支燃性ガスを吹き込んで燃焼させることにより、炉底の充填物に熱を供給することができる。また、バーナから酸素を含む支燃性ガスを吹き込んで、炉内のコークスを燃焼させたり、炉内の鉄を酸化させることで熱を供給させたりすることもできる。本発明ではバーナから吹き込む可燃性ガスや支燃性ガスを総称して加熱ガスと呼ぶ。しかしながら本手法を用いるに当たっては、バーナを設置する位置とその燃焼時間を合理的に決定することが困難であるという課題があった。バーナ燃焼の主たる目的は、出銑口とその直上の羽口の間に存在する溶融物または凝固物を十分に昇温・溶融させ出銑口から排出させ、その後の送風で羽口先において生成するスラグ、溶銑の炉外への排出を円滑化させることにある。そのため、高炉を安定的に立ち上げるためには、効果的に昇温可能な出銑口にバーナを設置することが望ましい。一般に高炉の出銑口は一基の高炉につき2~4ヶ所程度設置されているが、どの出銑口にバーナを設置すると効果的に炉底を昇温可能であるかを予測する好適な方法は知られていなかった。 The method of raising the temperature of the hearth using a furnace bottom heating burner can be said to be an extremely efficient method because heat is directly supplied to the temperature-lowered melt or solidified matter on the hearth to raise the temperature. Combustible gas such as natural gas and combustion-supporting gas containing oxygen are blown into the furnace from the furnace bottom heating burner installed at the tap hole, and heat can be supplied to the filling in the furnace bottom. . In addition, combustion-supporting gas containing oxygen can be blown from a burner to burn coke in the furnace, or heat can be supplied by oxidizing iron in the furnace. In the present invention, combustible gas and combustion-supporting gas blown from the burner are collectively called heating gas. However, in using this method, there was a problem that it was difficult to rationally determine the position to install the burner and its combustion time. The main purpose of burner combustion is to sufficiently raise the temperature of the melted or solidified material existing between the taphole and the tuyere directly above it, melt it and discharge it from the taphole, and then generate it at the tip of the tuyere by blowing air. It is to facilitate discharge of slag and molten iron out of the furnace. Therefore, in order to stably start up the blast furnace, it is desirable to install a burner at the tap hole that can effectively raise the temperature. Generally, a blast furnace has two to four tapholes per blast furnace, and this is a suitable method for predicting which taphole a burner should be installed to effectively raise the temperature of the hearth bottom. was not known.

また、バーナから吹き込む可燃性ガスを燃焼させる好適な時間を決定することも困難であった。出銑口から供給できる熱量は、羽口からの熱風の送風により炉内のコークスを燃焼させて供給できる熱量に比べて少ない。従って、高炉を早期に立ち上げるためには、可能な限り早い時期に羽口からの送風に切り替えることが好ましい。特に、高炉からの放熱が大きい場合には、出銑口に設置したバーナのみではその放熱を補うことが困難なため、早急に羽口からの送風を行うことが望ましい。すなわち、出銑口に設置したバーナからの熱によって羽口先端部の温度が十分に上昇し、羽口からの送風によって羽口先端部の炉内コークスが燃焼可能になったことを早期に知ることができれば、高炉の早期立ち上げが可能になり、放熱の増大による凝固層の拡大を抑制することができる。 Moreover, it was also difficult to determine a suitable time for burning the combustible gas blown from the burner. The amount of heat that can be supplied from the taphole is smaller than the amount of heat that can be supplied by burning coke in the furnace by blowing hot air from the tuyeres. Therefore, in order to start up the blast furnace early, it is preferable to switch to blowing air from the tuyeres as early as possible. In particular, when the heat radiation from the blast furnace is large, it is difficult to compensate for the heat radiation only by the burner installed at the tap hole, so it is desirable to quickly blow air from the tuyeres. In other words, the heat from the burner installed at the tap hole sufficiently increases the temperature at the tip of the tuyere, and the air blowing from the tuyere makes it possible to burn the coke in the furnace at the tip of the tuyere at an early stage. If it can be done, the blast furnace can be started up early, and the expansion of the solidified layer due to increased heat dissipation can be suppressed.

発明者らは、出銑口に設置したバーナによって高炉内がどのように昇温するかを検討し、本発明を完成した。すなわち、バーナの燃焼時間に応じて炉内状況がどのように変化する (どう昇温する) のかを推定し、その推定結果に応じてバーナの燃焼時間を決定する好適な方法を見出した。バーナ燃焼後の炉内の昇温挙動はバーナ燃焼前の炉内の状況によっても異なる。これは、バーナ燃焼直前までの高炉の操業停止時間 (休風時間) の長短により炉外への抜熱量は変化し、これに伴い炉内の溶融物の粘度や生成した凝固層の厚みや形状が異なり、それがその後のバーナの燃焼による昇温の状況やバーナを燃焼させるべき時間に影響を及ぼすためである。バーナの燃焼時間を十分に長く確保すればバーナ近傍に供給される熱量は増える。しかしながら炉内は塊コークスで満たされた充填層であるためバーナ先端から炉内に吹き込まれるガスはバーナ先端から遠隔位置には届かず、そのため昇温されず抜熱が進行し、炉内の溶融物の流動性の一層の低下または炉内に成長した凝固層の一層の成長といった悪影響が発生することがある。すなわち、炉内状態に応じて出銑口と羽口間の領域を所望の温度まで上昇させるために必要なバーナ燃焼時間およびバーナ燃焼ガス量等の諸元を過不足無く推定することが必要となる。 The inventors have studied how the temperature inside the blast furnace is increased by the burner installed at the taphole, and completed the present invention. That is, the present inventors have found a suitable method of estimating how the conditions inside the furnace change (how the temperature rises) according to the burner combustion time, and determining the burner combustion time according to the estimation results. The temperature rise behavior in the furnace after burner combustion also differs depending on the conditions in the furnace before burner combustion. This is because the amount of heat removed from the furnace changes depending on the length of the blast furnace shutdown time (breathing time) until just before burner combustion. This is because the difference affects the temperature rise due to subsequent burner combustion and the time at which the burner should be fired. If the combustion time of the burner is sufficiently long, the amount of heat supplied to the vicinity of the burner increases. However, since the inside of the furnace is a packed bed filled with lump coke, the gas blown into the furnace from the tip of the burner does not reach a remote position from the tip of the burner, so the temperature does not rise and heat removal progresses, and the melting inside the furnace Adverse effects such as a further reduction in material fluidity or a further growth of solidified layers grown in the furnace may occur. That is, it is necessary to accurately estimate the specifications such as the burner combustion time and the amount of burner combustion gas required to raise the temperature of the area between the tap hole and the tuyere to the desired temperature according to the furnace conditions. Become.

本発明の目的は、高炉の出銑口に設置したバーナを用いて、操業を停止した高炉を速やかに再稼働させるための好適な炉底の昇温方法およびその方法を用いた高炉の立ち上げ方法を提案することにある。 An object of the present invention is to provide a suitable method for raising the temperature of the hearth bottom for quickly restarting a blast furnace whose operation has been stopped using a burner installed at the tap hole of the blast furnace, and starting up the blast furnace using the method. It is to propose a method.

上記の課題を解決するにあたり鋭意検討を重ねた結果、発明者らは高炉の操業停止前 (休風前) の炉下部溶融物の温度あるいは凝固層の厚み・形状をシミュレーションモデルで推定し、その結果に基づいて出銑口に設置したバーナ(以下、出銑口バーナと呼ぶこともある)の好ましい燃焼条件を決定する方法を見出した。具体的には、シミュレーションモデルで推定された凝固層の厚みに基づいて、出銑口バーナを用いて羽口先端部を効果的に昇温できる出銑口を特定し、その出銑口にバーナを設置して加熱した際に、どの程度の燃焼時間で、羽口からの送風によって高炉を昇温可能とすることができるかを、伝熱計算により推定する。そして、その条件で炉底部を加熱した後、速やかに羽口から熱風を送風することで、稼働を停止した高炉の早期の立ち上げが可能となる。 As a result of extensive studies to solve the above problems, the inventors used a simulation model to estimate the temperature of the melted material in the lower part of the furnace or the thickness and shape of the solidified layer before the shutdown of the blast furnace (before the shutdown of the wind). Based on the results, a method for determining preferable combustion conditions for a burner installed at the taphole (hereinafter sometimes referred to as a taphole burner) was found. Specifically, based on the thickness of the solidified layer estimated by the simulation model, a tap hole that can effectively raise the temperature of the tip of the tuyere using a tap hole burner is identified, and a burner is installed at that tap hole. Heat transfer calculations are used to estimate how long the combustion time will allow the temperature of the blast furnace to be raised by blowing air from the tuyeres. Then, after the furnace bottom is heated under these conditions, hot air is quickly blown from the tuyeres, so that the stopped blast furnace can be started up quickly.

本発明の炉底の昇温方法の第1の態様は、操業が停止した高炉の炉底の出銑口に設けたバーナから炉内に加熱用ガスを吹き込んで炉底を昇温する炉底の昇温方法において、操業停止中に炉底部に成長した凝固層の形状を推定する工程と、複数の出銑口において、該出銑口と該出銑口の直上の羽口との間の凝固層の平均厚みを推定する工程と、推定された平均厚みが最も小さい出銑口または、3か所以上の出銑口を有する場合には前記推定された平均厚みが2番目に小さい出銑口にバーナを設置して、バーナから炉内に加熱用ガスを吹き込んで炉底を昇温する工程と、を含む、炉底の昇温方法である。 A first aspect of the method for raising the temperature of the hearth bottom of the present invention is to raise the temperature of the hearth bottom by blowing a heating gas into the furnace from a burner provided at the tap hole of the hearth bottom of a blast furnace whose operation has been stopped. In the temperature raising method of No., the step of estimating the shape of the solidified layer grown at the bottom of the furnace during shutdown, and in a plurality of tapholes, between the taphole and the tuyere immediately above the taphole a step of estimating the average thickness of the solidified layer; and the tap hole with the smallest estimated average thickness, or the tap hole with the second smallest estimated average thickness when there are three or more tap holes. A method for raising the temperature of the bottom of the furnace, comprising a step of installing a burner in the mouth and blowing a heating gas into the furnace from the burner to raise the temperature of the bottom of the furnace.

また、本発明の炉底の昇温方法の第2の態様は、操業が停止した高炉の炉底の出銑口に設けたバーナから炉内に加熱用ガスを吹き込んで炉底を昇温する炉底の昇温方法において、操業停止中に炉底部に成長した凝固層の形状を推定する工程と、推定した凝固層形状を境界条件としてバーナから吹き込んだ加熱用ガスの燃焼中に昇温する炉底部の温度分布を推定する工程と、前記温度分布に基づいて、バーナから吹き込んだ加熱用ガスを燃焼させる時間を決定する工程と、を含む、炉底の昇温方法である。 In a second aspect of the method for raising the temperature of the hearth bottom of the present invention, heating gas is blown into the furnace from a burner provided at the tap hole of the hearth bottom of a blast furnace whose operation has been stopped to raise the temperature of the hearth bottom. In the method for raising the temperature of the furnace bottom, the step of estimating the shape of the solidified layer grown on the furnace bottom while the operation is stopped, and raising the temperature during the combustion of the heating gas blown from the burner using the estimated solidified layer shape as the boundary condition. A method for raising the temperature of a furnace bottom, comprising the steps of: estimating a temperature distribution in a furnace bottom; and determining, based on the temperature distribution, the time for burning a heating gas blown from a burner.

なお、前記の第1の態様においては、
(1)決定された燃焼時間以上、吹き込む加熱ガスを燃焼させた後、前記バーナを別の出銑口に移設して、バーナから吹き込む加熱ガスを燃焼させること、および、
前記第1の態様および第2の態様においては、
(2)前記バーナは、気体が流通する内管と外管を含む重管構造を有し、内管と外管との端部を覆うキャップであって高炉内において除去可能なキャップを有すること、
がそれぞれ好ましい態様となるものと考えられる。
In addition, in the first aspect,
(1) After burning the heated gas to be blown in for a determined combustion time or longer, the burner is moved to another taphole and the heated gas blown in from the burner is burned;
In the first aspect and the second aspect,
(2) The burner has a heavy-tube structure including an inner tube and an outer tube through which gas flows, and has a cap that covers the ends of the inner tube and the outer tube and is removable in the blast furnace. ,
are considered to be preferred embodiments.

さらに、本発明の高炉の立ち上げ方法は、上述した炉底の昇温方法において、バーナから加熱用ガスを吹き込んだ後、バーナを設置した直上の羽口から酸素を含む1000℃以上のガスを吹き込んで炉内のコークスを燃焼させる、高炉の立ち上げ方法である。 Furthermore, in the method for starting up a blast furnace of the present invention, in the above-described method for raising the temperature of the hearth bottom, after the heating gas is blown from the burner, a gas containing oxygen at 1000 ° C. or higher is blown from the tuyere immediately above the burner. It is a method of starting up a blast furnace by blowing in and burning coke in the furnace.

本発明の炉底の昇温方法によれば、操業停止中の高炉炉下部の昇温を効果的に行うことができ、高炉の再稼働を円滑に行うことができる。 According to the method for raising the temperature of the hearth bottom of the present invention, it is possible to effectively raise the temperature of the lower part of the blast furnace while the operation is stopped, so that the blast furnace can be restarted smoothly.

本発明の炉底の昇温方法においてバーナ燃焼条件を推定するまでの各工程を示すフローチャートである。4 is a flow chart showing steps up to estimation of burner combustion conditions in the furnace bottom temperature raising method of the present invention. 境界要素法により推定した炉底に成長した凝固層形状を示す図である。FIG. 4 is a diagram showing the shape of a solidified layer grown on the hearth estimated by the boundary element method; 境界要素法により推定した炉底に成長した円周方向各位置における凝固層線を示す図である。FIG. 4 is a diagram showing solidified layer lines at respective positions in the circumferential direction that have grown on the hearth, estimated by the boundary element method. 境界要素法により推定した炉底に成長した円周方向各位置における凝固層線をスムージング化した図である。FIG. 4 is a diagram showing smoothed solidification layer lines at respective positions in the circumferential direction that have grown on the hearth, estimated by the boundary element method. シミュレーターによる計算対象となる炉底の3次元領域およびその分割図を示す図である。FIG. 3 is a diagram showing a three-dimensional region of the hearth bottom to be calculated by the simulator and a division diagram thereof; シミュレーターにより計算したバーナ燃焼開始から15時間後までのバーナ近傍の温度分布を示す図である。FIG. 10 is a diagram showing a temperature distribution in the vicinity of the burner calculated by a simulator from the start of burner combustion to 15 hours later; (a)、(b)は、それぞれ、本発明の炉底の昇温方法に用いるのが好ましいバーナの構造の一例を示す図である。1(a) and 1(b) are diagrams each showing an example of the structure of a burner that is preferably used in the method for raising the temperature of the hearth of the present invention.

以下、本発明の実施形態と作用効果について説明する。
図1は、本発明において凝固層の厚みと出銑口バーナ燃焼時間とをシミュレーションモデルを用いて決定するまでの流れを示すフローチャートである。本発明では、まず、バーナ燃焼前の炉内状況を推定するために、シミュレーションモデルを用いて炉内に成長した凝固層の厚みと形状の推定を行う。
Hereinafter, embodiments and effects of the present invention will be described.
FIG. 1 is a flow chart showing the flow until the thickness of the solidified layer and the taphole burner combustion time are determined using a simulation model in the present invention. In the present invention, first, in order to estimate the conditions inside the furnace before burner combustion, a simulation model is used to estimate the thickness and shape of the solidified layer grown inside the furnace.

炉内の凝固層厚みの計算方法は種々考えられるが、例えば文献(吉川 他:鉄と鋼, 73(15), 1987, 2068-2075)に記載の手法が考えられる。上記文献に記載の手法は、凝固層の界面を銑鉄の凝固温度(1150℃)の等温線と仮定し、境界要素法(BEM)による伝熱計算を行い、実炉において熱電対により測定された炉底の温度の実測値と境界要素法による温度の計算結果の誤差が最小となるような凝固界面を逐次計算して算出する方法である(ステップ1~3)。図2に本手法により推定した炉底の凝固層形状結果を示す。高炉の羽口より下の炉底部には、高炉周方向および高さ方向の複数位置に熱電対が設置されていることが一般的である。図2のように、炉底の温度を測定する熱電対が存在する炉底の各方向において、凝固層形状が算出できる。 Various methods for calculating the thickness of the solidified layer in the furnace are conceivable. The method described in the above document assumes that the interface of the solidified layer is an isotherm of the solidification temperature of pig iron (1150°C), performs heat transfer calculations by the boundary element method (BEM), and measures the temperature with a thermocouple in an actual furnace. This is a method of successively calculating a solidification interface that minimizes the error between the measured value of the furnace bottom temperature and the temperature calculation result by the boundary element method (steps 1 to 3). Fig. 2 shows the shape of the solidified layer on the hearth estimated by this method. Thermocouples are generally installed at a plurality of positions in the circumferential direction and the height direction of the blast furnace at the bottom of the blast furnace below the tuyeres. As shown in FIG. 2, the shape of the solidified layer can be calculated in each direction of the furnace bottom where there are thermocouples for measuring the temperature of the furnace bottom.

次に、ステップ4で垂直断面の計算結果を3次元化する。その例を図3および図4に示す。図3は、高炉の円周方向各位置における凝固層線の計算結果を並べて図示したものである。図3の各凝固層線間を補間すれば、炉底における凝固層形状を滑らかに3次元化することが可能となる。図4は図3の各凝固層線間を周方向に5°ピッチで分割し、各分割位置における凝固層高さを、図3の凝固層線を2次スプライン補間した値として表示した結果を示す。図4の各位置分割位置における凝固層高さおよび実測点における凝固層高さを円周状に展開すれば、炉下部の凝固層形状を3次元化できる。 Next, in step 4, the calculation result of the vertical cross section is three-dimensionalized. Examples are shown in FIGS. 3 and 4. FIG. FIG. 3 shows the calculation results of the solidification layer lines at each position in the circumferential direction of the blast furnace side by side. By interpolating between the solidified layer lines in FIG. 3, it is possible to smoothly convert the shape of the solidified layer at the bottom of the furnace into three dimensions. Fig. 4 shows the result of dividing the solidified layer lines in Fig. 3 at a pitch of 5° in the circumferential direction, and displaying the solidified layer height at each divided position as a value obtained by quadratic spline interpolation of the solidified layer lines in Fig. 3. show. If the solidified layer height at each position division position in FIG. 4 and the solidified layer height at the actual measurement points are developed in a circumferential shape, the solidified layer shape in the lower part of the furnace can be three-dimensionalized.

次に、ステップ5では、計算用の領域分割を行う。図5は炉底および側壁レンガ、図4の凝固層領域を含む3次元計算領域である。図5の3次元領域を伝熱計算用に領域分割し、各分割要素に伝熱計算用の熱伝導率、比熱、密度等の物性値を設定する。 Next, in step 5, region division for calculation is performed. FIG. 5 is a three-dimensional computational domain including the furnace bottom and side wall bricks, and the solidified layer region of FIG. The three-dimensional region in FIG. 5 is divided into regions for heat transfer calculation, and physical property values such as thermal conductivity, specific heat, and density for heat transfer calculation are set for each divided element.

次に、ステップ6では、バーナを挿入し燃焼させる出銑口の選択を行う。このステップ6は、ステップ5よりも前に行ってもよい。図1のフローチャートのステップ6では、伝熱計算を行うためにバーナを設置する出銑口を決定している。しかし、伝熱計算を省略して、計算された凝固層の形状に基づいてバーナを設置すべき出銑口を特定し、炉底を昇温させる作業を行ってもよい。発明者らは、出銑口とその出銑口の直上の羽口との間の凝固層の平均厚みが小さい出銑口にバーナを設置して加熱を行うと、効果的に羽口先端を加熱できることを見出した。 Next, in step 6, a tap hole for inserting a burner and burning is selected. This step 6 may be performed before step 5. In step 6 of the flow chart of FIG. 1, the tap hole where the burner is installed is determined for heat transfer calculation. However, the heat transfer calculation may be omitted, the tap hole where the burner should be installed may be specified based on the calculated shape of the solidified layer, and the work of raising the temperature of the hearth bottom may be performed. The inventors found that when a burner is installed at a taphole where the average thickness of the solidified layer between the taphole and the tuyere directly above the taphole is small and heating is performed, the tip of the tuyere is effectively I found that it can be heated.

すなわち、ステップ4において推定された凝固層の形状から、出銑口の直上の羽口との間の凝固層の水平方向の平均厚みを推定し、推定された平均厚みが最も小さい出銑口または、3か所以上の出銑口を有する場合には前記推定された平均厚みが2番目に小さい出銑口にバーナを設置して、バーナから炉内に加熱用ガスを吹き込んで炉底を昇温することが好ましい。この時、出銑口の高さにおいて、凝固層が水平方向に炉中心部まで広がっている場合は、水平方向に広がる凝固層の上面の平均の高さから羽口高さまでの水平方向の厚みの平均を用いることができる。また凝固層の上面の平均の高さにかえて、炉中心部での凝固層の上面の高さを用いてもよい。 That is, from the shape of the solidified layer estimated in step 4, the average thickness of the solidified layer in the horizontal direction between the taphole and the tuyere immediately above the taphole is estimated, and the estimated average thickness of the taphole or If there are three or more tap holes, a burner is installed at the tap hole with the second smallest estimated average thickness, and heating gas is blown into the furnace from the burner to raise the bottom of the furnace. Warm is preferred. At this time, if the solidified layer spreads horizontally to the center of the furnace at the height of the tap hole, the horizontal thickness from the average height of the top surface of the horizontally spread solidified layer to the height of the tuyere can be used. Further, the height of the upper surface of the solidified layer at the center of the furnace may be used instead of the average height of the upper surface of the solidified layer.

ステップ7では、吹込み酸素量、燃料ガス、燃焼時間、燃焼ガスの充填層内の軌跡等の燃焼条件を入力する。燃焼条件は、バーナの能力や供給したい熱量に応じて決定すればよい。ガスの軌跡は、推定された炉内の状況を考慮した炉内の圧力分布に基づいて決めることができる。なお、炉底部の凝固層は、固化した銑鉄やスラグで隙間なく埋め尽くされたものである場合は少なく、凝固物とコークスとが混ざり合って固化したものであるので、ある程度の通気性を有していることがほとんどである。出銑口に設置したバーナの炉内先端部が凝固層で閉塞され通気が悪い場合には、出銑口バーナの燃焼に先立って、純酸素を吹き込んで固化した銑鉄を酸化発熱させて凝固層を融解させた後にバーナの燃焼を行うようにすればよい。また、燃焼ガスの燃焼温度 (断熱火炎温度) は酸素と燃料ガスの組成から算出する(ステップ9)。 In step 7, the combustion conditions such as the amount of oxygen to be blown, the fuel gas, the combustion time, and the trajectory of the combustion gas in the packed bed are input. Combustion conditions may be determined according to the capability of the burner and the amount of heat to be supplied. The trajectory of the gas can be determined based on the pressure distribution in the furnace considering the estimated situation in the furnace. In addition, the solidified layer at the bottom of the furnace is rarely filled with solidified pig iron or slag without any gaps. Most of them do. If the tip of the furnace inside the burner installed at the taphole is clogged with a solidified layer and ventilation is poor, prior to combustion of the taphole burner, pure oxygen is blown into the solidified pig iron to oxidize and heat the solidified layer. The burner should be combusted after melting. Also, the combustion temperature of the combustion gas (adiabatic flame temperature) is calculated from the composition of oxygen and fuel gas (step 9).

以上の条件のもと、炉底においてバーナを燃焼させた際の炉底の昇温挙動の非定常計算を行う(ステップ10~13)。具体的には、以下に示す伝熱方程式を計算用に分割した各要素について、差分法、有限体積法等の数値解析手法により解く。

Figure 0007243677000001
上記の式においてTは炉底の凝固物、コークス等の内容物の温度、Tgは燃焼ガス温度、ρは密度、Cpは比熱、λは熱伝導率、x,y,zは分割要素の座標、hはガスの対流および輻射による熱伝達係数を表す。 Under the above conditions, unsteady calculation of the temperature rise behavior of the hearth bottom when the burner is fired at the hearth bottom is performed (steps 10 to 13). Specifically, each element obtained by dividing the heat transfer equation shown below for calculation is solved by a numerical analysis method such as a finite difference method or a finite volume method.
Figure 0007243677000001
In the above formula, T is the temperature of solidified material at the bottom of the furnace, coke, etc., Tg is the combustion gas temperature, ρ is the density, Cp is the specific heat, λ is the thermal conductivity, and x, y, z are the coordinates of the dividing elements. , h represent the convective and radiative heat transfer coefficients of the gas.

ここで、羽口先温度の目標温度は、羽口からの送風によってコークスが燃焼を開始する温度(概ね800℃)以上とする。ただし、操業停止時の炉内のコークスは、銑鉄やスラグなどの溶融物が付着していることが多いため、羽口からの送風を開始する時の羽口先温度が低いと、コークスの燃焼が可能な温度であっても燃焼を定常的に継続できなることもある。そのため、目標温度は1500℃以上とすることが好ましく、2000℃以上とすることがより好ましい。 Here, the target temperature of the tuyere tip temperature is set to a temperature (approximately 800° C.) or higher at which coke starts to burn due to blowing air from the tuyere. However, the coke in the furnace when the operation is stopped is often covered with molten materials such as pig iron and slag. Combustion may not be able to continue steadily even at possible temperatures. Therefore, the target temperature is preferably 1500° C. or higher, more preferably 2000° C. or higher.

図6は、長期休風中の実高炉を対象として図4のように凝固層を求め、バーナを出銑口から挿入しバーナを燃焼した際の、燃焼開始以降のバーナ近傍の温度分布を表す。バーナの燃焼ガスが流れる出銑口先から羽口の領域にかけては、炉内凝固物が速やかに昇温されていることが分かる。燃焼開始から12時間で、羽口先の温度は2000℃を超え、この時点で、羽口から送風を行って炉内のコークスを燃焼させることが可能になったと判断できる。従って、この高炉では、計算を実施した出銑口に設置したバーナで、計算と同じ条件で12時間燃焼を継続した後、速やかに羽口からの送風を開始することができる。なお、このように出銑口に設置したバーナによって所定時間加熱を行って羽口からの送風が可能になった後、出銑口バーナを他の出銑口に移設して、高炉の複数位置において羽口からの送風が可能となるように加熱を行ってもよい。 Fig. 6 shows the temperature distribution in the vicinity of the burner after the start of combustion when the solidified layer is obtained as shown in Fig. 4 for an actual blast furnace during a long period of rest, and the burner is inserted into the tap hole and burned. . It can be seen that the temperature of the in-furnace solidified material rapidly rises from the tip of the tap hole through which the combustion gas of the burner flows to the region of the tuyere. Twelve hours after the start of combustion, the temperature at the tip of the tuyere exceeded 2000° C. At this point, it can be determined that it became possible to blow air from the tuyere to burn the coke in the furnace. Therefore, in this blast furnace, the burner installed at the tap hole where the calculation was performed can continue to burn for 12 hours under the same conditions as in the calculation, and then immediately start blowing air from the tuyere. After heating is performed for a predetermined period of time by the burner installed at the taphole, and air can be blown from the tuyere, the taphole burner is moved to another taphole, and multiple positions of the blast furnace are installed. Heating may be performed so that air can be blown from the tuyeres.

図6には比較のため、羽口先の温度が2000℃に到達をした以降も加熱をつづけた場合の結果も示してある。燃焼開始から15時間後では、出銑口先と羽口間の領域の温度上昇は2000℃を維持しているものの、燃焼ガスの軌跡から離れた領域の昇温は停滞している。すなわち、本バーナの目的は出銑口と羽口の間の領域を昇温することにあるため燃焼開始から12時間経過した時点でその目的は達成されたことになり、それ以降燃焼を継続しても大きな昇温の効果は得られないことになる。これは、この燃焼条件では、燃焼時間が増加しても投入熱量が温度上昇にほとんど寄与せず、放散熱が増加してしまうことによると考えられる。すなわち燃焼開始から12時間が適切なバーナの燃焼時間となる。このように、本発明によりバーナの適切な燃焼条件と燃焼時間が過不足無く推定可能となり、可動停止中の高炉の早期立ち上げに寄与すことができる。 For comparison, FIG. 6 also shows the results when heating was continued even after the temperature at the tip of the tuyere reached 2000°C. After 15 hours from the start of combustion, the temperature rise in the area between the tip of the tap hole and the tuyere is maintained at 2000°C, but the temperature rise in the area away from the trajectory of the combustion gas is stagnant. That is, since the purpose of this burner is to raise the temperature of the area between the tap hole and the tuyere, the purpose is achieved 12 hours after the start of combustion, and the combustion is continued thereafter. However, a large temperature rise effect cannot be obtained. This is probably because under these combustion conditions, even if the combustion time increases, the amount of heat input hardly contributes to the increase in temperature, and the amount of heat dissipated increases. That is, 12 hours from the start of combustion is an appropriate burner combustion time. In this way, the present invention makes it possible to estimate the appropriate combustion conditions and combustion time of the burner in just the right amount, which contributes to the early start-up of a blast furnace that is currently out of operation.

バーナの構成としては、可燃性ガスと支燃性ガスを同時に吹き込める構造を有していればよい。構造の一例としては、気体が流通する内管と外管を含む重管構造を有するものが挙げられる。バーナから可燃性ガスと支燃性ガスを吹き込む場合には、内管または外管の一方から可燃性ガスを吹き込み、他方から支燃性ガス(例えば酸素や、空気)を吹き込む。バーナから支燃性ガスを吹き込んで、高炉内のコークスを燃焼させる場合には、内管と外管の一方から、またはその両方から支燃性ガスを吹き込む。この際、バーナの温度が上がりすぎないように外管のさらに外側から不活性ガス(例えば窒素)を吹き込んでバーナを冷却してもよい。あるいは、可燃性ガスを吹き込まない場合には、例えば、内管から支燃性ガスを、外管から冷却用の不活性ガスを吹き込んでもよい。 The burner may have a structure capable of blowing combustible gas and combustion-supporting gas at the same time. An example of the structure is one having a multi-pipe structure including an inner tube and an outer tube through which gas flows. When the combustible gas and the combustion-supporting gas are blown from the burner, the combustible gas is blown from either the inner tube or the outer tube, and the combustion-supporting gas (for example, oxygen or air) is blown from the other. When the combustion-supporting gas is blown from the burner to burn the coke in the blast furnace, the combustion-supporting gas is blown from one or both of the inner tube and the outer tube. At this time, the burner may be cooled by blowing an inert gas (for example, nitrogen) from the outside of the outer tube so that the temperature of the burner does not rise too much. Alternatively, when no combustible gas is blown, for example, a combustible gas may be blown from the inner tube and an inert gas for cooling may be blown from the outer tube.

また、バーナ先端には、内管と外管との端部を覆うキャップであって高炉内において除去可能なキャップを設けてもよい。このようなキャップを設けておくと、バーナを高炉に設置する際には例えば内管から外管に空気などのガスを流通してバーナを冷却しながらバーナを高炉に設置することができる。そして、設置が完了したら、例えば高炉内の熱によってキャップを溶解させて除去することによって、内管と外管から高炉内に加熱ガスを吹き込むことができ、バーナの出銑口への設置作業を効率的かつ安全に行える。そのようなバーナの構造の一例を図7(a)、(b)に示す。 Also, the tip of the burner may be provided with a cap that covers the ends of the inner tube and the outer tube and that is removable in the blast furnace. By providing such a cap, when the burner is installed in the blast furnace, the burner can be installed in the blast furnace while gas such as air is circulated from the inner tube to the outer tube to cool the burner. After the installation is completed, for example, by melting and removing the cap by the heat in the blast furnace, heated gas can be blown into the blast furnace from the inner and outer tubes, and the work of installing the burner to the taphole can be simplified. Efficient and safe. An example of such a burner structure is shown in FIGS. 7(a) and 7(b).

図7(a)、(b)は、それぞれ、本発明の炉底の昇温方法に用いるのが好ましいバーナの構造の一例を示す図である。図7(a)、(b)に示すバーナ1は、気体が流通する内管21と外管22との2重管構造を有するとともに、内管21と外管22との端部を覆うキャップ23を有している。そして、図7(a)に示すようにキャップ23が存在する場合は、内管21の気体導入口24から吹き込んだ気体が外部に漏れずに外管22の気体排出口25から排出される。一方、図7(b)に示すようにキャップ23が存在しない場合は、内管21の気体導入口24から吹き込んだ気体が炉内に供給される。そのため、バーナ1は、キャップ23を存在させた状態で内管21から外管22に気体を流してバーナ1を冷却する機能を有するとともに、内管21から外管22の気体の流通による冷却を止めるとともにキャップ23を溶解させ、バーナ1の内管21または外管22あるいはその両方から炉内に加熱用ガスを吹き込んで炉底を昇温する機能を有する。 FIGS. 7(a) and 7(b) are diagrams respectively showing an example of the structure of a burner preferably used in the method for raising the temperature of the furnace bottom of the present invention. The burner 1 shown in FIGS. 7(a) and 7(b) has a double tube structure of an inner tube 21 and an outer tube 22 through which gas flows, and a cap covering the ends of the inner tube 21 and the outer tube 22. 23. When the cap 23 is present as shown in FIG. 7A, the gas blown from the gas introduction port 24 of the inner tube 21 is discharged from the gas discharge port 25 of the outer tube 22 without leaking to the outside. On the other hand, when the cap 23 does not exist as shown in FIG. 7(b), the gas blown from the gas introduction port 24 of the inner tube 21 is supplied into the furnace. Therefore, the burner 1 has a function of cooling the burner 1 by flowing gas from the inner tube 21 to the outer tube 22 in a state where the cap 23 is present, and cooling by the flow of gas from the inner tube 21 to the outer tube 22 is performed. It has a function of stopping and melting the cap 23 and blowing heating gas into the furnace from the inner tube 21 and/or the outer tube 22 of the burner 1 to raise the temperature of the bottom of the furnace.

以下、本発明の実施例について説明する。長期操業停止中の実高炉を対象として、炉底昇温バーナを出銑口から挿入し燃焼を開始した。一方、燃焼開始前に図1に示すフローチャートに則り、バーナの燃焼時間と炉内の温度分布の関係をシミュレーターにより推定した。出銑口と羽口の間の領域が十分に昇温されるであろう燃焼時間を、シミュレーターにより推定し、本推定時間と同様の時間を実炉における燃焼時間とした。 Examples of the present invention will be described below. Combustion was started by inserting a furnace bottom heating burner into the tap hole for a real blast furnace that had been out of operation for a long period of time. On the other hand, before the start of combustion, the relationship between the combustion time of the burner and the temperature distribution in the furnace was estimated using a simulator according to the flow chart shown in Fig. 1. A simulator was used to estimate the combustion time during which the temperature of the region between the tap hole and the tuyere would be sufficiently increased, and the same time as this estimated time was used as the combustion time in the actual furnace.

燃焼終了後出銑口からバーナを引き抜いたところ、直ちに出銑口より大量の溶融物が排出され出銑口近傍が十分に昇温されたことが確認された。溶融物の排出が完了した後、出銑口から羽口へのガスのドラフトが確認されたことから、出銑口と羽口の間に空間が確保されたことも確認された。羽口先の温度も2000℃に昇温されており、シミュレーションが妥当なことが確認され、その後、羽口から1100℃の熱風を送風したところ、羽口先端部のコークスが順調に燃焼して、高炉の加熱を継続でき、高炉を速やかに立ち上げることができた。 When the burner was pulled out from the tap hole after the end of combustion, it was confirmed that a large amount of molten material was immediately discharged from the tap hole and the temperature in the vicinity of the tap hole was sufficiently raised. After the molten material was discharged, a draft of gas from the taphole to the tuyere was confirmed, so it was also confirmed that a space was secured between the taphole and the tuyere. The temperature at the tip of the tuyere was also raised to 2000°C, confirming the validity of the simulation. Afterwards, hot air at 1100°C was blown from the tuyere, and the coke at the tip of the tuyere burned smoothly. The heating of the blast furnace could be continued and the blast furnace could be started up quickly.

本発明に係る炉底の昇温方法によれば、操業停止中の炉下部の昇温を効果的に行うことができ、高炉の再稼働だけでなく、高炉以外の様々の竪型溶解炉においても炉底の昇温方法を提供できる。 According to the method for raising the temperature of the furnace bottom according to the present invention, it is possible to effectively raise the temperature of the lower part of the furnace during shutdown, not only for restarting the blast furnace but also for various vertical melting furnaces other than the blast furnace. can also provide a method for raising the temperature of the furnace bottom.

1 バーナ
21 内管
22 外管
23 キャップ
24 気体導入口
25 気体排出口
26 温度計
1 Burner 21 Inner Tube 22 Outer Tube 23 Cap 24 Gas Inlet 25 Gas Outlet 26 Thermometer

Claims (5)

操業が停止した高炉の炉底の出銑口に設けたバーナから炉内に加熱用ガスを吹き込んで炉底を昇温する炉底の昇温方法において、
操業停止中に炉底部に成長した凝固層の形状を推定する工程と、
複数の出銑口において、該出銑口と該出銑口の直上の羽口との間の凝固層の平均厚みを推定する工程と、
推定された平均厚みが最も小さい出銑口または、3か所以上の出銑口を有する場合には前記推定された平均厚みが最も小さいか2番目に小さい出銑口にバーナを設置して、バーナから炉内に加熱用ガスを吹き込んで炉底を昇温する工程と、を含む、炉底の昇温方法。
In a method for raising the temperature of the bottom of a blast furnace whose operation has been stopped, heating gas is blown into the furnace from a burner provided at the tap hole of the bottom of the furnace to raise the temperature of the bottom of the furnace,
estimating the shape of the solidified layer grown on the bottom of the furnace during shutdown;
estimating an average thickness of a solidified layer between a plurality of tap holes and a tuyere immediately above the tap hole;
Install the burner at the tap hole with the smallest estimated average thickness, or at the tap hole with the smallest or second smallest estimated average thickness when there are three or more tap holes, A method for raising the temperature of the bottom of a furnace, comprising the step of blowing a heating gas into the furnace from a burner to raise the temperature of the bottom of the furnace.
操業が停止した高炉の炉底の出銑口に設けたバーナから炉内に加熱用ガスを吹き込んで炉底を昇温する炉底の昇温方法において、
操業停止中に炉底部に成長した凝固層の形状を推定する工程と、
推定した凝固層形状からバーナから吹き込んだ加熱用ガスの燃焼中に昇温する炉底部の温度分布を推定する工程と、
前記温度分布に基づいて、バーナから吹き込んだ加熱用ガスを燃焼させる時間を決定する工程と、を含む、炉底の昇温方法。
In a method for raising the temperature of the bottom of a blast furnace whose operation has been stopped, heating gas is blown into the furnace from a burner provided at the tap hole of the bottom of the furnace to raise the temperature of the bottom of the furnace,
estimating the shape of the solidified layer grown on the bottom of the furnace during shutdown;
a step of estimating the temperature distribution of the furnace bottom, which rises in temperature during combustion of the heating gas blown from the burner, from the estimated solidified layer shape;
and determining a time for burning the heating gas blown from the burner based on the temperature distribution.
請求項2に記載の炉底の昇温方法において、
決定された燃焼時間以上、吹き込む加熱ガスを燃焼させた後、前記バーナを別の出銑口に移設して、バーナから吹き込む加熱ガスを燃焼させる、炉底の昇温方法。
In the method for raising the temperature of the furnace bottom according to claim 2,
A method for raising the temperature of the bottom of the furnace, comprising burning the heated gas to be blown in for a predetermined combustion time or more, and then moving the burner to another tap hole and burning the heated gas to be blown from the burner.
請求項1ないし請求項3のいずれか1項の炉底の昇温方法において、
前記バーナは、気体が流通する内管と外管を含む重管構造を有し、内管と外管との端部を覆うキャップであって高炉内において除去可能なキャップを有する、炉底の昇温方法。
In the method for raising the temperature of the furnace bottom according to any one of claims 1 to 3,
The burner has a heavy-tube structure including an inner tube and an outer tube through which gas flows, and has a cap that covers the ends of the inner tube and the outer tube and is removable in the blast furnace. heating method.
請求項1ないし請求項4のいずれか1項の炉底の昇温方法を用い、
バーナから加熱用ガスを吹き込んだ後、バーナを設置した直上の羽口から酸素を含む1000℃以上のガスを吹き込んで炉内のコークスを燃焼させる、高炉の立ち上げ方法。
Using the method for raising the temperature of the furnace bottom according to any one of claims 1 to 4,
A method for starting up a blast furnace, comprising blowing a heating gas from a burner and then blowing a gas containing oxygen at a temperature of 1000°C or higher from a tuyere directly above the burner to burn coke in the furnace.
JP2020085666A 2020-05-15 2020-05-15 Furnace bottom temperature raising method and blast furnace start-up method Active JP7243677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020085666A JP7243677B2 (en) 2020-05-15 2020-05-15 Furnace bottom temperature raising method and blast furnace start-up method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020085666A JP7243677B2 (en) 2020-05-15 2020-05-15 Furnace bottom temperature raising method and blast furnace start-up method

Publications (2)

Publication Number Publication Date
JP2021179004A JP2021179004A (en) 2021-11-18
JP7243677B2 true JP7243677B2 (en) 2023-03-22

Family

ID=78511010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020085666A Active JP7243677B2 (en) 2020-05-15 2020-05-15 Furnace bottom temperature raising method and blast furnace start-up method

Country Status (1)

Country Link
JP (1) JP7243677B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098676A (en) 2003-08-19 2005-04-14 Nippon Steel Corp Tuyere structure of waste melting furnace and blowing method of combustible dust
JP2013221184A (en) 2012-04-17 2013-10-28 Nippon Steel & Sumitomo Metal Corp Temperature elevation method of charged material and residue at blast furnace bottom
JP2016030833A (en) 2014-07-25 2016-03-07 Jfeスチール株式会社 Method for starting ventilation in blast furnace, and burner for hearth part temperature rising

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005098676A (en) 2003-08-19 2005-04-14 Nippon Steel Corp Tuyere structure of waste melting furnace and blowing method of combustible dust
JP2013221184A (en) 2012-04-17 2013-10-28 Nippon Steel & Sumitomo Metal Corp Temperature elevation method of charged material and residue at blast furnace bottom
JP2016030833A (en) 2014-07-25 2016-03-07 Jfeスチール株式会社 Method for starting ventilation in blast furnace, and burner for hearth part temperature rising

Also Published As

Publication number Publication date
JP2021179004A (en) 2021-11-18

Similar Documents

Publication Publication Date Title
JP6947345B1 (en) Blast furnace operation method
JP6369910B2 (en) Starting the smelting process
JP4752021B2 (en) Reduced blast operation method of blast furnace
JP7243677B2 (en) Furnace bottom temperature raising method and blast furnace start-up method
CN203365358U (en) Experimental apparatus for adhering slag on blast furnace copper cooling stave
TWI732500B (en) Furnace bottom heating method and spray gun used therefor
JP5862519B2 (en) Blast furnace operation method
JP7306421B2 (en) How to start up a blast furnace
CN208187094U (en) Novel cokeless furnace cupola
KR101267649B1 (en) Method for assuming liquid flow of blast furnace
KR101185300B1 (en) Method for estimating position bordered to furnace wall of softening zone
JP4739920B2 (en) Blast furnace operation method with small furnace heat fluctuation
JP5854200B2 (en) Blast furnace operation method
JP5921887B2 (en) Method and apparatus for producing molded coke
JP7196967B1 (en) Method for estimating deposit shape of filler in blast furnace and method for replacing coke in blast furnace
JP2009235437A (en) Method for controlling blast furnace operation at blowing-stop time in large reduction of charged material level
JP7468775B2 (en) How molten iron is produced
TWI776499B (en) blast furnace operation method
JP4161526B2 (en) Operation method of smelting reduction furnace
CN115418433B (en) High-temperature furnace drying method for opening new converter
JP2013096002A (en) Method and apparatus for controlling combustion in hot blast stove
WO2019163607A1 (en) Operating method for metal refining furnace
JP4082092B2 (en) Thermal insulation method for hot stove
JP3385831B2 (en) Estimation method of hearth erosion line and hearth structure
JP2023139359A (en) Temperature raising method of smelting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230220

R150 Certificate of patent or registration of utility model

Ref document number: 7243677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150