JP4161526B2 - Operation method of smelting reduction furnace - Google Patents

Operation method of smelting reduction furnace Download PDF

Info

Publication number
JP4161526B2
JP4161526B2 JP2000267204A JP2000267204A JP4161526B2 JP 4161526 B2 JP4161526 B2 JP 4161526B2 JP 2000267204 A JP2000267204 A JP 2000267204A JP 2000267204 A JP2000267204 A JP 2000267204A JP 4161526 B2 JP4161526 B2 JP 4161526B2
Authority
JP
Japan
Prior art keywords
temperature
tuyere
raceway
blowing
reduction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000267204A
Other languages
Japanese (ja)
Other versions
JP2002069517A (en
Inventor
貴 松井
武 内山
義明 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000267204A priority Critical patent/JP4161526B2/en
Publication of JP2002069517A publication Critical patent/JP2002069517A/en
Application granted granted Critical
Publication of JP4161526B2 publication Critical patent/JP4161526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、溶融還元炉の操業方法に係わり、特に、炭素系固体還元剤を充填した竪型炉に、上下少なくとも二段に設けられた羽口から粉粒状の金属酸化物含有原料及び高温空気(通常、酸素富化空気)を吹き込み、該粉粒状の金属酸化物含有原料を溶融還元して溶融金属を製造する技術に関する。
【0002】
【従来の技術】
粉粒状の金属酸化物含有原料を溶融還元し、酸化物を形成している金属を回収する手段として、竪型炉タイプの溶融還元炉が特開昭57−198205号公報、特公昭59−18452号公報で提案されている。それは、炭素系固体還元剤(例えば、塊状のコークスや石炭等)が充填された縦型炉の下部に高温空気を吹き込む羽口(水冷された金属製円筒体)を上下二段に設け、そのうちの少なくとも上段の羽口から金属酸化物を含有する粉粒状原料を高温空気と共に該竪型炉内に吹き込むようにしたものである。この炉では、羽口から吹き込まれた高温空気により炉内の炭材が燃焼され高熱を発生し、同じく羽口から吹きこまれる粉粒状原料(以下、単に原料という)を、この高熱で加熱溶融し、溶融物が充填層を滴下する間にそれを固体炭素で直接還元し、溶融状態の金属及びスラグとして炉底部に溜まるように操業が行なわれる。
【0003】
上記操業方法では、金属酸化物が上下羽口間の充填層内で直接還元される際の還元吸熱量が大きく、溶融物(以下、融体という)が滴下不良を起こして、操業トラブルの原因となることが多いので、前記還元吸熱の補償に下段羽口から高温の空気や酸素富化空気を吹き込んでいる。また、炉内で生成した融体を炉床に一旦溜めてから炉外へ排出するが、羽口溶損(炉内に生成する融体との接触により羽口を構成する金属が溶け、羽口冷却水が炉内へ浸水すること)や炉内装入物の冷え込み(炉内に生成した融体が温度降下により充填層中を滴下しなくなること)を起こさずに操業を安定して継続するには、融体の温度を適正に維持しなければならない。
【0004】
そこで、特開平10−251721号公報は、下段羽口レベルに生成する融体の温度(記号T)を予め定めた目標値以上に管理して操業の安定化を図る技術を提案している。この技術は、下段羽口レベルに生成する融体の温度(T)は、実際に測定することが困難なので、羽口より下方での炉体からの抜熱量を考慮した数学モデルを作成し、適宜、出銑温度及び出銑量を用いて推定するようにしたものである。そして、この推定値は、原料の還元程度及び生成する融体の温度を代表させる指標としては有効なものと考えられていた。なお、上記目標値以上に管理する具体的な操作は、送風温度、送風量、送風中酸素濃度、金属酸化物含有原料の吹込み量から選択した1種又は2種以上を調整することであった。
【0005】
【発明が解決しようとする課題】
しかしながら、特開平10−251721号公報記載の技術を利用して操業している時に、原料の吹込み量や送風量等の操業条件を大幅に変更すると、現状における羽口下方での融体温度を推定することが困難になるという問題があった。それは、特開平10−251721号公報に示された数学モデルは静的な炉床部の熱バランスを表現したものであるため、上記したような操業条件の変更を行なった結果、炉床部の熱バランスが崩れている場合には、正確な融体温度を求めることができないからである。
【0006】
下段羽口レベルでの融体温度が低下してしまうと、前記したような羽口破損や炉内装入物の冷え込みが生じる恐れがあるため、通常は操業条件の変更に伴って下段羽口レベルでの融体温度の目標値を高めにすることがある。すなわち、融体温度の推定が困難と思われる時に、送風温度変更等のアクションにより炉への入熱量を増加するのである。このようなアクションを採った時に、時として下段羽口レベルの通液性が悪化する現象が発生することがあった。この羽口下方での通液性が悪化すると、生成した融体が下段羽口の先端から前方に滞留するため、融体と羽口との接触が生じ易く、下段羽口の冷却水量と冷却水温度の変化から計算される羽口からの抜熱量が大幅に増加する。このような状態が続くと、羽口前に滞留した融体によって銅製の羽口自体が溶損するトラブルが発生することになる。下段羽口の抜熱量と羽口溶損頻度の関係を図8に示すが、抜熱量が300MJ/h以上になると、羽口の溶損する機会が大幅に増加することがわかる。羽口溶損が発生すると炉内への浸水等の問題があり、羽口を交換するための休風を余儀なくされて、操業に大きな支障をきたす。
【0007】
そこで、本発明は、かかる事情に鑑み、従来は推定値であった下段羽口レベルの融体温度の利用を改め、操業を従来より安定化する管理指標を用いて、炉底での冷え込みや羽口溶損が生じる恐れのない操業が可能な溶融還元炉の操業方法を提供すること目的としている。
【0008】
【課題を解決するための手段】
発明者は、上記目的を達成するため、炭素系固体還元剤の充填層に高温空気を吹き込む上下少なくとも二段に設けられた羽口を有する溶融還元炉を用いて、粉粒状の金属酸化物含有原料を羽口から吹き込み溶融金属を製造する試験操業を多々行ない、その成果を本発明に具現化した。
【0009】
すなわち、本発明は、炭素系固体還元剤が充填され、その充填層へ高温空気を吹き込む上下二段に設けられた羽口を有する溶融還元炉に、上段羽口から粉末状の金属酸化物含有原料を吹き込み、溶融金属を製造する溶融還元炉の操業方法において、下段羽口の前方に形成されるレースウエイの温度を測定し、その測定値が目標範囲内の2000〜2300℃に収まるように、送風温度、送風量、送風中酸素濃度、送風中湿分、金属酸化物含有原料の吹込み量から選択した1種又は2種以上を調整することを特徴とする溶融還元炉の操業方法である。
【0010】
この場合、前記レースウエイの温度を、非接触温度計で測定するのが好ましい
【0011】
本発明によれば、下段羽口の前方に形成されるレースウエイの温度を測定し、その測定値が目標範囲内の2000〜2300℃に収まるように操業するので、従来より羽口下方での通液性が良好に保たれるばかりでなく、羽口の溶損を防止できるようになる。
【0012】
【発明の実施の形態】
以下、発明をなすに至った経緯を交え、本発明の実施の形態を説明する。
【0013】
まず、発明者は、二段羽口を有する炭材充填層型溶融還元炉でのSi移行反応について考察を重ね、以下に示す知見を得た。
【0014】
溶融還元炉内に吹き込まれた原料が溶融、還元される際の炉内雰囲気温度が高いと、(1)式に示す反応が生じ、生成したスラグからSiOが揮発する。その結果、スラグの塩基度(CaO/SiO2)が上昇し,高融点のスラグになってしまう。
【0015】
SiO2+C→SiO+CO (1)
(1)式の反応速度は、炉内温度が高いほど大きくなるので、スラグ中のSiO2が減少し、より塩基度の高いスラグが生成する。そして、このスラグが充填層の空隙内に滞留すると、充填層を融体が滴下する所謂「通液性」を著しく阻害してしまう。
【0016】
前記特開平10−251721号公報記載の技術では、この炉内温度を数学モデルで求め、管理指標としたものである。しかしながら、前記したような問題が明らかになった。
【0017】
そこで、発明者は、こうした問題点について検討し、出銑温度や出銑量を用いて、出銑された溶銑が下段羽口レベルにおいて生成した時の融体温度を計算するのではなく、現実の下段羽口前における融体温度を推定し、それを基に操業アクションを採ることで下段羽口前でのスラグ組成の変動を抑える必要があると考えた。そして、下段羽口レベルで生成した融体の温度は直接計測することは不可能であるが、これと関連して変動すると考えられる何かの温度を直接計測して、それを指標として操業アクションを採ることを考え、鋭意検討した。
【0018】
融体は、下段羽口前で燃焼するコークス等の燃焼熱を受け、最終的に還元され、
昇温されるので、下段羽口レベルでの融体の温度がどの程度であるかを端的に示す指標としては、下段羽口前においてコークスが燃焼している部位での温度が適してしていると考えられる。そこで、下段羽口前に形成されるレースウェイの温度を直接測定して、それを下段羽口レベルに生成する融体の温度と想定することで、操業アクションを採ることにした。ここで、レースウェイとは、羽口から炉内へ吹き込まれた送風により、羽口前の炭素系固体還元剤の充填層中に形成される空間であり、この空間の外縁は炭素系固体還元剤で形成されると共に、その空間内には、炭素系固体還元剤が旋回しながら燃焼している。このレースウェイの温度は、送風温度と炭素系固体還元剤との燃焼熱、該レースウェイ内へ炉内から供給される炭素系固体還元剤の温度、及び流下してくる融体の温度等の影響を受けて変動するものであり、この事実が該レースウェイのレベルから下方へ流下する融体の温度と強い関係がある。
【0019】
具体的なレースウェイ温度の測定には、種々の方法が考えられるが、その温度は通常2000℃前後の高温であるため、羽口部に設置される覗きメガネから羽口前のレースウェイを直接覗き、ここに放射温度計や二色温度計等の非接触式温度計で温度を計測する方法が計測設備の安定性、メンテ性等において好ましい。その他の測定法としては、羽口前面に熱電対等を設置する方法や羽口横からレースウェイ内へゾンデを差し込んで、熱電対により計測する方法等が考えられる。これらの方法では、羽口やゾンデの冷却により計測される温度に影響を与える可能性があるが、冷却によるバイアスを考慮して目標値を設定することで、発明の目的を達成することができる。
【0020】
なお、本発明を具体的に実施するには、レースウェイ温度の管理目標値が必要であるが、その値は溶融還元炉での操業内容(如何なる金属酸化物を対象にするか)によって異なるので、予め試験操業を行なって決めたり、あるいは過去の操業で得たデータの解析で定めれば良い。また、測定した温度を管理目標値に収まるようにするには、操業条件を操作する必要がある。その操業条件は、前記特開平10−251721号公報記載の技術と同様に、送風温度、送風量、送風中酸素濃度、送風中湿分、金属酸化物含有原料の吹込み量から選択した1種又は2種以上を調整すれば良い。
【0021】
【実施例】
レースウェイ温度に変化を与える操業因子として、下記表1に示す項目が考えられ、それぞれに効果が予想される。
【0022】
【表1】

Figure 0004161526
【0023】
すなわち、送風量、富化酸素量を増加すると、レースウェイ内での炭材の燃焼熱量が増加し、レースウェイ温度が上昇する。送風温度の上昇は、レースウェイ内へ供給される送風の顕熱を上昇することになるため、これもレースウェイ温度の上昇に繋がる。また、送風湿分を増加することは、レースウェイ内で水分が炭素と反応して水素と一酸化炭素を生成する吸熱反応量が増加するため、レースウェイ温度が低下する。さらに、原料吹込み量を増加すると、原料の溶融、還元熱量をより多く必要とするために、下段羽口レベルに降下してくる融体の顕熱が低下することが考えられ、これが下段羽口のレースウェイ温度の低下に繋がると考えられる。
【0024】
そこで、これら操業因子の変更効果を確認するため、金属生産量が200t/日規模の溶融還元炉を用いた試験操業を行った。使用した酸化物原料は、製鋼工場の転炉から発生する製鋼ダストであり、酸化鉄、酸化クロム等の金属酸化物を含む。操業条件は、送風量230Nm3/min、酸素富化量50Nm3/min、送風温度850℃、原料吹き込み速度13t/hrをベースとした。
【0025】
図1は、この試験操業中の羽口抜熱量の推移を、図2は、下段羽口レベルより下方に存在する融体の温度推移を示す。これは、特開平10−251721号公報に記載される出銑温度と出銑量から推定される推定値である。図3は、試験操業中の下段羽口前方に形成されたレースウェイの温度推移を示す。ここでは、1本の下段羽口の覗きメガネに放射温度計を設置しレースウェイの温度を測定した。また、図4は、試験操業中の原料吹込み速度の推移を、図5は、送風量の推移を示す。さらに、図6は操業実験中の送風温度の推移を、図7は富化酸素量の推移を示す。
【0026】
試験操業期間では、まず最初に、送風条件一定のまま原料吹き込み量を11t/hrに減少させた状況で操業を行った(図4参照)。その結果、レースウェイ温度(図3参照)、羽口抜熱量(図1参照)がともに増加した。そこで、変更1の期間として、酸素富化量を45Nm3/minまで低下させ(図6参照)、抜熱量も270MJ程度まで低下させた(図1参照)。
【0027】
次に、操業条件をベース条件に戻してから24時間経過後、再び原料吹き込み速度を11t/hrまで低下させた(図4参照)この変更2の期間では、送風量を200Nm3/minまで低下させた(図5参照)結果、レースウェイ温度は、約30℃低下し(図3参照)、抜熱量も280MJ/hrまで低下した(図1参照)。
【0028】
この後、再びベース条件での操業を行った後、再度、原料吹き込み速度を11t/hrまで低下させ、変更3の実験を行った。以下、参照図番を省略するが、原料吹き込み速度を低下させた直後に羽口前温度、抜熱量ともに急増し、また送風温度の低下に伴い、両者とも低下していき、800℃の時点で、レースウェイ温度は2270℃、抜熱量は280MJ/hrとなった。
【0029】
なお、本操業期間中、羽口下の融体温度は、常に目標の1550℃以上に保たれていたが、羽口の抜熱量は大きく変動し、特に危険と考えられる抜熱量300MJ/hr以上に増加する場合も見られ、羽口下の融体温度の管理のみでは不十分であることが確認された。
【0030】
以上述べたように、試験操業において、レースウェイ温度を測定しながら表1に示したアクションをとることにより、羽口抜熱量を適正値に管理することが可能であることが確認された。また、その範囲としては、今回の試験操業ではレースウェイ温度2300℃を超えると、抜熱量が300MJ/hr以上に増加することからこれが上限値と考えられる。また、これ以後の操業においてレースウェイ温度が2000℃以下になると、下段羽口レベルの下方に存在する融体の温度が1550℃以下になることがわかり、以後、本設備においては2000〜2300℃をレースウェイ温度の適正値と考えて操業を行っている。しかしながら、この値は設備によって異なると考えられるので、各々の設備において適正な範囲を明確化することが必要である。
【0031】
なお、上記実施例は、溶融金属として鉄を主体とするものであったが、本発明はそれに限らないことは言うまでもない。
【0032】
【発明の効果】
以上、述べたように、本発明により、溶融還元炉で金属酸化物原料から金属を生産する操業が、炉床での冷え込み、羽口の溶損を恐れることなく円滑に実施できるようになった。
【図面の簡単な説明】
【図1】試験操業での下段羽口からの抜熱量の推移を示す図である。
【図2】試験操業での下段羽口レベル下に存在する融体の温度推移を示す図である。
【図3】試験操業での下段羽口先に存在するレースウエイの温度推移を示す図である。
【図4】試験操業での原料吹込み速度の推移を示す図である。
【図5】試験操業での送風量の推移を示す図である。
【図6】試験操業での送風温度の推移を示す図である。
【図7】試験操業での富化酸素量の推移を示す図である。
【図8】羽口冷却水の量と温度から算出した羽口抜熱量と羽口溶損の頻度との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for operating a smelting reduction furnace, and in particular, to a vertical furnace filled with a carbon-based solid reducing agent, from a tuyere provided in at least two stages above and below, a granular metal oxide-containing raw material and high-temperature air The present invention relates to a technique for producing a molten metal by blowing (usually oxygen-enriched air) and melting and reducing the particulate metal oxide-containing raw material.
[0002]
[Prior art]
As a means for melting and reducing a powdered metal oxide-containing raw material and recovering the metal forming the oxide, a vertical furnace type smelting reduction furnace is disclosed in JP-A-57-198205 and JP-B-59-18852. Proposed in the Gazette. It has two upper and lower tuyeres (water-cooled metal cylinders) that blow high-temperature air into the lower part of a vertical furnace filled with a carbon-based solid reducing agent (for example, massive coke or coal). A granular raw material containing a metal oxide is blown into the vertical furnace together with high-temperature air from at least the upper tuyere. In this furnace, high-temperature air blown from the tuyere burns the charcoal in the furnace to generate high heat, and heats and melts the granular raw material (hereinafter simply referred to as raw material) that is also blown from the tuyere. Then, while the molten material drops into the packed bed, it is directly reduced with solid carbon, and the operation is performed so that the molten metal and slag accumulate at the bottom of the furnace.
[0003]
In the above operation method, the reduction endotherm when the metal oxide is directly reduced in the packed bed between the upper and lower tuyere is large, and the melt (hereinafter referred to as the melt) causes a drip failure, causing operation troubles. Therefore, high-temperature air or oxygen-enriched air is blown from the lower tuyere to compensate for the reduction endotherm. In addition, the melt produced in the furnace is once stored in the hearth and discharged outside the furnace, but the tuyere melts (the metal composing the tuyere melts by contact with the melt produced in the furnace, The operation continues stably without causing the cooling water in the mouth to enter the furnace) or cooling the contents inside the furnace (the melt generated in the furnace no longer drops in the packed bed due to a temperature drop). For this, the temperature of the melt must be maintained properly.
[0004]
Japanese Patent Laid-Open No. 10-251721 proposes a technique for stabilizing the operation by managing the temperature (symbol T) of the melt generated at the lower tuyere level to a predetermined target value or more. In this technique, since the temperature (T) of the melt generated at the lower tuyere level is difficult to actually measure, a mathematical model that takes into account the amount of heat removed from the furnace body below the tuyere is created, As appropriate, the estimation is made using the output temperature and the output amount. This estimated value was considered to be effective as an index representing the degree of reduction of the raw material and the temperature of the melt to be produced. In addition, the specific operation managed above the target value is to adjust one or two or more selected from the blowing temperature, the blowing amount, the oxygen concentration during blowing, and the blowing amount of the metal oxide-containing raw material. It was.
[0005]
[Problems to be solved by the invention]
However, when operating using the technology described in Japanese Patent Application Laid-Open No. 10-251721, if the operating conditions such as the amount of raw material blown in and the amount of air blown are significantly changed, the melt temperature below the tuyere at the present time There was a problem that it was difficult to estimate. The mathematical model disclosed in Japanese Patent Laid-Open No. 10-251721 expresses the static heat balance of the hearth, and as a result of changing the operating conditions as described above, This is because an accurate melt temperature cannot be obtained when the heat balance is lost.
[0006]
Lowering the melt temperature at the lower tuyere level may cause damage to the tuyere and cooling of the furnace interior as described above. In some cases, the target value of the melt temperature is increased. That is, when it is considered difficult to estimate the melt temperature, the amount of heat input to the furnace is increased by actions such as changing the blowing temperature. When such an action was taken, a phenomenon sometimes occurred in which the liquid permeability at the lower tuyere level deteriorated. When the liquid permeability under the tuyere deteriorates, the generated melt stays forward from the tip of the lower tuyere, so that the melt tends to come into contact with the tuyere, and the cooling water amount and cooling of the lower tuyere The amount of heat removed from the tuyere calculated from the change in water temperature is greatly increased. If such a state continues, the trouble that the copper tuyere itself melts due to the melt staying in front of the tuyere occurs. FIG. 8 shows the relationship between the heat removal rate of the lower tuyere and the tuyere melting frequency, and it can be seen that when the heat removal rate is 300 MJ / h or more, the chance of the tuyere melting is greatly increased. If the tuyere melts, there is a problem such as flooding into the furnace, and it is forced to take a break to replace the tuyere, which greatly hinders operation.
[0007]
Therefore, in view of such circumstances, the present invention revises the use of the melt temperature at the lower tuyere level, which was the estimated value in the past, and uses a management index that stabilizes the operation from the conventional level. An object of the present invention is to provide a method of operating a smelting reduction furnace capable of operation without fear of causing tuyere melting.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the inventor uses a smelting reduction furnace having a tuyere provided in at least two stages above and below to blow high-temperature air into a packed bed of a carbon-based solid reducing agent, and contains a particulate metal oxide Many test operations were carried out to produce molten metal by blowing the raw material from the tuyere, and the results were embodied in the present invention.
[0009]
That is, the present invention provides a melting reduction furnace having a tuyere provided in two upper and lower stages filled with a carbon-based solid reducing agent and blows high-temperature air into the packed bed. In the operation method of the smelting reduction furnace in which the raw material is blown and the molten metal is produced, the temperature of the raceway formed in front of the lower tuyere is measured, and the measured value falls within 2000-2300 ° C. within the target range. The operation method of the smelting reduction furnace characterized by adjusting one or more selected from the blowing temperature of the blowing temperature, blowing volume, blowing oxygen concentration, blowing moisture, and metal oxide-containing raw material is there.
[0010]
In this case, it is preferable to measure the temperature of the raceway with a non-contact thermometer .
[0011]
According to the present invention, the temperature of the raceway formed in front of the lower tuyere is measured, and the operation is performed so that the measured value falls within 2000 to 2300 ° C. within the target range. Not only the liquid permeability is kept good, but also the tuyere can be prevented from being damaged.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the background to the invention.
[0013]
First, the inventor repeatedly considered the Si transfer reaction in a carbon material packed bed type smelting reduction furnace having a two-stage tuyere, and obtained the following knowledge.
[0014]
When the furnace atmosphere temperature when the raw material blown into the smelting reduction furnace is melted and reduced is high, the reaction shown in the formula (1) occurs, and SiO is volatilized from the generated slag. As a result, the basicity (CaO / SiO 2 ) of the slag is increased, resulting in a slag having a high melting point.
[0015]
SiO 2 + C → SiO + CO (1)
Since the reaction rate of the formula (1) increases as the furnace temperature increases, SiO 2 in the slag decreases, and slag with higher basicity is generated. And when this slag stays in the space | gap of a filled layer, what is called "liquid permeability" by which a melt will dripped will fill up a filled layer remarkably.
[0016]
In the technique described in Japanese Patent Laid-Open No. 10-251721, the furnace temperature is obtained by a mathematical model and used as a management index. However, the problems as described above have become clear.
[0017]
Therefore, the inventor examines these problems and does not calculate the melt temperature when the molten iron produced at the lower tuyere level is calculated by using the molten iron temperature and the amount of molten iron. It was thought that it was necessary to suppress the fluctuation of the slag composition in front of the lower tuyere by estimating the melt temperature in front of the lower tuyere and taking action based on it. And it is impossible to directly measure the temperature of the melt generated at the lower tuyere level, but directly measure the temperature of something that seems to fluctuate in connection with this, and use it as an index Considering to adopt, we studied earnestly.
[0018]
The melt receives combustion heat such as coke that burns in front of the lower tuyere, and is finally reduced.
The temperature at the lower tuyere level is a good indicator of how much the melt temperature is at the lower tuyere level. It is thought that there is. Therefore, we decided to take operational action by directly measuring the temperature of the raceway formed in front of the lower tuyere and assuming it as the temperature of the melt generated at the lower tuyere level. Here, the raceway is a space formed in the packed layer of the carbon-based solid reducing agent in front of the tuyere by air blown from the tuyere into the furnace, and the outer edge of this space is the carbon-based solid reduction The carbon-based solid reducing agent is swirling and burning in the space. The temperature of this raceway is the air temperature and the combustion heat of the carbon-based solid reducing agent, the temperature of the carbon-based solid reducing agent supplied from the furnace into the raceway, the temperature of the melt flowing down, etc. This fact varies and is strongly related to the temperature of the melt flowing down from the level of the raceway.
[0019]
There are various methods for measuring the specific raceway temperature, but the temperature is usually around 2000 ° C, so the raceway in front of the tuyere is directly connected to the eyeglasses installed in the tuyere. A method of peeping and measuring the temperature with a non-contact type thermometer such as a radiation thermometer or a two-color thermometer is preferable in terms of stability and maintainability of the measuring equipment. As other measurement methods, a method of installing a thermocouple or the like in front of the tuyere, a method of measuring with a thermocouple by inserting a sonde into the raceway from the side of the tuyere, and the like can be considered. Although these methods may affect the temperature measured by cooling the tuyere and the sonde, the object of the invention can be achieved by setting a target value in consideration of a bias due to cooling. .
[0020]
In addition, in order to carry out the present invention concretely, the management target value of the raceway temperature is necessary, but the value varies depending on the operation contents (what kind of metal oxide is targeted) in the smelting reduction furnace. It may be determined in advance by performing a test operation or by analyzing data obtained in the past operation. In order to keep the measured temperature within the management target value, it is necessary to manipulate the operating conditions. The operating conditions are one type selected from the blowing temperature, the blowing amount, the blowing oxygen concentration, the blowing moisture, and the blowing amount of the metal oxide-containing raw material, as in the technique described in JP-A-10-251721. Or what is necessary is just to adjust 2 or more types.
[0021]
【Example】
As the operating factors that change the raceway temperature, the items shown in Table 1 below can be considered, and the effects are expected for each of them.
[0022]
[Table 1]
Figure 0004161526
[0023]
That is, when the amount of blown air and the amount of enriched oxygen are increased, the amount of combustion heat of the carbonaceous material in the raceway increases, and the raceway temperature rises. Since the increase in the blowing temperature increases the sensible heat of the blowing supplied into the raceway, this also leads to an increase in the raceway temperature. Further, increasing the blast moisture causes an increase in the endothermic reaction amount in which water reacts with carbon in the raceway to generate hydrogen and carbon monoxide, resulting in a decrease in raceway temperature. Furthermore, if the raw material blowing amount is increased, it is considered that the sensible heat of the melt falling to the lower tuyere level is lowered because more raw material melting and reducing heat is required, which is considered to be the lower wing. This is thought to lead to a decrease in the temperature of the mouth raceway.
[0024]
Therefore, in order to confirm the effect of changing these operating factors, a test operation using a smelting reduction furnace with a metal production amount of 200 t / day was performed. The used oxide raw material is steelmaking dust generated from a converter in a steelmaking factory, and includes metal oxides such as iron oxide and chromium oxide. Operating condition, the blast volume 230 nm 3 / min, oxygen-enriched quantity 50 Nm 3 / min, blast temperature 850 ° C., was based on the raw material blowing rate 13t / hr.
[0025]
FIG. 1 shows the transition of the amount of heat extracted from the tuyere during this test operation, and FIG. 2 shows the transition of the temperature of the melt existing below the lower tuyere level. This is an estimated value estimated from the output temperature and the output amount described in JP-A-10-251721. FIG. 3 shows the temperature transition of the raceway formed in front of the lower tuyere during the test operation. Here, a radiation thermometer was installed in the peeping glasses at one lower tuyere to measure the temperature of the raceway. Moreover, FIG. 4 shows the transition of the raw material blowing speed during the test operation, and FIG. 5 shows the transition of the blowing rate. Furthermore, FIG. 6 shows the transition of the blast temperature during the operation experiment, and FIG. 7 shows the transition of the enriched oxygen amount.
[0026]
In the test operation period, first, the operation was performed in a state where the raw material blowing amount was reduced to 11 t / hr while the air blowing conditions were constant (see FIG. 4). As a result, the raceway temperature (see FIG. 3) and the amount of heat extracted from the tuyere (see FIG. 1) both increased. Therefore, as the period of change 1, the oxygen enrichment amount was reduced to 45 Nm 3 / min (see FIG. 6), and the heat removal amount was also reduced to about 270 MJ (see FIG. 1).
[0027]
Next, 24 hours after returning the operating condition to the base condition, the raw material blowing speed was reduced again to 11 t / hr (see FIG. 4). In this change 2 period, the blowing rate was reduced to 200 Nm 3 / min. As a result (see FIG. 5), the raceway temperature decreased by about 30 ° C. (see FIG. 3), and the heat removal amount also decreased to 280 MJ / hr (see FIG. 1).
[0028]
Thereafter, the operation under the base condition was performed again, and then the raw material blowing speed was decreased to 11 t / hr again, and Experiment 3 was performed. Hereinafter, although the reference figure number is omitted, immediately after the raw material blowing speed is lowered, both the temperature before the tuyere and the amount of heat removal increase rapidly, and both decrease as the blowing temperature decreases. The raceway temperature was 2270 ° C., and the heat removal amount was 280 MJ / hr.
[0029]
During this operation, the melt temperature under the tuyere was always kept at the target of 1550 ° C. or higher, but the heat removal amount of the tuyere fluctuated greatly, and the heat removal amount considered to be particularly dangerous was 300 MJ / hr or more. It was confirmed that the melt temperature under the tuyere alone was not sufficient.
[0030]
As described above, in the test operation, it was confirmed that the amount of heat extracted from the tuyere can be managed to an appropriate value by taking the actions shown in Table 1 while measuring the raceway temperature. In addition, as the range, in this test operation, when the raceway temperature exceeds 2300 ° C., the heat removal amount increases to 300 MJ / hr or more, which is considered to be the upper limit value. In addition, when the raceway temperature is 2000 ° C. or lower in the subsequent operation, it can be seen that the temperature of the melt existing below the lower tuyere level is 1550 ° C. or lower. Is considered to be an appropriate value for the raceway temperature. However, since this value is considered to vary depending on the equipment, it is necessary to clarify an appropriate range for each equipment.
[0031]
In addition, although the said Example mainly comprised iron as a molten metal, it cannot be overemphasized that this invention is not restricted to it.
[0032]
【The invention's effect】
As described above, according to the present invention, an operation for producing metal from a metal oxide raw material in a smelting reduction furnace can be smoothly performed without fear of cooling in the hearth and melting of tuyere. .
[Brief description of the drawings]
FIG. 1 is a diagram showing the transition of heat removal from a lower tuyere in a test operation.
FIG. 2 is a diagram showing a temperature transition of a melt existing below a lower tuyere level in a test operation.
FIG. 3 is a diagram showing a temperature transition of a raceway existing at a lower tuyere at a test operation.
FIG. 4 is a graph showing a change in raw material blowing speed in a test operation.
FIG. 5 is a diagram showing a change in the air flow rate in the test operation.
FIG. 6 is a diagram showing the transition of the blast temperature in the test operation.
FIG. 7 is a graph showing a change in the amount of enriched oxygen in a test operation.
FIG. 8 is a diagram showing the relationship between the amount of heat removed from the tuyere calculated from the amount and temperature of the tuyere cooling water and the frequency of tuyere melting.

Claims (2)

炭素系固体還元剤が充填され、その充填層へ高温空気を吹き込む上下二段に設けられた羽口を有する溶融還元炉に、上段羽口から粉末状の金属酸化物含有原料を吹き込み、溶融金属を製造する溶融還元炉の操業方法において、
下段羽口の前方に形成されるレースウエイの温度を測定し、その測定値が目標範囲内の2000〜2300℃に収まるように、送風温度、送風量、送風中酸素濃度、送風中湿分、金属酸化物含有原料の吹込み量から選択した1種又は2種以上を調整することを特徴とする溶融還元炉の操業方法。
A powdered metal oxide-containing raw material is blown from the upper tuyere into a melting reduction furnace having a tuyere provided in two upper and lower stages, which is filled with a carbon-based solid reducing agent and blows high-temperature air into the packed bed. In the operation method of the smelting reduction furnace for producing
The temperature of the raceway formed in front of the lower tuyere is measured, and the air temperature, the air volume, the oxygen concentration during air blowing, the moisture during air blowing, so that the measured value falls within 2000 to 2300 ° C. within the target range, A method for operating a smelting reduction furnace, comprising adjusting one or more selected from the blowing amount of a metal oxide-containing raw material.
前記レースウエイの温度を非接触式温度計で測定することを特徴とする請求項1記載の溶融還元炉の操業方法。  2. The method of operating a smelting reduction furnace according to claim 1, wherein the temperature of the raceway is measured with a non-contact type thermometer.
JP2000267204A 2000-09-04 2000-09-04 Operation method of smelting reduction furnace Expired - Fee Related JP4161526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000267204A JP4161526B2 (en) 2000-09-04 2000-09-04 Operation method of smelting reduction furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000267204A JP4161526B2 (en) 2000-09-04 2000-09-04 Operation method of smelting reduction furnace

Publications (2)

Publication Number Publication Date
JP2002069517A JP2002069517A (en) 2002-03-08
JP4161526B2 true JP4161526B2 (en) 2008-10-08

Family

ID=18754161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000267204A Expired - Fee Related JP4161526B2 (en) 2000-09-04 2000-09-04 Operation method of smelting reduction furnace

Country Status (1)

Country Link
JP (1) JP4161526B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100788287B1 (en) * 2006-04-25 2007-12-27 엘지전자 주식회사 Rotor of electirc motor for simplified manufacturing process and electric motor having the same
JP5540923B2 (en) * 2010-06-18 2014-07-02 Jfeスチール株式会社 Operation method of smelting reduction furnace

Also Published As

Publication number Publication date
JP2002069517A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
EP2210959B1 (en) Process for producing molten iron
JP4161526B2 (en) Operation method of smelting reduction furnace
JP7306421B2 (en) How to start up a blast furnace
US8475561B2 (en) Method for producing molten iron
JP7196967B1 (en) Method for estimating deposit shape of filler in blast furnace and method for replacing coke in blast furnace
TWI797000B (en) Heat supply estimation method, heat supply estimation device, heat supply estimation program, and blast furnace operation method
JP4770316B2 (en) Blast furnace tuyere and blast furnace bottom situation evaluation method
TWI795278B (en) Heat supply estimation method, heat supply estimation device, heat supply estimation program, and blast furnace operation method
TWI795277B (en) Heat supply estimation method, heat supply estimation device, heat supply estimation program, and blast furnace operation method
JP3722059B2 (en) Operation method of smelting reduction furnace
JP7243677B2 (en) Furnace bottom temperature raising method and blast furnace start-up method
KR102511007B1 (en) Apparatus for measuring molten iron temperature of blast furnace
WO2023276357A1 (en) Supplied heat quantity estimation method, supplied heat quantity estimation device, supplied heat quantity estimation program, and operation method for blast furnace
JP3873356B2 (en) Operation method of vertical smelting reduction furnace
JP2010090453A (en) Method of operating vertical melting furnace
JPH10237513A (en) Operation of blast furnace
JPH08302407A (en) Operating method of furnace
JP2533815B2 (en) Operating method of bottom blown converter
JP2741140B2 (en) Blast furnace operation method
JP2023172090A (en) Blast furnace operating method
JP2694588B2 (en) Blast furnace operation method
KR100919022B1 (en) Method for preventing the bottom side wall of blast furnace from eroding, using silicone addtive
JP3617464B2 (en) Blast furnace operation method
JP2002220611A (en) Operating method of melting/reducing furnace
JPH0520489B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110801

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120801

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130801

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees