JP2023139359A - Temperature raising method of smelting furnace - Google Patents

Temperature raising method of smelting furnace Download PDF

Info

Publication number
JP2023139359A
JP2023139359A JP2022044849A JP2022044849A JP2023139359A JP 2023139359 A JP2023139359 A JP 2023139359A JP 2022044849 A JP2022044849 A JP 2022044849A JP 2022044849 A JP2022044849 A JP 2022044849A JP 2023139359 A JP2023139359 A JP 2023139359A
Authority
JP
Japan
Prior art keywords
burner
furnace
temperature
smelting furnace
smelting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022044849A
Other languages
Japanese (ja)
Inventor
高規 富永
Takanori Tominaga
勝弘 森
Katsuhiro Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2022044849A priority Critical patent/JP2023139359A/en
Publication of JP2023139359A publication Critical patent/JP2023139359A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Furnace Details (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

To provide a temperature raising method capable of shortening a temperature raising time without generating local overheating in a furnace, by smoothly igniting a shaft burner, and stabilizing a burner flame even after ignition of the shaft burner.SOLUTION: A method for raising a temperature at the time of startup of a smelting furnace for smelting non-ferrous metals, such as a self-melting furnace used in a smelting process of pyrometallurgical copper smelting, wherein after the inside of the smelting furnace is substituted by air of higher oxygen concentration than the air introduced via a gas introduction part formed of a window box for example in the smelting furnace, a burner of the smelting furnace is ignited.SELECTED DRAWING: Figure 1

Description

本発明は製錬炉の昇温方法に関し、特に銅製錬に代表される非鉄金属製錬の熔錬工程において使用される製錬炉を立ち上げる際の昇温方法に関する。 The present invention relates to a method for raising the temperature of a smelting furnace, and more particularly to a method for raising the temperature of a smelting furnace used in the smelting process of non-ferrous metal smelting, typified by copper smelting.

採掘した鉱石を選鉱することで得た銅品位30%程度の銅精鉱を原料とする乾式銅製錬プロセスは、熔錬炉に装入した該銅精鉱を酸化・熔融することで銅品位60~65%程度のマットを生成する熔錬工程と、得られたマットを更に酸化することで銅品位99.8%程度の粗銅を生成する製銅工程と、得られた粗銅を電解精製することで銅品位99.99%以上の精製銅(純銅)を生成する精製工程とから主に構成される。 The dry copper smelting process uses copper concentrate with a copper grade of about 30% obtained by beneficiation of mined ore as raw material.The copper concentrate charged into a smelting furnace is oxidized and melted to produce a copper grade of 60%. A smelting process that produces matte with a copper content of about 65%, a copper manufacturing process that produces blister copper with a copper grade of about 99.8% by further oxidizing the resulting matte, and electrolytic refining of the blister copper obtained. It mainly consists of a refining process that produces refined copper (pure copper) with a copper grade of 99.99% or higher.

上記の熔錬炉には、一般的にオウトクンプ式の自熔炉が多用されている。自熔炉は、上部のバーナーから導入した銅精鉱を空気又は酸素富化空気により酸化反応させる縦型円筒形状のリアクションシャフトと、該リアクションシャフトの下方に位置し、該酸化反応により生成されるマット及びスラグを比重差により分離させるセトラーと、該セトラー上部の該リアクションシャフト側とは反対側に位置し、該酸化反応時に発生するSOを含んだ1300℃程度の高温の排ガスを排出させるアップテイクとから主に構成されている。 As the above-mentioned smelting furnace, an Outokump type self-smelting furnace is generally often used. A flash-melting furnace consists of a vertical cylindrical reaction shaft that oxidizes copper concentrate introduced from an upper burner using air or oxygen-enriched air, and a matte produced by the oxidation reaction located below the reaction shaft. and a settler that separates slag based on the difference in specific gravity; and an uptake located on the opposite side of the reaction shaft at the top of the settler and that discharges high temperature exhaust gas of about 1300°C containing SO 2 generated during the oxidation reaction. It is mainly composed of.

上記のように、自熔炉のアップテイクからは、SOガスを高濃度に含んだ高温の排ガスが安定的に排出されるため、この排ガスは廃熱ボイラーで熱回収された後、硫酸の原料として硫酸製造プラントに送られる。廃熱ボイラーでは回収した熱でスチームを発生させ、これを付帯設備のタービン発電機の動力として利用している。このタービン発電機は2年に1回程度の頻度で定期的に官庁検査が行なわれるため、このタイミングに合わせて自熔炉も操業を停止している。そして、この操業停止期間を利用して自熔炉の耐火物を点検し、必要に応じて補修が行なわれる。 As mentioned above, high-temperature exhaust gas containing a high concentration of SO2 gas is stably discharged from the uptake of the flash-melting furnace, so this exhaust gas is used as a raw material for sulfuric acid after its heat is recovered in the waste heat boiler. and sent to a sulfuric acid manufacturing plant. The waste heat boiler uses the recovered heat to generate steam, which is used to power the turbine generator included in the auxiliary equipment. This turbine generator undergoes periodic government inspections about once every two years, so the flash-melting furnace also shuts down at the same time. The refractories of the flash-melting furnace are then inspected and repaired as necessary during this period of shutdown.

上記の停止期間の終了後の自熔炉の立ち上げでは、原料の銅精鉱を装入する前に1週間程度の期間をかけて自熔炉を昇温する操作が必要になる。その理由は、時間をかけずに昇温すると耐火物が急激に膨張するので、特に停止期間中に更新した部分で煉瓦を痛めたり、急激な膨張により煉瓦間に生じた隙間に熔体が過剰に流れ込んだりする問題を生じるおそれがあるからである。また、自熔炉を十分に昇温させないまま銅精鉱をバーナーから導入すると、熱不足により銅精鉱が良好に着火しないおそれがあるからである。 When starting up the flash melting furnace after the end of the above-mentioned shutdown period, it is necessary to increase the temperature of the flash melting furnace over a period of about one week before charging copper concentrate as a raw material. The reason for this is that the refractory expands rapidly if the temperature rises without taking a long time, which can damage the bricks, especially in areas that have been renewed during the outage period, or cause excessive molten material to fill the gaps between the bricks due to rapid expansion. This is because there is a risk of problems such as the water flowing into the water. Further, if copper concentrate is introduced from the burner without sufficiently raising the temperature of the flash melting furnace, there is a risk that the copper concentrate will not ignite well due to lack of heat.

上記の自熔炉の立ち上げ時の昇温は、リアクションシャフトの上部に設置したバーナー(以下、シャフトバーナー又は精鉱バーナーとも称する)と、セトラー内に設置した複数のバーナー(以下、セトラーバーナーとも称する)による重油の燃焼により加熱する方法が一般的に採用される。例えば特許文献1には、自熔炉の操業停止時の自熔炉本体の保温又は昇温、或いは補修後の自熔炉の立ち上げ時の昇温に際して、銅製錬時に銅精鉱、フラックスその他の装入物を燃料及び空気又は酸素富化空気と共に導入して燃焼させる精鉱バーナーを用いて加熱する技術が開示されている。具体的には、精鉱バーナーから空気又は酸素富化空気と共に粉コークスを導入して該粉コークスの一部をセトラー内で未燃焼状態で飛散させて燃焼させることによって、炉内全体を所定温度に保温或いは昇温するものである。 The temperature rise during startup of the above-mentioned flash melting furnace is achieved by a burner installed at the top of the reaction shaft (hereinafter also referred to as a shaft burner or concentrate burner) and multiple burners installed in the settler (hereinafter also referred to as settler burner). ) heating method is generally adopted by burning heavy oil. For example, Patent Document 1 describes how to maintain or raise the temperature of the flash smelting furnace body when the flash smelting furnace stops operating, or to raise the temperature when starting up the flash smelting furnace after repair. Techniques have been disclosed for heating materials using concentrate burners in which materials are introduced with fuel and air or oxygen-enriched air and burned. Specifically, coke breeze is introduced from a concentrate burner together with air or oxygen-enriched air, and a portion of the coke breeze is scattered and burned in an unburned state in a settler, thereby keeping the entire furnace at a predetermined temperature. It maintains or raises the temperature.

特開2000-199019号公報Japanese Patent Application Publication No. 2000-199019

上記の特許文献1の技術を用いることにより、保温及び昇温用のバーナーを特に設けることなくリアクションシャフトの頂部1箇所に設けた精鉱バーナーから粉コークスを空気等と共に供給するだけで、自熔炉の炉内全体を保温或いは昇温することができるので設備管理面で有利であり、また、局部加熱によるレンガの損傷や不均一な熱膨張等によるレンガの亀裂等を軽減できると記載されている。更に、操業中のセトラー内に熔体を保持した状態のまま保温する場合は、粉コークスを用いることで、重油を用いる場合に比べて廃熱ボイラーの蒸気発生量を通常操業時の3割程度から5割程度まで増量させることができ、炉修後の粉コークスを用いた昇温では、重油のみの場合に比べて約3倍の蒸気が得られると記載されている。 By using the technology of Patent Document 1 mentioned above, coke powder can be supplied together with air etc. from the concentrate burner installed at one location on the top of the reaction shaft without the need to specifically provide a burner for heat retention or temperature increase. It is said that it is advantageous in terms of equipment management because it can keep or raise the temperature of the entire inside of the furnace, and that it can also reduce damage to bricks due to local heating and cracks in bricks due to uneven thermal expansion, etc. . Furthermore, when maintaining the temperature of the melt in the settler during operation, by using coke powder, the amount of steam generated by the waste heat boiler can be reduced to about 30% of normal operation compared to when heavy oil is used. It is stated that the amount of steam can be increased by about 50% from 100 to 100%, and that by raising the temperature using coke breeze after furnace repair, about three times as much steam can be obtained compared to using only heavy oil.

しかしながら、特許文献1の技術は、通常操業時に補助燃料として一般的に用いる重油以外に粉コークスを用いるため、その貯蔵、定量切り出し、搬送等の設備が別途必要になるので設備コストがかかるうえ、その取扱いに手間がかかる。 However, the technology of Patent Document 1 uses coke breeze in addition to heavy oil, which is generally used as an auxiliary fuel during normal operations, and requires separate equipment for storage, quantitative cutting, transportation, etc., which increases equipment costs. It takes time to handle it.

また、一般的に大気雰囲気下における自熔炉の立ち上げは、炉内部が放冷された状態からの昇温になるので、立ち上げの初期段階では炉壁からの輻射熱が低いため、シャフトバーナーの点火が難しく、点火してもバーナーのフレームが安定しないため、重油が未燃のまま炉内に入ることがあった。また、シャフトバーナー点火後もシャフトバーナー及び複数のセトラーバーナーにおける不完全燃焼によりフレームが延びにくく、結果的にガス温度が十分に上昇しないため炉内が局所的に過熱したり、昇温速度が低下したりする問題が生ずることがあった。かかる状況下において、強制的に理想の昇温曲線に近づけるべく重油の供給流量を増やすと、バーナーが不完全燃焼になるおそれがある。このため、炉内の耐火物温度がある程度上昇するまでは重油の供給流量を増やすことができず、昇温に長時間を要することが問題になっていた。 Additionally, when starting up a flash-melting furnace in an atmospheric environment, the temperature inside the furnace is raised from a state where it is left to cool. It was difficult to ignite the burner, and even when it was ignited, the flame of the burner was unstable, so heavy oil sometimes entered the furnace unburned. In addition, even after the shaft burner is ignited, the flame is difficult to extend due to incomplete combustion in the shaft burner and multiple settler burners, and as a result, the gas temperature does not rise sufficiently, causing local overheating in the furnace and slowing down the temperature rise rate. Problems sometimes occurred. Under such circumstances, if the supply flow rate of heavy oil is forcibly increased to approach the ideal temperature rise curve, there is a risk that the burner will undergo incomplete combustion. For this reason, the supply flow rate of heavy oil cannot be increased until the temperature of the refractories in the furnace rises to a certain extent, which poses a problem in that it takes a long time to raise the temperature.

本発明は上記事情に鑑みてなされたものであり、製錬炉の立ち上げ時の昇温に際して、シャフトバーナーをスムーズに点火させると共に、シャフトバーナーの点火後もそのバーナーフレームを安定化させることで、炉内において局所過熱を生じさせることなく昇温時間を短縮化できる昇温方法を提供することを目的としている。 The present invention has been made in view of the above-mentioned circumstances, and it is possible to smoothly ignite a shaft burner when the temperature rises at the time of starting up a smelting furnace, and to stabilize the burner frame even after the shaft burner is ignited. The object of the present invention is to provide a heating method that can shorten the heating time without causing local overheating in a furnace.

上記目的を達成するため、本発明に係る製錬炉の昇温方法は、非鉄金属製錬を行なう製錬炉の立ち上げ時の昇温方法であって、前記製錬炉内に気体導入部を介して導入した空気よりも高酸素濃度の気体によって前記製錬炉内を置換した後、前記製錬炉のバーナーに点火することを特徴とする。 In order to achieve the above object, a method for increasing the temperature of a smelting furnace according to the present invention is a method for increasing the temperature at the time of startup of a smelting furnace for smelting non-ferrous metals, the method includes: The method is characterized in that the burner of the smelting furnace is ignited after the interior of the smelting furnace is replaced with a gas having a higher oxygen concentration than the air introduced through the smelting furnace.

本発明によれば、製錬炉の立ち上げ時の昇温に際して、シャフトバーナーをスムーズに点火させることができるうえ、シャフトバーナー点火後もそのバーナーフレームを安定化させることができるので、炉内において局所過熱を生じさせることなく昇温時間を短縮化することができる。 According to the present invention, the shaft burner can be ignited smoothly when the temperature rises at the start-up of the smelting furnace, and the burner frame can be stabilized even after the shaft burner is ignited, so that The heating time can be shortened without causing local overheating.

本発明の実施形態の昇温方法によって昇温される自熔炉及びその排ガス処理設備の模式的なフロー図である。FIG. 2 is a schematic flow diagram of a self-melting furnace and its exhaust gas treatment equipment whose temperature is raised by a temperature raising method according to an embodiment of the present invention. 図1の自熔炉が具備するシャフトバーナーの一具体例の縦断面図である。FIG. 2 is a vertical cross-sectional view of a specific example of a shaft burner included in the flash furnace of FIG. 1. FIG. 本発明の実施例において昇温した自熔炉の昇温プロフィールを示すグラフである。It is a graph which shows the temperature rise profile of the self-melting furnace which temperature rose in the Example of this invention.

以下、本発明に係る製錬炉の昇温方法の実施形態について具体的に説明する。この本発明の実施形態の製錬炉の昇温方法は、銅、亜鉛、鉛、ニッケル、錫などの非鉄金属製錬が行なわれる製錬炉を対象にしており、該製錬炉の点検・補修や付帯設備の補修等のため、原料の装入を停止することで操業を停止していた該製錬炉の操業再開のため、炉内部が放冷された状態から製錬炉を昇温させる方法であり、該製錬炉内に気体導入部を介して導入した空気よりも高酸素濃度の気体によって該製錬炉内を置換した後、該製錬炉のバーナーに点火することを特徴としている。 EMBODIMENT OF THE INVENTION Hereinafter, the embodiment of the temperature raising method of the smelting furnace based on this invention is described concretely. The method for increasing the temperature of a smelting furnace according to an embodiment of the present invention is aimed at a smelting furnace in which non-ferrous metals such as copper, zinc, lead, nickel, and tin are smelted, and the smelting furnace is inspected and In order to restart the operation of the smelting furnace, which had been shut down due to suspension of raw material charging due to repairs and repair of ancillary equipment, the temperature of the smelting furnace was increased from a state where the inside of the furnace was allowed to cool. This method is characterized by replacing the inside of the smelting furnace with a gas having a higher oxygen concentration than the air introduced into the smelting furnace through the gas introduction part, and then igniting the burner of the smelting furnace. It is said that

具体的に説明すると、先ず製錬炉の炉内にその気体導入部を介して空気よりも酸素濃度の高い気体(以下、高酸素濃度気体と称する)を導入して該炉内をこの高酸素濃度気体で置換する。この高酸素濃度気体の供給源としては、例えばPSA(圧力スイング吸着)式酸素ガス発生装置や深冷式空気分離装置などの酸素製造設備を挙げることができる。 To explain specifically, first, a gas with a higher oxygen concentration than air (hereinafter referred to as high oxygen concentration gas) is introduced into the furnace of the smelting furnace through the gas introduction part, and the inside of the furnace is filled with this high oxygen concentration. Replace with concentrated gas. Examples of the supply source of this high oxygen concentration gas include oxygen production equipment such as a PSA (pressure swing adsorption) type oxygen gas generator and a cryogenic air separation device.

この高酸素濃度気体は、酸素濃度が80体積%以上であることが好ましい。この酸素濃度が80体積%未満では、上記炉内を置換したときの酸素濃度が所望の酸素濃度よりも低くなるため、バーナーをスムーズに点火するのが困難になったり、該バーナーの点火後はバーナーフレームが不安定になったりする可能性が高くなり、本発明の効果が十分に発揮されにくくなるおそれがある。 This high oxygen concentration gas preferably has an oxygen concentration of 80% by volume or more. If this oxygen concentration is less than 80% by volume, the oxygen concentration when replacing the inside of the furnace will be lower than the desired oxygen concentration, making it difficult to ignite the burner smoothly, or after igniting the burner. There is a high possibility that the burner frame becomes unstable, and the effects of the present invention may be difficult to fully exhibit.

上記の置換が完了することで炉内全体に高酸素濃度気体が行き渡った状態となった時点でバーナーを点火する。ここで点火を行なうバーナーは、自熔炉の場合はリアクションシャフトの天井部に設けられた例えば重油を燃料とするシャフトバーナーである。更に、必要に応じてこのシャフトバーナーに加えて自熔炉のセトラーに好ましくは6~12本程度設けられているセトラーバーナーに点火してもよい。 The burner is ignited when the above replacement is completed and the high oxygen concentration gas is distributed throughout the furnace. The burner ignited here is, in the case of a flash-melting furnace, a shaft burner that is installed on the ceiling of the reaction shaft and uses heavy oil as fuel, for example. Furthermore, if necessary, in addition to this shaft burner, settler burners, preferably about 6 to 12 settler burners, which are provided in the settler of the flash-melting furnace, may be ignited.

上記のバーナーの点火の際、炉内には全体的に酸素が空気よりも高い濃度で存在しているので、炉内部が放冷された状態から立ち上げる場合であっても容易にバーナーを点火することができる。また、バーナーの点火後はフレームの形状を安定化させることができる。これにより、炉内のガス温度を全体に亘ってほぼ均一にすることができるので、炉壁を局所加熱させることなく全体的にほぼ均等に昇温させることができる。よって、従来のように空気雰囲気で製錬炉を立ち上げる場合においてスムーズにバーナーが点火しなかったり、点火してもフレームが不安定になったりする問題が生じにくくなるので、バーナーが点火しないことに起因して生じるバーナーに導入した重油が着火されずにそのまま滴下して炉底に溜まる問題がほぼ生じなくなる。また、点火した後にフレーム形状が短くなりすぎたり、安定しなかったりことで生じる局所過熱の問題も生じにくくなる。 When igniting the burner mentioned above, oxygen is present in the furnace at a higher concentration than air overall, so even when starting up from a state where the inside of the furnace has been left to cool, the burner can be easily ignited. can do. Furthermore, the shape of the frame can be stabilized after the burner is ignited. This makes it possible to make the gas temperature within the furnace substantially uniform throughout the furnace, so that the temperature can be raised substantially uniformly throughout the furnace without locally heating the furnace wall. Therefore, when starting up a smelting furnace in an air atmosphere like in the past, problems such as the burner not igniting smoothly or the flame becoming unstable even when ignited are less likely to occur, so the burner does not ignite. The problem of heavy oil introduced into the burner dripping without being ignited and collecting at the bottom of the furnace, which occurs due to this, is almost eliminated. In addition, the problem of local overheating caused by the flame becoming too short or unstable after ignition becomes less likely to occur.

なお、上記の高酸素濃度気体が炉内に行き渡った状態とは、炉内の全ての場所で酸素濃度が少なくとも21体積%を超えている状態のことであり、これは例えば自熔炉ではアップテイクの排ガス出口に設けたガス濃度計において酸素濃度が21体積%を超えたことを検知したことで該気体が行き渡ったと判断してもよいし、或いは炉内の容積を高酸素濃度気体の供給流量で除することで求めた時間が該高酸素濃度気体の炉内への供給開始時から経過したことで該気体が行き渡ったと判断してもよいし、これら両方の条件を満たしたときに該気体が行き渡ったと判断してもよい。 Note that the above-mentioned state in which the high oxygen concentration gas is pervasive in the furnace is a state in which the oxygen concentration exceeds at least 21% by volume in all parts of the furnace. It may be determined that the gas has been distributed by detecting that the oxygen concentration exceeds 21% by volume with a gas concentration meter installed at the exhaust gas outlet of the furnace, or alternatively, the volume inside the furnace may be determined by adjusting the supply flow rate of high oxygen concentration gas. It may be determined that the gas has been distributed because the time calculated by dividing by It may be concluded that this has been achieved.

上記のバーナーの点火後は、炉内に施工されている耐火物に予め設けた温度計か、或いは炉内のガス温度測定用の温度計で測定した温度が、予め準備しておいた昇温曲線に沿って昇温するように昇温させるのが好ましく、これはバーナーに供給する重油の供給流量で調整することができる。一般的には、製錬炉の炉内には内張り材として施工されている耐火物の例えば4か所以上8か所以下程度の箇所に温度計が設けられており、また、炉内のガス温度を測定するため、例えばセトラーの中心部及びアップテイクの下部の2か所にも温度計が設けられている。よって、これら温度計の指示値によって、炉内の昇温状態を良好に把握することが可能になる。 After the above burner is ignited, the temperature measured with a thermometer installed in the refractory installed inside the furnace or a thermometer for measuring the gas temperature inside the furnace will rise to a temperature that has been prepared in advance. It is preferable to raise the temperature along a curve, and this can be adjusted by adjusting the flow rate of heavy oil supplied to the burner. Generally, inside a smelting furnace, thermometers are installed at four or more but eight or less locations on the refractory lined as a lining material, and thermometers are installed at around 4 or more and 8 or less locations on the refractory lining. To measure the temperature, thermometers are also provided at two locations, for example in the center of the settler and at the bottom of the uptake. Therefore, it is possible to accurately grasp the state of temperature increase in the furnace based on the indicated values of these thermometers.

本発明の実施形態の昇温方法は、非鉄金属の製錬炉に良好に適用することができ、前述したオウトクンプ式自熔炉に好適に適用することができるが、これに限定されるものではなく、燃料及び空気等が導入されるランスを縦形略円筒形状の炉内に頂部から差し込んで該ランスの先端部をスラグ層に浸漬させて熔錬を行なう方式のオースメルトTSL(Top Submerged Lance)炉や、一端部にバーナーを備えた長方形の広く浅い炉床と、アーチ形状の天井とを有し、該天井からの反射を利用して熔錬を行なう方式の反射炉などの様々な形状の炉に適用できる。 The temperature raising method of the embodiment of the present invention can be well applied to a smelting furnace for non-ferrous metals, and can be suitably applied to the above-mentioned Outokumpu flash-smelting furnace, but is not limited thereto. , an ausmelt TSL (Top Submerged Lance) furnace in which a lance into which fuel, air, etc. are introduced is inserted from the top into a vertical approximately cylindrical furnace, and the tip of the lance is immersed in a slag layer to perform melting. Furnaces of various shapes, such as reverberatory furnaces, which have a rectangular wide and shallow hearth with a burner at one end and an arched ceiling, and perform melting using reflections from the ceiling. Applicable.

図1には、リアクションシャフト11と、セトラー12と、アップテイク13とから構成される自熔炉1が模式的に示されている。この自熔炉1は、リアクションシャフト11の頂部にシャフトバーナー20が1個設けられており、セトラー12にはその長手方向に平行な両側壁の5個ずつと、リアクションシャフト側の側壁の2個との合計12個のセトラーバーナー30が設けられている。リアクションシャフト11から排出される高温の排ガスは、廃熱ボイラー2で熱回収された後、硫酸製造プラント3に送られる。廃熱ボイラー2で熱回収されることで生じた高圧蒸気は蒸気タービン4に送られてそこで動力源として利用される。 FIG. 1 schematically shows a flash melting furnace 1 comprising a reaction shaft 11, a settler 12, and an uptake 13. This flash-melting furnace 1 is provided with one shaft burner 20 at the top of a reaction shaft 11, and the settler 12 has five shaft burners on each side wall parallel to the longitudinal direction, and two shaft burners on the side wall on the reaction shaft side. A total of 12 settler burners 30 are provided. The high-temperature exhaust gas discharged from the reaction shaft 11 is sent to the sulfuric acid production plant 3 after its heat is recovered by the waste heat boiler 2 . High pressure steam generated by heat recovery in the waste heat boiler 2 is sent to the steam turbine 4 and used there as a power source.

気体導入部は、所望の供給流量で高酸素濃度気体を炉内に導入できるのであれば特に限定はないが、自熔炉1の場合はシャフトバーナー20のウインドボックスを用いるのが好ましい。具体的に説明すると、図2に示すように、リアクションシャフト11の頂部に設けられているシャフトバーナー20は、リアクションシャフト11の頂部を貫通する略円筒形状のバーナーコーン21と、バーナーコーン21に同芯軸状に設けられており、バーナーコーン21の上端部に連通して設けられている略円錐形状のウインドボックス22と、銅精鉱及びフラックスの供給管の役割を担う円筒状の精鉱シュート23と、精鉱シュート23の内側に同芯軸状に設けられており、重油などの燃料を導入する役割を担うオキシフュエルバーナー24と、精鉱シュート23を囲むようにして軸方向に往復動自在に設けられた風速調整器25とから主に構成されている。 The gas introduction part is not particularly limited as long as it can introduce high oxygen concentration gas into the furnace at a desired supply flow rate, but in the case of the flash-melting furnace 1, it is preferable to use a wind box of the shaft burner 20. Specifically, as shown in FIG. 2, the shaft burner 20 provided at the top of the reaction shaft 11 has a substantially cylindrical burner cone 21 that passes through the top of the reaction shaft 11, and a burner cone 21 that is similar to the burner cone 21. A substantially conical wind box 22 is provided in the shape of a core shaft and communicates with the upper end of the burner cone 21, and a cylindrical concentrate chute serves as a supply pipe for copper concentrate and flux. 23, an oxyfuel burner 24 that is provided concentrically inside the concentrate chute 23 and plays the role of introducing fuel such as heavy oil, and an oxyfuel burner 24 that surrounds the concentrate chute 23 and can freely reciprocate in the axial direction. It mainly consists of a wind speed regulator 25 provided.

通常操業時は、精鉱シュート23の上端部から供給される精鉱は、自由落下でバーナーコーン21に導入され、一方、反応用空気はウインドボックス22と風速調整器25との間のスリット部からバーナーコーン21に吹き込まれる。これにより、精鉱及び反応用空気はバーナーコーン21内で混合された状態でリアクションシャフト11内に導入される。上記の高酸素濃度気体の導入部としてこのウインドボックス22及びその下端部に接続しているバーナーコーン21を用いることで、自熔炉1内に導入された高酸素濃度気体は、リアクションシャフト11、セトラー12、及びアップテイク13の順に炉内を一方向に流れてアップテイク13の上部排出口から排出されるので、炉内を効率よく高酸素濃度気体で置換することができる。 During normal operation, concentrate supplied from the upper end of the concentrate chute 23 is introduced into the burner cone 21 in free fall, while reaction air is introduced into the slit between the wind box 22 and the wind speed regulator 25. It is blown into the burner cone 21 from there. Thereby, the concentrate and reaction air are introduced into the reaction shaft 11 in a mixed state within the burner cone 21. By using the wind box 22 and the burner cone 21 connected to the lower end thereof as the introduction section for the high oxygen concentration gas, the high oxygen concentration gas introduced into the flash furnace 1 is transferred to the reaction shaft 11, the settler 12 and uptake 13 flow in one direction inside the furnace and are discharged from the upper exhaust port of uptake 13, so that the inside of the furnace can be efficiently replaced with high oxygen concentration gas.

本発明の実施形態の昇温方法においては、当該炉の昇温のために該バーナーに導入する空気の供給流量を、該バーナーに導入する燃料の理論燃焼空気量よりも少なく(すなわち理論燃焼空気量に対して100%未満)とすることが好ましい。これにより、該バーナーは不完全燃焼となって一部の未燃の燃料が製錬炉内に広がっていくので、この炉内に広がった未燃の燃料をバーナーから離れた場所で燃焼させることができ、よって炉内をより均一に昇温させることができる。なお、上記の空気の供給流量の下限値は、理論燃焼空気量に対して70%以上であることが好ましい。この供給流量が理論燃焼空気量の70%未満では、バーナー本体での燃焼が難しくなる。 In the temperature raising method according to the embodiment of the present invention, the flow rate of air introduced into the burner to raise the temperature of the furnace is smaller than the theoretical combustion air amount of the fuel introduced into the burner (i.e., the theoretical combustion air amount is less than the theoretical combustion air amount). (based on the amount) is preferably less than 100%. As a result, the burner undergoes incomplete combustion and some unburned fuel spreads into the smelting furnace, so it is necessary to burn the unburned fuel that has spread inside the furnace in a place away from the burner. Therefore, the temperature inside the furnace can be raised more uniformly. Note that the lower limit of the air supply flow rate is preferably 70% or more of the theoretical combustion air amount. If this supply flow rate is less than 70% of the theoretical combustion air amount, combustion in the burner body becomes difficult.

以上説明したように、本発明の実施形態の昇温方法を採用することにより、製錬炉の立ち上げ時の昇温に際して、バーナーをスムーズに点火させることができるうえ、該バーナーの点火後はバーナーのフレーム形状を安定化させることができるので、局所的な炉内部の過熱を生じさせることなく比較的短時間で昇温させることができる。特に、本発明の実施形態の昇温方法は、製錬炉の操業が長期間に亘って停止することによって炉内部がほぼ常温から300℃程度の状態から立ち上げる場合の昇温においてより顕著な効果が奏される。このような長期間の操業停止を行なう場合は、例えば大規模に製錬炉の耐火物を補修する場合や、製錬炉に付随して設けられている廃熱ボイラーや蒸気タービン発電設備の定期検査に合わせて操業停止する場合を挙げることができる。 As explained above, by adopting the temperature raising method of the embodiment of the present invention, the burner can be ignited smoothly when the temperature is raised at the time of startup of the smelting furnace, and after the burner is ignited, Since the frame shape of the burner can be stabilized, the temperature can be raised in a relatively short time without causing local overheating inside the furnace. In particular, the temperature raising method according to the embodiment of the present invention is more noticeable in the temperature increase when the furnace is started up from a state where the inside of the furnace is from about room temperature to about 300°C due to the operation of the smelting furnace being stopped for a long period of time. The effect is produced. Such long-term shutdowns may be necessary, for example, when large-scale repairs are being made to the refractories of the smelting furnace, or when the waste heat boiler or steam turbine power generation equipment attached to the smelting furnace is being shut down periodically. One example is when operations are shut down in conjunction with inspections.

[実施例]
図1に示すような構造の銅製錬用の自熔炉1を長期間に亘って操業停止した後の操業再開のため、炉内部の温度が放冷された状態の自熔炉1内に先ず酸素濃度85~91体積%の高酸素濃度気体を導入した。この高酸素濃度気体は、PSA(圧力スイング吸着)式酸素ガス発生装置で生成し、リアクションシャフト11の天井部に設けられている図2に示すようなシャフトバーナー20のウインドボックス22に導入することで、バーナーコーン21を介して自熔炉1内に導入した。
[Example]
In order to restart the operation of the flash smelting furnace 1 for copper smelting, which has a structure as shown in FIG. A high oxygen concentration gas of 85-91% by volume was introduced. This high oxygen concentration gas is generated by a PSA (pressure swing adsorption) type oxygen gas generator and introduced into the wind box 22 of the shaft burner 20 as shown in FIG. 2, which is installed on the ceiling of the reaction shaft 11. Then, it was introduced into the flash-melting furnace 1 via the burner cone 21.

自熔炉1の容積を高酸素濃度気体の供給流量で除することで算出した時間である2時間程度が該高酸素濃度気体の導入開始時から経過したので、自熔炉1内に高酸素濃度気体が行き渡ったと判断し、高酸素濃度気体の導入を停止して代わりにシャフトバーナー20に重油及び空気を供給して点火した。このとき、空気の供給流量は、重油の理論燃焼空気量に対して80%の割合にした。その結果、スムーズに点火することができた。続けて、12個のセトラーバーナー30のうちの8個のバーナーにおいても同様に理論燃焼空気量の80%の条件で点火したところスムーズに点火することができた。 Approximately 2 hours, which is the time calculated by dividing the volume of the flash melting furnace 1 by the supply flow rate of the high oxygen concentration gas, has elapsed since the introduction of the high oxygen concentration gas. It was determined that the amount of oxygen had gone through, so the introduction of high oxygen concentration gas was stopped, and instead heavy oil and air were supplied to the shaft burner 20 and ignited. At this time, the air supply flow rate was set to be 80% of the theoretical combustion air amount of heavy oil. As a result, it was possible to ignite smoothly. Subsequently, 8 of the 12 settler burners 30 were similarly ignited under the condition of 80% of the theoretical combustion air amount, and were able to be ignited smoothly.

上記のシャフトバーナー20及びセトラーバーナー30に点火した後に自熔炉1の覗き窓からこれらバーナーのフレームの形状を目視にて確認したところ、特に短くなっておらずに安定していた。このため、局所過熱の問題やスムーズに点火しないために重油が滴下して炉底に溜まる問題が生じなかった。また、セトラーの中心部に設けた温度計の指示値を見ながら、重油の供給流量を調整することで、予め計画しておいた昇温曲線からほとんど離脱させることなく炉内全体に亘ってほぼ均一且つほぼ同じ昇温速度で昇温させることができた。時期を変えて上記と同様の状態の自熔炉1の昇温を2回行なった。その結果、これら2回の昇温においてもバーナーをスムーズに点火することができ、点火後のバーナーのフレーム形状を安定化することができたので、局所加熱や重油滴下などの問題は生じなかった。 After the shaft burner 20 and settler burner 30 were ignited, the shapes of the frames of these burners were visually checked through the viewing window of the flash melting furnace 1, and were found to be stable without being particularly short. Therefore, there was no problem of local overheating or problems of heavy oil dripping and accumulating at the bottom of the furnace due to non-smooth ignition. In addition, by adjusting the supply flow rate of heavy oil while checking the readings on the thermometer installed in the center of the settler, it is possible to control the temperature throughout the entire furnace without deviating from the pre-planned temperature rise curve. The temperature could be raised uniformly and at approximately the same rate. The temperature of the automelting furnace 1 was raised twice at different times under the same conditions as above. As a result, the burner was able to ignite smoothly even during these two temperature increases, and the shape of the burner frame after ignition was stabilized, so problems such as local heating and heavy oil dripping did not occur. .

[比較例]
バーナーの点火前にウインドボックス22から導入した高酸素濃度気体で自熔炉1内を置換する作業を行なわないことを除いて上記の実施例と同様に自熔炉1を昇温させた。その結果、バーナーをスムーズに点火させることが難しく、点火してもフレームの形状が不安定になった。また、点火がスムーズに行なわれなかったときにバーナーから滴下した重油が炉底に溜まる不具合も生じた。この不具合はシャフトバーナー20のみならず点火を行なった8個のセトラーバーナー30においても同様に発生した。
[Comparative example]
The temperature of the flash melting furnace 1 was raised in the same manner as in the above example except that the interior of the flash melting furnace 1 was not replaced with the high oxygen concentration gas introduced from the wind box 22 before igniting the burner. As a result, it was difficult to ignite the burner smoothly, and even when the burner was ignited, the shape of the flame became unstable. Additionally, when ignition did not occur smoothly, heavy oil that dripped from the burner would accumulate at the bottom of the furnace. This problem occurred not only in the shaft burner 20 but also in the eight settler burners 30 that were ignited.

また、上記のシャフトバーナー20、及びセトラーバーナー30に点火した後に覗き窓からこれらバーナーのフレームの形状を目視にて確認したところ、フレームの長さが短いものやフレームの形状が安定しないものがあり、炉内部に局所過熱が生じた。更に、バーナーのフレーム形状が不安定なものには過度の不完全燃焼が生じるおそれがあるため、炉内耐火物温度がある程度上昇するまでは重油の供給流量を増やすことができず、時間をかけながら昇温せざるを得なかった。そのため、炉内の位置による温度のバラツキや、昇温速度のバラツキが認められた。 In addition, after igniting the shaft burner 20 and settler burner 30, we visually checked the shape of the frame of these burners through the viewing window, and found that some of the frames were short in length and others had unstable frame shapes. , local overheating occurred inside the furnace. Furthermore, if the burner frame shape is unstable, there is a risk of excessive incomplete combustion, so it is not possible to increase the fuel oil supply flow rate until the temperature of the refractory in the furnace rises to a certain extent, and it takes time. However, the temperature had to be increased. As a result, variations in temperature and variations in heating rate were observed depending on the position within the furnace.

上記の実施例で行なった3回の昇温(Case1~3)、及び比較例で行なった1回の昇温(Case4)について、各々セトラーの中心部に設けた温度計の指示値を見ながら重油の供給流量を調整することで予め計画しておいた昇温曲線に沿って昇温させることを試みたときの昇温の結果を図3及び表1に示す。 While checking the readings of the thermometer installed in the center of the settler, for the three temperature increases (Case 1 to 3) in the above example and the one temperature increase (Case 4) in the comparative example, FIG. 3 and Table 1 show the results of temperature increase when an attempt was made to increase the temperature along a pre-planned temperature increase curve by adjusting the supply flow rate of heavy oil.

Figure 2023139359000002
Figure 2023139359000002

上記表1から分かるように、実施例のCase1~3は、いずれも比較例のCase4に比べて昇温速度が1.13~1.34倍と速かった。またこれらCase1~3は、単位重油量当たりの昇温速度がCase4の1.38~1.77倍と速かった。よって、本発明の要件を満たす方法で自熔炉を昇温することにより、従来よりも迅速且つ効率よく昇温することができることが分かる。 As can be seen from Table 1 above, in Cases 1 to 3 of the Examples, the temperature increase rate was 1.13 to 1.34 times faster than that of Case 4 of the Comparative Example. In addition, in these Cases 1 to 3, the temperature increase rate per unit amount of heavy oil was 1.38 to 1.77 times faster than in Case 4. Therefore, it can be seen that by raising the temperature of the flash-melting furnace using a method that satisfies the requirements of the present invention, the temperature can be raised more quickly and efficiently than in the past.

1 自熔炉
2 廃熱ボイラー
4 蒸気タービン
11 リアクションシャフト
12 セトラー
13 アップテイク
20 シャフトバーナー
21 バーナーコーン
22 ウインドボックス
23 精鉱シュート
24 オキシフュエルバーナー
25 風速調整器
30 セトラーバーナー
1 Flash melting furnace 2 Waste heat boiler 4 Steam turbine 11 Reaction shaft 12 Settler 13 Uptake 20 Shaft burner 21 Burner cone 22 Wind box 23 Concentrate chute 24 Oxyfuel burner 25 Wind speed regulator 30 Settler burner

Claims (4)

非鉄金属製錬を行なう製錬炉の立ち上げ時の昇温方法であって、前記製錬炉内に気体導入部を介して導入した空気よりも高酸素濃度の気体によって前記製錬炉内を置換した後、前記製錬炉のバーナーに点火することを特徴とする製錬炉の昇温方法。 A method for raising the temperature at startup of a smelting furnace for smelting nonferrous metals, the inside of the smelting furnace being heated by a gas having a higher oxygen concentration than the air introduced into the smelting furnace through a gas introduction part. A method for increasing the temperature of a smelting furnace, which comprises igniting a burner of the smelting furnace after the substitution. 前記製錬炉が自熔炉であり、前記気体導入部がウインドボックスであることを特徴とする、請求項1に記載の製錬炉の昇温方法。 2. The method for increasing the temperature of a smelting furnace according to claim 1, wherein the smelting furnace is a self-smelting furnace, and the gas introduction section is a wind box. 前記立ち上げ時の昇温が、炉内部が放冷された状態からの昇温であることを特徴とする、請求項1又は2に記載の製錬炉の昇温方法。 3. The method for increasing the temperature of a smelting furnace according to claim 1, wherein the temperature increase at the time of startup is a temperature increase from a state where the inside of the furnace is left to cool. 前記バーナーに導入する空気の供給流量を、該バーナーに導入する燃料の理論燃焼空気量よりも少なくすることを特徴とする、請求項1~3のいずれか1項に記載の製錬炉の昇温方法。 The smelting furnace riser according to any one of claims 1 to 3, characterized in that the flow rate of air introduced into the burner is smaller than the theoretical combustion air amount of the fuel introduced into the burner. Warm method.
JP2022044849A 2022-03-22 2022-03-22 Temperature raising method of smelting furnace Pending JP2023139359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022044849A JP2023139359A (en) 2022-03-22 2022-03-22 Temperature raising method of smelting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022044849A JP2023139359A (en) 2022-03-22 2022-03-22 Temperature raising method of smelting furnace

Publications (1)

Publication Number Publication Date
JP2023139359A true JP2023139359A (en) 2023-10-04

Family

ID=88204665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022044849A Pending JP2023139359A (en) 2022-03-22 2022-03-22 Temperature raising method of smelting furnace

Country Status (1)

Country Link
JP (1) JP2023139359A (en)

Similar Documents

Publication Publication Date Title
JP2009186157A (en) Aluminum melting furnace
BR112015000912B1 (en) Method for initiating a melt bath-based casting process for a metalliferous material in a foundry container that defines a casting chamber and a melt metal production chamber
BR112014006698B1 (en) WASTE FOUNDRY FURNACE TO DRY, THERMALLY DECOMPOSE AND MEL WASTE
JP2023139359A (en) Temperature raising method of smelting furnace
JP7184164B2 (en) Furnace bottom heating method and burner lance used therefor
RU2624572C2 (en) Melting process starting method
CN208187094U (en) Novel cokeless furnace cupola
WO2017169486A1 (en) Melting and smelting furnace for cold iron source and operating method for melting and smelting furnace
CN108413767A (en) Novel cokeless furnace cupola and the method for utilizing the device molten iron
JPWO2019064433A1 (en) Operation method of melting and refining furnace and melting and refining furnace
FI127349B (en) Melting of scrap metal in anode furnace processes
CN107327823A (en) A kind of power station burning boiler
CN206247873U (en) A kind of top-blown bath smelting furnace profit cools down gun system
JP2007046121A (en) Method for operating flash smelting furnace
JP7243677B2 (en) Furnace bottom temperature raising method and blast furnace start-up method
JP4212169B2 (en) Insulation / heating method for copper smelting flash furnace
JP6393291B2 (en) Melting / smelting furnace operation method and melting / smelting furnace
JP3650193B2 (en) Method for melting metal raw materials
JP2024014725A (en) Blast furnace operation method
JP2000129368A (en) Operation of copper flash smelting furnace
JP2013533950A (en) Method and system for removing deposits formed in a furnace
US1080102A (en) Process of reducing zinc compounds.
JP2024013311A (en) Blast furnace operation method
WO2019163607A1 (en) Operating method for metal refining furnace
JP2014084522A (en) Concentrate burner, self-fluxing furnace, and method for operating the self-fluxing furnace