JPH0280503A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH0280503A
JPH0280503A JP23202288A JP23202288A JPH0280503A JP H0280503 A JPH0280503 A JP H0280503A JP 23202288 A JP23202288 A JP 23202288A JP 23202288 A JP23202288 A JP 23202288A JP H0280503 A JPH0280503 A JP H0280503A
Authority
JP
Japan
Prior art keywords
furnace
blast
heating
wind
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23202288A
Other languages
Japanese (ja)
Inventor
Mamoru Inoue
井上 衛
Hidemi Watanabe
秀美 渡辺
Koichi Takatani
高谷 孝一
Yasuhiko Fujiwara
藤原 保彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP23202288A priority Critical patent/JPH0280503A/en
Publication of JPH0280503A publication Critical patent/JPH0280503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To smoothly start up blast furnace operation without increasing fuel ratio and worsening the furnace condition by restarting blast after directly heating and raising the temp. in the furnace core part at the time of stopping or reducing the blast. CONSTITUTION:At the time of stopping or reducing the blast intentionally or unexpectively the blast in the resumed after heating and raising the temp. The furnace core part, heating is executed by blowing oxygen gas, coke powder, etc., with a lance toward the furnace core part through a tuyere, or by contacting an electrode with the furnace core part, etc. By this method, the blasting and the blast stopping into the blast furnace is optionally selected and the operational condition of the blast furnace can be intentionally changed.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は高炉の操業方法、特に休風または減風後の立
ち上げ送風前に炉芯部を直接加熱昇温させる高炉の操業
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method of operating a blast furnace, and particularly to a method of operating a blast furnace in which the furnace core is directly heated to raise the temperature before starting air blowing after air suspension or air reduction.

(従来の技術) 製鉄用高炉は大量の銑鉄が生産でき、しかも性能がすぐ
れていてよく制御できこれ以上のものはできないところ
まできている。
(Prior Art) Blast furnaces for steelmaking can produce large quantities of pig iron, and they have excellent performance and are well controlled, and have reached the point where nothing better can be done.

しかし一般に装置が精巧であればあるほど稼働状態のわ
ずかな変更に対しても敏感に反応する。
However, in general, the more sophisticated the device, the more sensitive it will be to react to even slight changes in operating conditions.

さらに高炉の操業は24時間の連続運転が基本になって
おり、メンテナンスのためや生産調整のために1ケ月に
1〜2回の頻度で20〜30時間の計画 休風を実施し
ている。
Furthermore, blast furnaces are basically operated continuously for 24 hours, and scheduled wind breaks of 20 to 30 hours are carried out once or twice a month for maintenance and production adjustments.

しかしながら今後の労働情勢を勘案すると、労働時間の
短縮を実現するため製鉄所の一斉休業も検討の対象にな
っており、高炉の操業を一時的に止める必要が従来にな
くますます必要となってきている。
However, considering the future labor situation, the simultaneous closure of steel mills is being considered in order to shorten working hours, and the need to temporarily stop blast furnace operations is becoming more necessary than ever. ing.

従来は、高炉を休風するとその間の放散熱を補償するた
めに、休風直前と送風立ち上げ後、数日間は燃料比を上
げて炉熱の低下を防止していた。
Conventionally, when a blast furnace is shut down, in order to compensate for the heat dissipated during that period, the fuel ratio is increased immediately before the wind shutdown and for several days after the blast furnace starts up to prevent a drop in furnace heat.

そのため、エネルギーコストの損失が大きく、高炉の一
時体風は必ずしも経済的ではないと考えられてきた。
Therefore, the loss in energy costs is large, and it has been thought that temporary blast furnace blast furnaces are not necessarily economical.

また長期間の休風のためには、装入原料の鉱石/コーク
ス比を大巾に下げて操業し、休風前に原料を装入しない
で装入レベルを最大で羽口直上まで下げて減尺休風する
方法がとられていた。
In addition, in order to have a long wind break, the ore/coke ratio of the charging material should be drastically lowered, and no material should be charged before the wind break, and the charging level should be lowered to a maximum of just above the tuyere. The method was to reduce the size and take a break.

前述の如く計画的に休風するときは事前に燃料比を上げ
て炉熱を上昇させて安全サイドで操業するため送風後も
比較的スムーズに立ち上げることができる。
As mentioned above, when the air is stopped in a planned manner, the fuel ratio is increased in advance to raise the furnace heat and the operation is performed on the safe side, so even after the air is blown, the furnace can be started up relatively smoothly.

ところが設備上のトラブルなどで突発的休風または減風
する場合は、装入原料の鉱石/コークス比が高いまま緊
急で実施されるので、送風立ち上納 げへに操業が安定しないことが多い。
However, if there is a sudden wind stoppage or wind reduction due to equipment trouble, etc., the operation is often not stabilized until the wind blowing starts and the wind is turned on because the ore/coke ratio of the charging material is still high.

すなわち燃料比を上げるなどの十分な準備がなされない
まま高炉をいきなり休止させるわけであるから、放散熱
のため炉熱が低下し、高炉内でのガスの通気性を悪化さ
せ、送風しても高炉内のガス流れが安定しないため反応
が不均一にしか進行せず炉況不調に陥ることになる。
In other words, since the blast furnace is suddenly shut down without sufficient preparations such as increasing the fuel ratio, the furnace heat decreases due to heat dissipation, worsening the permeability of gas in the blast furnace, and even when air is blown, the furnace heat decreases. Because the gas flow within the blast furnace is not stable, the reaction proceeds unevenly, resulting in poor furnace conditions.

また高炉は生産の弾力性が十分でないため、特に低出銑
比のとき炉況が悪化する現象がみられる。
Furthermore, since blast furnaces do not have sufficient production flexibility, furnace conditions tend to worsen, especially when the iron output ratio is low.

しかしながら高炉を生産調整のために休風させるとその
たびに燃料比を上げる必要があるので必ずしも経済的で
はなかった。
However, when the blast furnace is shut down for production adjustment, it is necessary to increase the fuel ratio each time, which is not necessarily economical.

(発明が解決しようとする課題) 高炉の炉芯部は塊コークスからなり、装入物が数時間で
炉内を通過するのに対し、数日間を要して塊コークスが
入れ替わるものと推定されている。
(Problem to be Solved by the Invention) The furnace core of a blast furnace is made of lump coke, and while the charge passes through the furnace in a few hours, it is estimated that it takes several days for the lump coke to be replaced. ing.

るが、休風及び減風した時には、外部への熱の放散によ
って炉芯部の温度は徐々に低下することになる。
However, when the wind is suspended or reduced, the temperature of the furnace core gradually decreases due to heat dissipation to the outside.

これを送風条件例えば送風温度を上昇させるか、送風湿
分、微粉炭などの吹き込み量を調節しても送風が炉芯部
内部まで到達せず炉芯部が冷え込んでくる。まして送風
後に装入原料のコークス比を増大させても、炉内の装入
物が入れ替わるにはかなり時間がかかるため、即効的で
なく、回復する前に〜〜通気性が悪化して円周バランス
が崩れ炉況がま1ま1不安定になる場合が多かった。
Even if the blowing condition is increased, for example, the blowing temperature is increased, or the blowing moisture or pulverized coal is adjusted, the blowing air does not reach the inside of the furnace core and the furnace core becomes cold. Moreover, even if the coke ratio of the charging material is increased after blowing air, it will take a considerable amount of time for the charging material in the furnace to be replaced, so it will not be effective immediately, and before recovery, the permeability will deteriorate and the circumference will increase. In many cases, the balance would collapse and the furnace condition would become extremely unstable.

(課題を解決するための手段) 本発明に斯る難点を解決したものであって、高炉の操業
において、燃料比を上げることなく、計画的あるいは突
発的に休風または減風した際に、直接炉芯部を加熱昇温
させた後送風を再開することを特徴とする高炉の操業法
である。
(Means for Solving the Problems) This invention solves the above-mentioned difficulties in the present invention, and in the operation of a blast furnace, when there is a planned or sudden wind suspension or wind reduction without increasing the fuel ratio, This is a blast furnace operating method characterized by restarting air blowing after directly heating the furnace core.

本願発明以萌に高炉の生産量を増大させる目的で送風温
度を高める方法としてプラズマ発生装置を用いることが
提案されている。(例えば特開昭61−199006外
)しかしこの方法は、送風空気の温度を高めるものであ
って炉芯部の通気が悪化した場合は効果はなく、本願の
如く炉芯部を積極的に直接加熱するものでない、この点
大き〈発明の技術思想が異なる。
Since the present invention, it has been proposed to use a plasma generator as a method of increasing the blast temperature for the purpose of increasing the production volume of blast furnaces. (For example, outside of JP-A-61-199006) However, this method increases the temperature of the blown air, and is not effective if the ventilation of the furnace core deteriorates. The technical idea of the invention is different in that it does not heat.

なお、本発明における加熱手段としては、酸素ガス、酸
素富化空気、圧縮空気、又はこれらの加熱ガスおよびこ
れらによって燃焼する可燃ガス、粉コークスなどの燃料
を炉芯部に向かって羽口を利用してランス吹き込みを実
施するか、又は電極を炉芯部に接触させて、抵抗加熱、
誘導加熱プラズマアーク加熱など何れかによって昇温す
るものである。もちろんこれらを2つ以上組み合わすこ
とも可能である。
In addition, as a heating means in the present invention, oxygen gas, oxygen-enriched air, compressed air, or these heated gases and combustible gases burned by these, fuels such as coke powder are directed toward the furnace core using tuyeres. lance blowing or by bringing the electrode into contact with the furnace core to perform resistance heating,
The temperature is raised by induction heating, plasma arc heating, etc. Of course, it is also possible to combine two or more of these.

炉芯加熱用の電極やヘランスは羽口から挿入するのが最
も簡単であるが、羽口以外の特定位置から挿入口を別に
設置して適切なる部位に挿入するきとも外回能である。
It is easiest to insert the electrodes and herans for heating the furnace core through the tuyere, but it is also possible to install the insertion port from a specific position other than the tuyere and insert it into an appropriate location.

羽目から挿入する場合は、送風中においては2000〜
2400℃のレースウェイ部を通過する必要があり、な
おかつ高圧送風のため高温の熱風ガスが吹き出さないよ
うにシールするのは設備上極めて困難である。したがっ
て休風または減風した状態において加熱操作を実施する
ことが本発明の重要なポイントである。
When inserting from the side, 2000~
It is necessary to pass through a raceway section at a temperature of 2400° C., and since the air is blown at a high pressure, it is extremely difficult to seal the hot air gas from blowing out due to equipment considerations. Therefore, it is an important point of the present invention to carry out the heating operation in a state where the wind is suspended or reduced.

炉芯部の温度を測定するためには、羽口より光ファイバ
ーと二色温度計よりなる炉芯測温用プローブを挿入すれ
ばよい。送風中での測定を目的に特開昭61−2574
05号などの炉芯ゾンデがすでに種々提案されているが
、本発明は休風・減風中での測定であるので非水冷の簡
易測温プローブでも可能である。
In order to measure the temperature of the furnace core, a furnace core temperature probe consisting of an optical fiber and a two-color thermometer may be inserted through the tuyere. Unexamined Japanese Patent Publication No. 61-2574 for the purpose of measurement while blowing air
Although various core probes such as No. 05 have already been proposed, since the present invention performs measurements during wind rest or reduced wind, non-water-cooled simple temperature probes can also be used.

炉芯部の温度は必ずしも必要ではないが、炉熱指標とし
てこれを加熱制御に利用した方が望ましい。以下の説明
では羽口先端から2.5m挿入した部位のコークス温度
ち炉芯温度として用いることにする。
Although the temperature of the furnace core is not necessarily required, it is desirable to use it as a furnace heat index for heating control. In the following explanation, the coke temperature at a portion inserted 2.5 m from the tip of the tuyere will be used as the furnace core temperature.

第1図に炉芯の加熱パターンを種々示した。Figure 1 shows various heating patterns for the furnace core.

第1図(a)はパターンAで休風末期に炉芯加熱操作を
実施する場合、(b)はパターンBで休風初期に炉芯加
熱操作を実施する場合、(c)はパターンCで休風の初
期にまず加熱し、末期に調整用に加熱する場合、(d)
はパターンDで定期的に加熱操作を繰り返す場合、(e
)はパターンEで休風時に放散熱分を常に加熱を実施す
る場合である。
Figure 1 (a) shows pattern A when the furnace core heating operation is performed at the end of the wind break, (b) shows pattern B when the furnace core heating operation is performed at the beginning of the wind shutdown, and (c) shows pattern C when the furnace core heating operation is performed at the beginning of the wind shutdown. When heating first at the beginning of the wind break and heating for adjustment at the end, (d)
When heating operation is repeated periodically in pattern D, (e
) is a case where heating is always carried out using the radiated heat in pattern E when there is no wind.

上述した休風は突発の減風操業に置き換えても同じであ
る。
The same effect can be obtained even if the above-mentioned wind suspension is replaced with a sudden wind reduction operation.

加熱パターンはこれ゛ら以外にも種々考えられるが送風
開始前までに炉芯温度が規定値以上に加熱されているこ
とが必要である。
Various heating patterns other than these can be considered, but it is necessary that the furnace core temperature be heated to a specified value or higher before the start of air blowing.

規定値は、−律に設定できるものではなく、高炉の炉容
積、操業形態などによって各高炉毎に適宜決定すべきも
のである。
The specified value cannot be set arbitrarily, but should be appropriately determined for each blast furnace depending on the furnace capacity, operation mode, etc. of the blast furnace.

計画的に休風する場合は、休止期間が既知であるので休
止時間に応じて加熱パターンをあらかじめ設定すること
が可能であるが、突発的に休風または減風する場合は、
復旧時間の目途が立ちにくいのでパターンAのように送
風直前で昇温するか、炉芯部があまり冷却しないように
パターンDのように定期的にくり返し昇温する方法が望
ましい。
When there is a planned wind break, the duration of the break is known, so it is possible to set the heating pattern in advance according to the downtime, but if there is a sudden wind break or wind reduction,
Since it is difficult to estimate the recovery time, it is desirable to raise the temperature immediately before blowing air as in pattern A, or to raise the temperature periodically as in pattern D so as not to cool the furnace core too much.

(実施例) 以下に本発明を内容積3880m3の高炉で、24時間
計画的に休風したときの例を具体的に説明する。
(Example) The present invention will be specifically described below using an example in which a blast furnace with an internal volume of 3,880 m3 was intentionally shut down for 24 hours.

高炉の休風前に燃料比を上昇させることなく、通常操業
を維持したまま送風を停止する。休風時間が24時間と
比較的短いため第1図のパターン(A)を採用した。
To stop blowing air while maintaining normal operation without increasing the fuel ratio before shutting down the blast furnace. Pattern (A) in Figure 1 was adopted because the wind down time was relatively short at 24 hours.

炉頂ホッパーのシール弁および装入シュートの交替など
炉体本体のメンテナンスを約23時間かけて実施した。
Maintenance of the furnace body, including replacing the seal valve of the furnace top hopper and the charging chute, took approximately 23 hours.

この間炉芯温度を連続的に測定した結果、休風直前に1
310℃あったものが23時間後には1230℃まで低
下していた。
As a result of continuously measuring the furnace core temperature during this period, it was found that 1
The temperature had dropped from 310°C to 1230°C after 23 hours.

そこで第2図に示した如く、円周方向均等に4ケ所の羽
口からそれぞれ昇温用ランスlを挿入台車2を利用して
羽口先端から3mの位置へ挿入した。昇温ランスlは非
水冷の2重管構造をとり、COGガスを内管から酸素を
30%富化した圧縮空気を外管から供給して先端で燃焼
するバーナー構造とした。
Therefore, as shown in FIG. 2, temperature-raising lances 1 were inserted from four tuyeres evenly in the circumferential direction to positions 3 m from the tips of the tuyeres using the insertion cart 2. The temperature raising lance l had a non-water-cooled double-tube structure, and had a burner structure in which COG gas was supplied from the inner tube with compressed air enriched with 30% oxygen from the outer tube and burned at the tip.

C0Gfiは400 Nm’/hr、空気比が1.2に
なるよう燃焼空気量を調整した。このような炉芯加熱を
夏時間継続した後、炉芯温度を測定したところ1230
℃に低下したものが1350℃に昇温されたことが検知
できたので4本の昇温用ランス1を引き抜き24時間後
に計画通り送風を再開し、安定した操業を維持すること
ができた。
The amount of combustion air was adjusted so that C0Gfi was 400 Nm'/hr and the air ratio was 1.2. After continuing this type of furnace core heating during summer time, the furnace core temperature was measured and found to be 1230.
It was detected that the temperature had dropped to 1,350°C, so the four temperature-raising lances 1 were pulled out, and 24 hours later, air blowing was resumed as planned, allowing stable operation to be maintained.

なお測定と昇温をそれぞれ別の羽口を利用すれば、昇温
の過程で連続的に炉芯温度を検知することができるので
種々の昇温パターンが可能である。
If separate tuyeres are used for measurement and heating, the core temperature can be detected continuously during the heating process, and various heating patterns are possible.

また昇温か遅れ気味の場合は、COG流量を増加させて
入熱量をコントロールし、定刻に炉芯温度が1300℃
以上なるようにした。
In addition, if the heating temperature is delayed, the COG flow rate is increased to control the heat input, and the furnace core temperature reaches 1300℃ at the scheduled time.
I made it as above.

(発明の効果) 本発明によれば高炉の送風と休風を任意に選択できるの
で極めて有効的である。すなわち、従来のように休風時
にともなう燃料比の大巾増加といった問題はなく、生産
スケジュール労働力に応じて任意に変動でき、高炉の操
業形態を経済的に事前に計画的に変更できる点ですぐれ
ている。また突発のトラブルによる休風または減風に対
しても、即時必要な措置が実施でき、炉況を悪化させず
にスムーズに高炉操業を立ち上げることができる。
(Effects of the Invention) According to the present invention, the blast furnace ventilation and ventilation can be arbitrarily selected, which is extremely effective. In other words, there is no problem of a large increase in the fuel ratio due to wind breaks as in the past, the production schedule can be changed arbitrarily according to the labor force, and the operational form of the blast furnace can be changed economically in advance. It is excellent. In addition, in the event of wind suspension or reduction due to sudden trouble, necessary measures can be taken immediately, and blast furnace operations can be restarted smoothly without deteriorating furnace conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

化1図(a) (b) (c) (d) (e)は本発
明による炉芯加熱の昇温パターン説明図、第2図は炉芯
加熱の実施例を示す図である。 ■・・・・・・昇温用ランス 2・・・・・・挿入台車 第を図 (力 嚇艶 (建) 麟嘲− 蛸轢→ 4瑞− 鴫閑一
Figures 1 (a), (b), (c), (d) and (e) are explanatory diagrams of temperature increase patterns of furnace core heating according to the present invention, and Figure 2 is a diagram showing an example of furnace core heating. ■・・・Temperature raising lance 2・・・Drawing of the insertion trolley No.

Claims (1)

【特許請求の範囲】[Claims]  高炉の操業において燃料比を上げることなく計画的に
あるいは突発的に休風または減風した際に、直接炉芯部
を加熱昇温させた後、送風を再開することを特徴とする
高炉の操業方法
Blast furnace operation characterized by restarting air blowing after directly heating the furnace core to raise its temperature when the wind is stopped or reduced either intentionally or suddenly without increasing the fuel ratio during blast furnace operation. Method
JP23202288A 1988-09-16 1988-09-16 Method for operating blast furnace Pending JPH0280503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23202288A JPH0280503A (en) 1988-09-16 1988-09-16 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23202288A JPH0280503A (en) 1988-09-16 1988-09-16 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPH0280503A true JPH0280503A (en) 1990-03-20

Family

ID=16932736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23202288A Pending JPH0280503A (en) 1988-09-16 1988-09-16 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPH0280503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786739A (en) * 1996-09-03 1998-07-28 Hughes Electronics Integrated evanescent mode filter with adjustable attenuator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5786739A (en) * 1996-09-03 1998-07-28 Hughes Electronics Integrated evanescent mode filter with adjustable attenuator

Similar Documents

Publication Publication Date Title
JP6354962B2 (en) Oxygen blast furnace operation method
US5632953A (en) Process and device for melting iron metallurgical materials in a coke-fired cupola
WO2010126172A1 (en) Blast furnace operation method
JPH0280503A (en) Method for operating blast furnace
JPH10310808A (en) Operation of blast furnace
US3819164A (en) Operation of a blast furnace
JPH0285309A (en) Method for operating blast furnace
CN110499402A (en) A kind of metallurgical equipment uses improvement project
JPH0570813A (en) Method for operating blast furnace
WO2024122239A1 (en) Blast-furnace operating method
JPH0277506A (en) Method for operating blast furnace
JP2002105517A (en) Method for operating blast furnace
JP2694588B2 (en) Blast furnace operation method
JP2741140B2 (en) Blast furnace operation method
JPH04354810A (en) Method for blowing fine coal into blast furnace and device therefor
JPH04268006A (en) Method for controlling furnace heat in blast furnace
JPH08260010A (en) Operation for blowing large quanty of pulverized coal in blast furnace
SU1588774A1 (en) Method of melting iron in cupola furnace
JP2008260984A (en) Blast furnace operation method
JPH03260004A (en) Method for operating blast furnace
JPS61149411A (en) Method for operating blast furnace
JP3247289B2 (en) Blast furnace operation method
KR100356156B1 (en) A method for promoting combustibility in balst furnace
JP2024014725A (en) Blast furnace operation method
JP3722059B2 (en) Operation method of smelting reduction furnace