JP2008260984A - Blast furnace operation method - Google Patents

Blast furnace operation method Download PDF

Info

Publication number
JP2008260984A
JP2008260984A JP2007103049A JP2007103049A JP2008260984A JP 2008260984 A JP2008260984 A JP 2008260984A JP 2007103049 A JP2007103049 A JP 2007103049A JP 2007103049 A JP2007103049 A JP 2007103049A JP 2008260984 A JP2008260984 A JP 2008260984A
Authority
JP
Japan
Prior art keywords
blast furnace
amount
furnace
tuyere
pulverized coal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007103049A
Other languages
Japanese (ja)
Other versions
JP5064086B2 (en
Inventor
Masayoshi Takao
正義 高尾
Makoto Isobe
誠 磯部
Motoki Honda
基樹 本田
Michiro Urabe
理郎 浦辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007103049A priority Critical patent/JP5064086B2/en
Publication of JP2008260984A publication Critical patent/JP2008260984A/en
Application granted granted Critical
Publication of JP5064086B2 publication Critical patent/JP5064086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blast furnace operation method with which balance in the circumferential direction of charged material level in a furnace, is uniformly held by controlling the fine coal blowing quantity, and the stable operation can be continued, in the blast furnace performing fine powdery coal blowing. <P>SOLUTION: In the blast furnace operation method for blowing the fine powdery coal from a tuyere 9 in the blast furnace 1, a difference 3 between the maximum value and the minimum value of the measured values is found by measuring a distance from the furnace top part to the charged material surface in the blast furnace in the circumferential direction, and the fine powdery coal quantity is adjusted so that this difference becomes the preset reference value or lower and particularly, it is preferable that the fine powdery coal blowing quantity at the lower part of a region of the maximum value in the distance from the furnace top to the measured charged material surface or at the tuyere in its vicinity is reduced. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は高炉の羽口から吹き込む微粉炭量を調整することにより、炉内に装入した装入物表面までの距離(以後、装入物レベルと称する)の円周方向の偏差を解消させる高炉操業方法に関する。 In the present invention, by adjusting the amount of pulverized coal blown from the tuyere of the blast furnace, the circumferential deviation of the distance (hereinafter referred to as the charge level) to the charge surface charged in the furnace is eliminated. It relates to blast furnace operation method.

高炉操業安定化の為には炉内のガス流の円周バランスを均一にすることが重要となるが、そのためには炉頂からの装入物分布を円周方向で均一にする必要がある。高炉炉内の装入物レベルは差指と呼ばれる複数の検出端で測定されているが、そのレベル差(以下、ΔSTLとも称す)の拡大は装入物の流れ込み量の偏差を拡大させ、操業変動を惹起して炉況が不安定化する問題がある。
従来、例えば、このΔSTLを低減させるために、差指の測定値の高い部分の炉頂円周部分に該当する羽口の熱風制御弁を絞り、支管風量を低減することで、その羽口上方の装入物の荷下がり速度を遅らせる方法(例えば、特許文献1参照)などが提案されてきている。
To stabilize the blast furnace operation, it is important to make the circumferential balance of the gas flow in the furnace uniform. To that end, it is necessary to make the charge distribution from the top of the furnace uniform in the circumferential direction. . The charge level in the blast furnace is measured at multiple detection ends called the index finger, but the increase in the level difference (hereinafter also referred to as ΔSTL) increases the deviation in the amount of charge flow, and the operation There is a problem that the furnace condition becomes unstable due to fluctuations.
Conventionally, for example, in order to reduce this ΔSTL, the hot air control valve of the tuyere corresponding to the furnace top circumference part of the part where the measured value of the index finger is high is throttled to reduce the branch pipe air volume. A method of delaying the unloading speed of the charged material (see, for example, Patent Document 1) has been proposed.

特開平1−156411号公報Japanese Patent Laid-Open No. 1-156411

装入物の円周方向の装入物レベルの偏差を低減させるために、前記特許文献1のように羽口の支管風量を低減させると、羽口先端部に形成されるレースウェイ領域および酸素供給量が減少する為に、部分的に溶銑滓の還元が停滞する。
一方、微粉炭の吹き込み量は一定であるために、微粉炭比(以下、PCRとも称す)の部分的な上昇を招き、還元剤比(以下、RARとも称す)が増加する。この部分的なRARの増加により炉内の融着帯位置に高低差が生じることから、炉内を上昇するガス流量が円周方向で異なり(偏流し)、炉況の悪化が発生する。
また、RARの低下により融着帯の根部が垂れ下がることから、高炉下部に未還元溶融物が落下し易くなり、高炉の炉下部で吸熱反応である直接還元反応(以下、SLC反応とも称す)が進行し炉内の熱(以下、炉熱とも称す)レベルが低下する等して、安定した操業の継続が困難となることがある。
そこで、本発明は炉内装入物に生じたΔSTLが予め設定した基準値を超えることがないようにRARの円周バランスを維持しつつ、ΔSTLの低減を図ることにより安定した操業を継続させることを課題とする。
In order to reduce the deviation of the charge level in the circumferential direction of the charge, when the branch air volume of the tuyere is reduced as in Patent Document 1, the raceway region and oxygen formed at the tip of the tuyere Since the supply amount decreases, the reduction of hot metal partially stagnate.
On the other hand, since the amount of pulverized coal injected is constant, the pulverized coal ratio (hereinafter also referred to as PCR) is partially increased, and the reducing agent ratio (hereinafter also referred to as RAR) is increased. Due to this partial increase in RAR, a difference in height occurs in the position of the cohesive zone in the furnace, so that the gas flow rate rising in the furnace varies in the circumferential direction (is drifted), and the furnace condition deteriorates.
In addition, since the root of the cohesive zone hangs down due to a decrease in RAR, the unreduced melt easily falls to the lower part of the blast furnace, and a direct reduction reaction (hereinafter also referred to as an SLC reaction) that is an endothermic reaction occurs in the lower part of the blast furnace. It may become difficult to continue stable operation due to the progress of the heat in the furnace (hereinafter also referred to as furnace heat).
Therefore, the present invention maintains stable operation by maintaining the circumferential balance of RAR so that ΔSTL generated in the furnace interior does not exceed a preset reference value, and continues stable operation by reducing ΔSTL. Is an issue.

本発明は上記課題を解決するためになされたものであり、その特徴とする手段は、
(1)高炉の羽口より微粉炭を吹込む高炉操業方法において、前記高炉の炉頂部から装入物表面までの距離を円周方向で測定して測定値の最大値と最小値の差を求め、その差が予め設定した基準値以下になるように、微粉炭量を調整する高炉操業方法である。
(2)前記測定した装入物表面までの距離の最大値の部位の下方またはその近傍の前記羽口の微粉炭吹込量を減少させる上記(1)記載の高炉操業方法である。
(3)前記測定した装入物表面までの距離の最小値の部位の下方またはその近傍の前記羽口の微粉炭吹込量を増加させる上記(1)または上記(2)記載の高炉操業方法である。
The present invention has been made to solve the above-described problems, and the features thereof are as follows:
(1) In the blast furnace operation method in which pulverized coal is blown from the blast furnace tuyeres, the distance from the top of the blast furnace to the charge surface is measured in the circumferential direction, and the difference between the maximum value and the minimum value is measured. This is a blast furnace operation method in which the amount of pulverized coal is adjusted so that the difference is equal to or less than a preset reference value.
(2) The blast furnace operating method according to the above (1), wherein the amount of pulverized coal blown into the tuyere below or near the maximum portion of the measured distance to the charged surface is reduced.
(3) In the blast furnace operating method according to (1) or (2) above, the amount of pulverized coal blown into the tuyere below or near the minimum portion of the measured distance to the charged surface is increased. is there.

本発明によれば、高炉炉内のRARの円周バランスを維持しつつΔSTLを低減できることから、融着帯位置を円周方向で一定に保つことが可能となる。その結果、炉内ガス流の円周バランスの均一化と炉熱低下の抑制が図られて高炉の安定操業が高位で継続することとなり、この分野における効果は大きい。 According to the present invention, since ΔSTL can be reduced while maintaining the circumferential balance of the RAR in the blast furnace furnace, the position of the cohesive zone can be kept constant in the circumferential direction. As a result, the circumferential balance of the gas flow in the furnace is made uniform and the furnace heat drop is suppressed, and the stable operation of the blast furnace continues at a high level, which has a great effect in this field.

先ず、高炉炉内に装入された装入物レベルにΔSTLが生じるメカニズムを図1を参照して説明する。
これは、何らかの理由により高炉1の一側(図1の右側)の装入物降下速度が遅くなると、相対的に装入物降下速度が速い側(図1の左側)に装入物が流れ込み、装入物の凹部が中心からずれる。装入物の凹部が中心からずれた状態となると装入物レベル4が深い部位(図面右側)は、装入物レベル4が浅い部位(図面左側)に比して、還元される装入物の量が少くなり、結果としてRARが上昇する。ここで全ての羽口9から当量の微粉炭を吹き込むと、装入物レベル4が深い部位のRAR上昇が助長され、その部位の装入物降下がさらに遅れて、差指2で測定される装入物レベル4のレベル差であるΔSTL3が生じるものと思われる。なお、図1において符号5は微粉炭分配器、符号6は微粉炭吹込量調整用のリング、符号7は微粉炭流量計、符号8は微粉炭吹込用のバーナーである。
First, the mechanism by which ΔSTL occurs in the charge level charged in the blast furnace will be described with reference to FIG.
This is because when the charge descending speed on one side of the blast furnace 1 (the right side in FIG. 1) becomes slow for some reason, the charge flows into the relatively fast side (the left side in FIG. 1). The recessed portion of the charge is shifted from the center. When the concave portion of the charge is shifted from the center, the portion where the charge level 4 is deep (right side of the drawing) is reduced compared to the portion where the charge level 4 is shallow (left side of the drawing). As a result, the RAR increases. Here, if an equivalent amount of pulverized coal is blown from all tuyere 9, the RAR rise in the portion where the charge level 4 is deep is promoted, and the charge drop in that portion is further delayed and measured with the index finger 2. It is considered that ΔSTL3, which is a level difference of charge level 4, is generated. In FIG. 1, reference numeral 5 is a pulverized coal distributor, reference numeral 6 is a ring for adjusting the amount of pulverized coal injection, reference numeral 7 is a pulverized coal flow meter, and reference numeral 8 is a burner for pulverized coal injection.

次に、本発明の第1の実施の形態に係る高炉操業方法において、ΔSTLを低減する方法について説明する。
ΔSTLを低減して予め設定した基準値以下になるようにするためには、装入物レベルが深い部位(図面右側)の微粉炭吹込量を低減させて装入物降下速度の上昇(コークス消費の促進)を図る必要がある。
このために本実施の形態では、装入レベルが深い部位の下方またはその近傍の羽口の微粉炭吹込量を減少して、該微粉炭の燃焼で消費される酸素量を低減することにより、その羽口前レースウェイでのコークスを燃焼するための酸素量を増加し、炉内円周方向の装入物レベルに発生するΔSTLを低減するものである。
Next, a method for reducing ΔSTL in the blast furnace operating method according to the first embodiment of the present invention will be described.
In order to reduce ΔSTL so that it is below the preset reference value, the amount of pulverized coal injection at the part where the charge level is deep (right side of the drawing) is reduced to increase the charge lowering speed (coke consumption) Need to be promoted).
For this reason, in the present embodiment, by reducing the amount of pulverized coal blown in the tuyere below or near the portion where the charging level is deep, and reducing the amount of oxygen consumed by the combustion of the pulverized coal, The amount of oxygen for burning the coke at the front tuyere raceway is increased, and ΔSTL generated at the charge level in the circumferential direction of the furnace is reduced.

更に、前記実施の形態では装入レベルが深い部位のレベルを上昇することにより該装入物のΔSTLを低減する方法について説明したが、本発明の第2の実施の形態に係る高炉操業方法においては、これとは逆に、装入物レベルが浅い部位のレベルを低下して、該装入物のΔSTLを低減している。
ΔSTLを低減するためには、装入物レベルが浅い部位(図面左側)の微粉炭吹込量を増加させて装入物降下速度の低減(コークス消費の低減)を図る必要がある。
このために本実施の形態では、装入レベルが浅い部位の下方またはその近傍の羽口の微粉炭吹込量を増加させ、該微粉炭の燃焼で消費される酸素量を増加することにより、その羽口前レースウェイでのコークスを燃焼するための酸素量を低減し、炉内円周方向の装入物レベルに発生するΔSTLを低減している。
これは、装入レベルが浅い部位(図面左側)の下方またはその近傍の羽口の微粉炭吹込量を増加させると、この部位を上昇する炉内ガス中の酸素量が低減するために、コークス消費量の低減が図られることで、この部位の装入物降下速度が低減して炉内円周方向の装入物レベルに発生するΔSTLを低減するものである。
さらに、上記装入レベルが深い部位のレベルを上昇する方法と装入物レベルが浅い部位のレベルを低下する方法を同時に行うことが、早期に装入物に発生したΔSTLを低減することができるので好ましい。
なお、前記羽口毎の微粉炭吹込量の調整は特公平1−20685公報に提案のように、微粉炭吹き込み設備の分配器5内のリング6の突出量の増減によって行うことが好ましい。
Furthermore, in the above-described embodiment, the method of reducing the ΔSTL of the charged material by increasing the level of the portion where the charging level is deep has been described. However, in the blast furnace operating method according to the second embodiment of the present invention, On the other hand, the level of the portion where the charge level is shallow is lowered to reduce the ΔSTL of the charge.
In order to reduce ΔSTL, it is necessary to increase the amount of pulverized coal injection at the portion where the charge level is shallow (the left side of the drawing) to reduce the charge lowering speed (reduction of coke consumption).
For this reason, in the present embodiment, by increasing the amount of pulverized coal blown in the tuyere below or near the portion where the charging level is shallow, and increasing the amount of oxygen consumed by the combustion of the pulverized coal, The amount of oxygen for burning coke in the front tuyere raceway is reduced, and ΔSTL generated at the charge level in the circumferential direction of the furnace is reduced.
This is because when the amount of pulverized coal blown in the tuyere below or near the portion where the charging level is shallow (the left side of the drawing) is increased, the amount of oxygen in the furnace gas rising above this portion is reduced. By reducing the consumption, the charge lowering speed of this portion is reduced, and ΔSTL generated at the charge level in the circumferential direction in the furnace is reduced.
Furthermore, by simultaneously performing the method for increasing the level of the portion having a deep charge level and the method for decreasing the level of the portion having a low charge level, ΔSTL generated in the charge at an early stage can be reduced. Therefore, it is preferable.
The adjustment of the amount of pulverized coal injection for each tuyere is preferably performed by increasing or decreasing the amount of protrusion of the ring 6 in the distributor 5 of the pulverized coal injection facility, as proposed in Japanese Patent Publication No. 1-20685.

また、前記近傍の羽口とは、例えば、羽口が40本程度の高炉であれば装入レベル測定部位の下方の左右3〜4本を指し、調整はそのうちの1本ないしは複数で実施する。
さらに、ΔSTLの基準値は、高炉の構造、操業設計などによって異なることから、操業実績から予め決定されるものである。実炉では急激にガス流変動や操業変動を来たした際のΔSTLの値を前記基準値に設定することが望ましい。
In addition, for example, if there are about 40 tuyere in the vicinity, the tuyere in the vicinity refers to 3 to 4 on the left and right below the charging level measurement site, and adjustment is performed by one or more of them. .
Furthermore, since the reference value of ΔSTL varies depending on the structure of the blast furnace, the operation design, etc., it is determined in advance from the operation results. In an actual furnace, it is desirable to set the value of ΔSTL when the gas flow fluctuation or operation fluctuation suddenly occurs to the reference value.

本発明で実施例として使用する高炉は内容積が5000m3級のベル式超大型高炉で、羽口数は40本、さらに図1に示すように装入物のレベル(即ち、高炉の炉頂部から装入物の表面までの距離)を複数の差指により連続的に円周方向で測定して、その最大値と最小値の差からΔSTLを算出している。差指と羽口の取り合いを図2に示す。
以下、表1に本発明の実施例1〜3を示す。
The blast furnace used as an example in the present invention is a bell-type super large blast furnace with an internal volume of 5000 m 3 , the number of tuyere is 40, and as shown in FIG. 1, the charge level (that is, from the top of the blast furnace). The distance to the surface of the charge) is continuously measured in the circumferential direction with a plurality of differential fingers, and ΔSTL is calculated from the difference between the maximum value and the minimum value. Figure 2 shows the connection between the index finger and the tuyere.
Table 1 below shows Examples 1 to 3 of the present invention.

Figure 2008260984
Figure 2008260984

実施例1は装入物表面までの距離が最大値の部位近傍の微粉炭吹込量の低減と装入物表面までの距離が最小値の部位近傍の微粉炭吹込量を増加させたケースである。
装入物表面までの距離が最大となったNo.2差指については、No.2差指下方付近の#10羽口の吹込量低減の為に前記リングの突出量を調整し、送風量当りの羽口毎吹込量を123g/Nm3から110g/Nm3に低減させた。逆に装入物表面までの距離が最小となったNo.4差指については、No.4差指下方付近の#27、28羽口の吹込量増加の為に前記リングの突出量を調整し、送風量当りの羽口毎吹込量を97g/Nm3から110g/Nm3に増加させたので、不安定であった炉況が安定した。
実施例2は装入物表面までの距離が最小の部位近傍の微粉炭吹込量を増加させたケースであり、No.1、3差指の装入物表面までの距離が最小となったケースである。No.1差指下方付近の#1、39、40およびNo.3差指下方付近の#16、17について羽口の吹込量増加の為に前記リングの突出量を調整し送風量当りの羽口毎吹込量を80~90g/Nm3から95g/Nm3に増加させたので、不安定であった炉況が安定した。
実施例3は装入物表面までの距離が最大値の部位近傍の微粉炭吹込量を低減させたケースであり、No.2差指が装入物表面までの距離が最大となったことから、No.2差指下方付近の#4、5、6羽口の吹込量低減の為に前記リングの突出量を調整し、送風量当りの羽口毎吹込量を124g/Nm3から110g/Nm3に低減させたので、不安定であった炉況が安定した。
なお、表中の調整後とは、微粉炭吹込量を調整した後3日平均、調整前とは調整前3日平均である。
いずれのケースでもΔSTLが改善されていることが確認され、ガス流変動を示す指数(ガス流変動指数とも称す)が大幅に改善されて炉況が安定した。
Example 1 is a case in which the amount of pulverized coal injection near the portion where the distance to the charge surface is the maximum value is reduced and the amount of pulverized coal injection near the portion where the distance to the charge surface is the minimum value is increased. .
For the No. 2 index finger with the maximum distance to the charge surface, adjust the protrusion amount of the ring to reduce the amount of # 10 tuyere in the lower part of the No. 2 index finger. The amount of per tuyere per blow was reduced from 123 g / Nm 3 to 110 g / Nm 3 . On the other hand, for the No. 4 differential finger with the minimum distance to the charge surface, adjust the amount of protrusion of the ring in order to increase the blowing amount of # 27 and 28 tuyere near the lower side of the No. 4 differential finger. In addition, since the amount of air blown per tuyere was increased from 97 g / Nm 3 to 110 g / Nm 3 , the unstable furnace condition was stabilized.
Example 2 is a case in which the amount of pulverized coal injection in the vicinity of the part where the distance to the charge surface is the minimum is increased, and the case where the distance to the charge surface of No. 1 and 3rd finger is minimized. It is. For # 1, 39, 40 near the lower part of the No.1 forefinger and # 16, 17 near the lower part of the No.3 forefinger, the protrusion amount of the ring is adjusted to increase the amount of blown air at the tuyere, and the number of feathers Since the injection amount per mouth was increased from 80 to 90 g / Nm 3 to 95 g / Nm 3 , the unstable furnace condition was stabilized.
Example 3 is a case in which the amount of pulverized coal in the vicinity of the part where the distance to the charge surface is the maximum value is reduced, and the distance from the No. 2 index finger to the charge surface is maximized. , by adjusting the amount of projection of the ring to reduce blow amount of # 4,5,6 birds port near No.2 Sayubi downward, the tuyere every blow amount per blast volume from 124g / Nm 3 110g / The reactor condition was unstable because it was reduced to Nm 3 .
In the table, “after adjustment” means the average for 3 days after adjusting the pulverized coal injection amount, and “before adjustment” means the average for 3 days before adjustment.
In both cases, it was confirmed that ΔSTL was improved, and the index indicating the gas flow fluctuation (also called the gas flow fluctuation index) was greatly improved, and the furnace condition was stabilized.

高炉の炉内装入物の状態を示す説明図である。It is explanatory drawing which shows the state of the furnace interior entrance of a blast furnace. 本発明の実施例の高炉の差指の位置と羽口の関係を示す説明図である。It is explanatory drawing which shows the relationship between the position of the index finger of a blast furnace and the tuyere of the Example of this invention.

符号の説明Explanation of symbols

1:高炉、2:差指、3:ΔSTL、4:装入物レベル、5:微粉炭分配器、6:微粉炭吹込量調整用のリング、7:微粉炭流量計、8:微粉炭吹込用のバーナー、9:羽口 1: blast furnace, 2: differential finger, 3: ΔSTL, 4: charge level, 5: pulverized coal distributor, 6: ring for adjusting the amount of pulverized coal injection, 7: pulverized coal flow meter, 8: pulverized coal injection Burner, 9: tuyere

Claims (3)

高炉の羽口より微粉炭を吹込む高炉操業方法において、前記高炉の炉頂部から装入物表面までの距離を円周方向で測定して測定値の最大値と最小値の差を求め、その差が予め設定した基準値以下になるように、微粉炭量を調整することを特徴とする高炉操業方法。 In the blast furnace operation method in which pulverized coal is blown from the tuyere of the blast furnace, the distance from the top of the blast furnace to the charge surface is measured in the circumferential direction to determine the difference between the maximum value and the minimum value, A blast furnace operating method, wherein the amount of pulverized coal is adjusted so that the difference is equal to or less than a preset reference value. 前記測定した装入物表面までの距離の最大値の部位の下方またはその近傍の前記羽口の微粉炭吹込量を減少させることを特徴とする請求項1記載の高炉操業方法。 2. The blast furnace operation method according to claim 1, wherein the amount of pulverized coal injected into the tuyere below or near the portion of the measured maximum distance to the charged surface is reduced. 前記測定した装入物表面までの距離の最小値の部位の下方またはその近傍の前記羽口の微粉炭吹込量を増加させることを特徴とする請求項1または2記載の高炉操業方法。 3. The blast furnace operating method according to claim 1, wherein the amount of pulverized coal injection in the tuyere below or near the portion of the minimum value of the distance to the charged surface is increased.
JP2007103049A 2007-04-10 2007-04-10 Blast furnace operation method Active JP5064086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007103049A JP5064086B2 (en) 2007-04-10 2007-04-10 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007103049A JP5064086B2 (en) 2007-04-10 2007-04-10 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JP2008260984A true JP2008260984A (en) 2008-10-30
JP5064086B2 JP5064086B2 (en) 2012-10-31

Family

ID=39983680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007103049A Active JP5064086B2 (en) 2007-04-10 2007-04-10 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP5064086B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189034A1 (en) 2018-03-28 2019-10-03 Jfeスチール株式会社 Blast furnace facility and operation method for blast furnace
JP7436831B2 (en) 2020-04-13 2024-02-22 日本製鉄株式会社 Blast furnace operating method, pulverized coal injection control device, pulverized coal injection control program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677306A (en) * 1979-11-30 1981-06-25 Sumitomo Metal Ind Ltd Operating method of blast furnace
JPH01177307A (en) * 1987-12-29 1989-07-13 Nkk Corp Method for operating blast furnace
JP2007031758A (en) * 2005-07-25 2007-02-08 Nippon Steel Corp Method for operating blast furnace while blowing pulverized coal
JP2007031040A (en) * 2005-07-25 2007-02-08 Nippon Steel Corp Flow rate control device for distribution of coal particulates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5677306A (en) * 1979-11-30 1981-06-25 Sumitomo Metal Ind Ltd Operating method of blast furnace
JPH01177307A (en) * 1987-12-29 1989-07-13 Nkk Corp Method for operating blast furnace
JP2007031758A (en) * 2005-07-25 2007-02-08 Nippon Steel Corp Method for operating blast furnace while blowing pulverized coal
JP2007031040A (en) * 2005-07-25 2007-02-08 Nippon Steel Corp Flow rate control device for distribution of coal particulates

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019189034A1 (en) 2018-03-28 2019-10-03 Jfeスチール株式会社 Blast furnace facility and operation method for blast furnace
KR20200132959A (en) 2018-03-28 2020-11-25 제이에프이 스틸 가부시키가이샤 Blast furnace equipment and operation method of blast furnace
EP3778927A4 (en) * 2018-03-28 2021-02-17 JFE Steel Corporation Blast furnace facility and operation method for blast furnace
US11512899B2 (en) 2018-03-28 2022-11-29 Jfe Steel Corporation Blast furnace apparatus and operation method for blast furnace
JP7436831B2 (en) 2020-04-13 2024-02-22 日本製鉄株式会社 Blast furnace operating method, pulverized coal injection control device, pulverized coal injection control program

Also Published As

Publication number Publication date
JP5064086B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
EP3190194B1 (en) Method for detecting air flow distribution in blast furnace
JP5971165B2 (en) Blast furnace operation method
EP2871247B1 (en) Method for operating blast furnace
JP5064086B2 (en) Blast furnace operation method
JP4743332B2 (en) Blast furnace operation method
JP5381899B2 (en) Blast furnace operation method
JP5770124B2 (en) Blast furnace operation method
JP4760985B2 (en) Blast furnace operation method
JP2007031040A (en) Flow rate control device for distribution of coal particulates
JP2006312756A (en) Injection lance for gaseous reducing material, blast furnace and blast furnace operation method
JP3964963B2 (en) Pulverized coal injection method in blast furnace
JP5614517B1 (en) Blast furnace operation method
JP4739920B2 (en) Blast furnace operation method with small furnace heat fluctuation
JP2005213591A (en) Method for blowing solid fuel into blast furnace and blowing lance
JP2004263258A (en) Method for operating blast furnace
JP6885238B2 (en) How to operate the blast furnace
JP7265161B2 (en) Blast furnace operation method
JP7310858B2 (en) Blast furnace operation method
JP2011214022A (en) Method for operating blast furnace
JP4714545B2 (en) Blast furnace operation method
JP2011190471A (en) Method for operating blast furnace
JP4345506B2 (en) Method of injecting solid fuel into the blast furnace
JP2013001934A (en) Device and method for blowing reducing material into blast furnace
JP6036156B2 (en) Blast furnace operation method
JP2005213590A (en) Method for blowing solid fuel into blast furnace and blowing lance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120808

R151 Written notification of patent or utility model registration

Ref document number: 5064086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350