JP2006312756A - Injection lance for gaseous reducing material, blast furnace and blast furnace operation method - Google Patents

Injection lance for gaseous reducing material, blast furnace and blast furnace operation method Download PDF

Info

Publication number
JP2006312756A
JP2006312756A JP2005134981A JP2005134981A JP2006312756A JP 2006312756 A JP2006312756 A JP 2006312756A JP 2005134981 A JP2005134981 A JP 2005134981A JP 2005134981 A JP2005134981 A JP 2005134981A JP 2006312756 A JP2006312756 A JP 2006312756A
Authority
JP
Japan
Prior art keywords
pipe
reducing material
blast furnace
lance
gas reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005134981A
Other languages
Japanese (ja)
Other versions
JP4747662B2 (en
Inventor
Ryota Murai
亮太 村井
Michitaka Sato
道貴 佐藤
Tatsuro Ariyama
達郎 有山
Shinji Hasegawa
伸二 長谷川
Akio Shimomura
昭夫 下村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2005134981A priority Critical patent/JP4747662B2/en
Publication of JP2006312756A publication Critical patent/JP2006312756A/en
Application granted granted Critical
Publication of JP4747662B2 publication Critical patent/JP4747662B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/10Reduction of greenhouse gas [GHG] emissions
    • Y02P10/143Reduction of greenhouse gas [GHG] emissions of methane [CH4]

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the dissolved loss of a lance and a blast pipe when injecting gaseous reducing material into a blast furnace. <P>SOLUTION: A injection lance 10 for gaseous reducing material has a triple-tube structure provided with an inner pipe 21, an intermediate pipe 22 and an outer pipe 23. The gaseous reducing material is injected from the inner pipe 21, and cooling liquid is caused to flow in a space between the inner pipe 21 and the intermediate pipe 22, and a space between the intermediate pipe 22 and the outer pipe 23. A distal end of the inner pipe 21 is protruded with respect to the intermediate pipe 22 and the outer pipe 23, and the protruded part is curved. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば天然ガス、メタンガス、コークス炉ガス、石炭ガス化ガス、水素ガス等の気体還元材を高炉に吹込み、高炉の生産性向上を可能にすることのできる高炉への気体還元材吹込み用のランス、該ランスを備えた高炉および高炉操業方法に関する。   The present invention, for example, injects a gas reducing material such as natural gas, methane gas, coke oven gas, coal gasification gas, hydrogen gas, etc. into the blast furnace, and makes it possible to improve the productivity of the blast furnace. The present invention relates to a lance for blowing, a blast furnace provided with the lance, and a blast furnace operating method.

銑鉄を製造する高炉は一般に大型設備であり、その建設には多額の資金を要する。その生産性を向上できれば、投資に伴うリスクが低減可能であることから、高炉における生産性向上が望まれてきた。   Blast furnaces that produce pig iron are generally large facilities, and their construction requires a large amount of funds. If the productivity can be improved, the risk associated with the investment can be reduced. Therefore, the productivity improvement in the blast furnace has been desired.

気体還元材を高炉羽口から吹込む方法は生産性向上に有効であることが知られている。この理由は次の2つによるところが大きい。1つは、気体還元材には灰分が含有されないことによる。コークスや、微粉炭など他の還元材は灰分を含有していることから、高炉下部の高温領域で液体状のスラグを生成する。スラグは充填層の空隙を埋めるため、通気性が悪化して、銑鉄の生産に必要な還元ガスを高炉内へ送り込むことを妨げることになり、生産性の上限を低下させる。   It is known that the method of blowing a gas reducing material from the blast furnace tuyere is effective for improving productivity. This is largely due to the following two reasons. One reason is that the gas reducing material does not contain ash. Since other reducing materials such as coke and pulverized coal contain ash, liquid slag is generated in the high temperature region at the bottom of the blast furnace. Since the slag fills the voids in the packed bed, the air permeability deteriorates, preventing the reduction gas necessary for the production of pig iron from being fed into the blast furnace, thereby lowering the upper limit of productivity.

もう一つは、気体還元材は炭材由来の還元材に比べ、水素の含有量が多いことによる。酸化鉄の還元に有効なガスとしてはHあるいはCOがあるが、Hの方がガスの粘性が低く同一の充填層を流通する際の圧力損失が小さくなる。このため、気体還元材使用時には高炉内への還元ガスの送り込みが容易になり、生産性を向上させることができるのである。 The other is that the gas reducing material has a higher hydrogen content than the carbonaceous material. Gases that are effective for reducing iron oxide include H 2 and CO, but H 2 has a lower gas viscosity and lower pressure loss when flowing through the same packed bed. For this reason, when the gas reducing material is used, the reducing gas can be easily fed into the blast furnace, and the productivity can be improved.

しかしながら、気体還元材は一般に燃焼速度が速く、ランスから噴出後速やかに燃焼を開始するため、ランスの溶損防止対策が必要となる。   However, since the gas reducing material generally has a high burning rate and starts burning immediately after being ejected from the lance, measures for preventing the lance from being melted are necessary.

溶損防止対策のため、ランスを水冷構造とすることは古くから実施されており、たとえば、特許文献1には、高炉羽口への粉体燃料の吹込みに用いる水冷3重管構造のランスが開示されている。
特公昭60−402号公報
In order to prevent melting damage, it has long been practiced that the lance has a water-cooled structure. For example, Patent Document 1 discloses a lance having a water-cooled triple pipe structure used for injecting pulverized fuel into a blast furnace tuyere. Is disclosed.
Japanese Patent Publication No. 60-402

特許文献1は、粉体燃料を有効に吹込むための技術ではあるが、本発明者らは、気体還元材吹込みへの適用を試みた。実際に試験炉を用いて気体還元材の燃焼試験を実施したところ、たしかにランスの耐久性は充分であったが、送風管の溶損が生じることが明らかとなった。気体還元材は着火燃焼が速いため送風管の中で速やかに燃焼が進行して非常に高温となる。送風管を貫通してランスを設置すると気体還元材をランスと反対側の送風管側面に吹き付ける形となり、ランスの軸の延長上で送風管壁が溶損していた。粉体燃料の燃焼速度は気体還元材の燃焼速度に比較して一般に遅いため、特許文献1に記載の技術は粉体燃料には適用可能であるが、気体還元材には適用できないものと考えられる。   Although patent document 1 is a technique for injecting pulverized fuel effectively, the present inventors tried application to gas reducing material injection. When the combustion test of the gas reducing material was actually carried out using a test furnace, it was clarified that although the lance was sufficiently durable, the blow pipe was melted. Since the gas reducing material is ignited and combusted quickly, the combustion rapidly proceeds in the blower pipe, resulting in a very high temperature. When the lance was installed through the blower tube, the gas reducing material was sprayed on the side of the blower tube opposite to the lance, and the blower tube wall was melted on the extension of the lance shaft. Since the combustion rate of the pulverized fuel is generally slower than the combustion rate of the gas reducing material, the technique described in Patent Document 1 can be applied to the powder fuel, but not to the gas reducing material. It is done.

本発明は、このような従来技術の課題を解決することを目的とし、高炉への気体還元材吹込みにあたりランスおよび送風管の溶損を防止するためになされたものである。   An object of the present invention is to solve such problems of the prior art and to prevent melting of the lance and the blower pipe when the gas reducing material is blown into the blast furnace.

上記課題を解決するため、本発明は、以下の(1)〜(7)を提供する。
(1)高炉の送風管内に管壁を貫通して挿入され、高炉羽口内に気体還元材を吹き込む気体還元材吹込み用のランスであって、
内管、中間管および外管を備えた3重管構造であり、前記内管から気体還元材を吹込み、前記内管と前記中間管および前記中間管と前記外管との間に冷却用の液体を流通させるように構成されており、
前記内管の先端部を前記中間管および前記外管に対して突出させるとともに、この突出部を湾曲させたことを特徴とする、気体還元材吹込み用のランス。
(2)前記突出部の長さを、2×(d1−d2)以上160mm以下[ただし、d1:外管の外径(mm)、d2:内管の外径(mm)である]としたことを特徴とする、上記(1)の気体還元材吹込み用のランス。
In order to solve the above problems, the present invention provides the following (1) to (7).
(1) A lance for blowing a gas reducing material, which is inserted through a pipe wall into a blower pipe of a blast furnace and blows a gas reducing material into a blast furnace tuyere,
A triple pipe structure including an inner pipe, an intermediate pipe, and an outer pipe, for blowing a gas reducing material from the inner pipe, and for cooling between the inner pipe, the intermediate pipe, and the intermediate pipe and the outer pipe Configured to circulate a liquid of
A lance for injecting a gas reducing material, wherein the distal end portion of the inner tube protrudes from the intermediate tube and the outer tube, and the protruding portion is curved.
(2) The length of the protruding portion is 2 × (d1−d2) or more and 160 mm or less [where d1: the outer diameter of the outer tube (mm), d2: the outer diameter of the inner tube (mm)]. The lance for blowing the gas reducing material according to the above (1).

(3)上記(1)または(2)の気体還元材吹込み用のランスを設けた送風管を配備したことを特徴とする、高炉。
(4)前記ランスを、前記気体還元材の噴出方向と高炉送風の方向が一致するように配備したことを特徴とする、上記(3)の高炉。
(3) A blast furnace provided with a blow pipe provided with a lance for blowing the gas reducing material according to (1) or (2).
(4) The blast furnace according to (3) above, wherein the lance is arranged so that a jet direction of the gas reducing material coincides with a direction of blast furnace blowing.

(5)内管、中間管および外管を備えた3重管構造であり、前記内管から気体還元材を吹込み、前記内管と前記中間管および前記中間管と前記外管との間に冷却用の液体を流通させるように構成されており、
前記内管の先端部を前記中間管および前記外管に対して突出させるとともに、この突出部を湾曲させた気体還元材吹込み用のランスを、高炉の送風管内に管壁を貫通して挿入し、高炉羽口内に気体還元材を吹き込むことを特徴とする、高炉操業方法。
(6)前記突出部の長さを、2×(d1−d2)以上160mm以下[ただし、d1:外管の外径(mm)、d2:内管の外径(mm)である]としたことを特徴とする、上記(5)の高炉操業方法。
(7)前記ランスを、送風管に前記気体還元材の噴出方向と高炉送風の方向が一致するように配備したことを特徴とする、上記(5)または(6)の高炉操業方法。
(5) A triple pipe structure including an inner pipe, an intermediate pipe, and an outer pipe, in which a gas reducing material is blown from the inner pipe, and between the inner pipe, the intermediate pipe, and the intermediate pipe and the outer pipe. Is configured to circulate a cooling liquid.
The tip of the inner pipe is protruded with respect to the intermediate pipe and the outer pipe, and a lance for injecting a gas reducing material having a curved projection is inserted into the blast furnace blast pipe through the pipe wall. And a blast furnace operating method characterized by blowing a gas reducing material into the blast furnace tuyere.
(6) The length of the protruding portion is 2 × (d1−d2) to 160 mm [where d1 is the outer diameter (mm) of the outer tube, and d2 is the outer diameter (mm) of the inner tube]. The method of operating a blast furnace as described in (5) above, wherein
(7) The blast furnace operating method according to the above (5) or (6), wherein the lance is arranged on a blower pipe so that a jet direction of the gas reducing material and a direction of blast furnace blown coincide with each other.

本発明において、内管の先端を中間管および外管に対して突出させ、突出させた内管部分に湾曲を設け、好ましくは気体還元材の噴出方向と高炉送風の方向が一致するように調整する理由は次の通りである。特許文献1に記載のランスを用いた場合、気体還元材がランス先端から高炉の送風管に向かって噴出するため、ランス軸の延長上の送風管壁温度が上昇し、溶損が起こった。ランスを湾曲させて気体還元材の噴出方向を送風の方向に一致させると、送風管壁の溶損は緩和される。しかしながら湾曲した3重管構造のランスを製作することは機械加工上極めて困難であり、仮に製作できても均一な冷却水の流路幅の確保が困難である。部分的に冷却液流路が狭まっている部位があると、冷却不良によりランスのその部分から破損する可能性がある。したがって3重管構造のランス先端に突出させた内管部分のみに湾曲を設けることとした。   In the present invention, the tip of the inner pipe is protruded with respect to the intermediate pipe and the outer pipe, and a curved portion is provided in the protruded inner pipe portion, preferably adjusted so that the jet direction of the gas reducing material coincides with the direction of the blast furnace blast. The reason for doing this is as follows. When the lance described in Patent Document 1 was used, the gas reducing material was ejected from the tip of the lance toward the blast furnace blast pipe, so that the temperature of the blast pipe wall on the extension of the lance shaft increased, resulting in melting damage. When the lance is bent so that the direction in which the gas reducing material is ejected coincides with the direction of the air blowing, the melt damage of the air blowing pipe wall is alleviated. However, it is extremely difficult to manufacture a lance having a curved triple pipe structure, and even if it can be manufactured, it is difficult to secure a uniform cooling water flow path width. If there is a portion where the coolant flow path is partially narrowed, there is a possibility that the portion of the lance may be damaged due to poor cooling. Therefore, only the inner tube portion projected from the tip of the lance of the triple tube structure is provided with a curve.

また、内管の突出長さについてはある適正範囲が存在する。突出部分は非水冷であるから気体還元材の燃焼にともなう輻射熱や、高炉送風(熱風)による対流伝熱を受けて過熱され、先端部にいくほど高温になる。長すぎる場合にはランス先端部が溶損する。一方、短すぎる場合、送風が外管と内管の段差部分で乱されて生じる渦により、気体還元材が強攪拌されてランス近傍で集中燃焼するためランス先端が溶損することが分かった。したがって、溶損防止のため内管の突出長さは、後に示すように適正範囲に調整することが好ましい。   Moreover, there exists a certain appropriate range for the protruding length of the inner tube. Since the protruding portion is not water-cooled, it is overheated by receiving radiant heat accompanying the combustion of the gas reducing material and convection heat transfer by blast furnace air (hot air), and the temperature increases toward the tip. If it is too long, the tip of the lance will melt. On the other hand, it was found that if the air flow is too short, the gas reducing material is vigorously stirred and intensively burned in the vicinity of the lance due to the vortex generated when the air flow is disturbed at the step portion between the outer tube and the inner tube. Therefore, it is preferable to adjust the protruding length of the inner tube to an appropriate range as will be described later in order to prevent melting damage.

内管、中間管および外管を備えた3重管構造の気体還元材吹込み用のランスにおいて、前記内管の先端部を前記中間管および前記外管に対して突出させるとともに、この突出部を湾曲させたので、噴出した気体還元材による送風管の溶損を防止することが可能となり、高炉の生産性を向上させることができる。   In a lance for injecting a gas reducing material having a triple pipe structure including an inner tube, an intermediate tube, and an outer tube, the tip of the inner tube protrudes from the intermediate tube and the outer tube, and the protruding portion Therefore, it is possible to prevent the blower pipe from being melted by the ejected gas reducing material, and to improve the productivity of the blast furnace.

以下、図面を参照しながら、本発明の好ましい実施の形態について説明する。
図1は本発明の気体還元材吹込みランスを配備した高炉1の概要を示す断面図である。高炉1は、上方から順に炉頂部2、シャフト部3、炉腹部4、炉底部5を有している、高炉1の炉頂部2には、装入装置6が設けられており、この装入装置6から高炉1内に主に鉄鉱石およびコークスからなる原料7が装入される。炉底部5には、炉内反応を生じさせるための熱風を吹き込む複数の羽口8が円周状に設けられており、この羽口8を介して送風管9から高炉1内に熱風を吹き込む。この送風管9には、気体還元材吹込み用のランス10が管壁を貫通して挿入されている。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a sectional view showing an outline of a blast furnace 1 provided with a gas reducing material blowing lance of the present invention. The blast furnace 1 has a furnace top part 2, a shaft part 3, a furnace belly part 4, and a furnace bottom part 5 in order from the top. The furnace top part 2 of the blast furnace 1 is provided with a charging device 6. A raw material 7 mainly composed of iron ore and coke is charged into the blast furnace 1 from the apparatus 6. A plurality of tuyere 8 for blowing hot air for generating a reaction in the furnace is provided in the furnace bottom portion 5 in a circumferential shape, and hot air is blown into the blast furnace 1 from the blower tube 9 through the tuyere 8. . A lance 10 for injecting a gas reducing material is inserted into the blower tube 9 through the tube wall.

羽口8から送風される領域には、レースウェイ11が形成される。レースウェイ11は、羽口8から吹き込まれる衝風のエネルギーによって羽口前のコークスが押しのけられてできる空間である。炉底部5に存在する湯溜り部12には炉内反応により生成された溶銑およびスラグが溶銑層およびスラグ層として存在し、溶銑およびスラグは複数の出銑口13から周期的に出銑滓される。この場合に、複数の出銑口13は、開口と閉塞とを交互に行なう。なお、符号14は炉芯である。   A raceway 11 is formed in a region blown from the tuyere 8. The raceway 11 is a space formed by the coke in front of the tuyere being pushed away by the energy of the gust of wind blown from the tuyere 8. Hot water and slag produced by the in-furnace reaction are present as a hot metal layer and a slag layer in the hot water reservoir 12 present in the furnace bottom 5, and the hot metal and slag are periodically discharged from a plurality of outlets 13. The In this case, the plurality of tap holes 13 alternately perform opening and closing. Reference numeral 14 denotes a furnace core.

図2は本発明の気体還元材吹込み用のランスを模式的に示す要部斜視図であり、図3は断面図である。ランス10は、3重管構造を有しており、それぞれ内管21、中間管22および外管23からなっている。内管21は気体還元材の流路となっている。気体還元材としては、高炉1への吹き込み時にランス10を通過する段階で気体の還元材であればよく、例えば天然ガス、メタンガス、コークス炉ガス、石炭ガス化ガス、水素ガス等を用いることができる。   FIG. 2 is a perspective view of a main part schematically showing a lance for blowing the gas reducing material of the present invention, and FIG. 3 is a cross-sectional view. The lance 10 has a triple pipe structure, and includes an inner tube 21, an intermediate tube 22, and an outer tube 23, respectively. The inner tube 21 is a flow path for a gas reducing material. The gas reducing material may be a gaseous reducing material at the stage of passing through the lance 10 when being blown into the blast furnace 1, and for example, natural gas, methane gas, coke oven gas, coal gasification gas, hydrogen gas, or the like may be used. it can.

ランス10の基端側の中間管22には、冷却用液体取り入れ口25が設けられており、この冷却用液体取り入れ口25から、冷却水などの冷却用液体を導入し、外管23の基端側に設けられた排出口26から排出することにより、内管21の周囲に冷却用液体が流通する。冷却用の液体としては、例えば、水、各種水溶液および油などを使用可能であるが、取り扱いの簡便さから水または各種水溶液が一般的に用いられる。水溶液の例としては、冷却配管内の腐食や藻類の成長による配管の詰まりを防止するための薬剤を少量水に溶かしたものが使用される。水溶液にしても、油等にしても、腐食性の液体は避ける必要がある。また、液体が沸点に達すると急激に冷却能を失うために、排水温度は常に監視を行ない、水であれば最大でも70℃以下で使用することが望ましい。他の液体であれば、排水温度を沸点の70%程度(摂氏基準)以下で管理することが望ましい。   The intermediate pipe 22 on the base end side of the lance 10 is provided with a cooling liquid intake 25. A cooling liquid such as cooling water is introduced from the cooling liquid intake 25, and the base of the outer pipe 23 is provided. The cooling liquid flows around the inner pipe 21 by discharging from the discharge port 26 provided on the end side. As the cooling liquid, for example, water, various aqueous solutions, oil, and the like can be used, but water or various aqueous solutions are generally used because of easy handling. As an example of the aqueous solution, a solution obtained by dissolving a chemical in a small amount of water for preventing corrosion in the cooling pipe and clogging of the pipe due to algae growth is used. Whether it is an aqueous solution or oil, it is necessary to avoid corrosive liquids. In addition, since the cooling capacity is suddenly lost when the liquid reaches the boiling point, the temperature of the drainage is always monitored, and if it is water, it is desirable to use it at 70 ° C. or less at maximum. For other liquids, it is desirable to manage the drainage temperature at about 70% of the boiling point (Celsius standard) or less.

ランス10の先端側は、内管のみを突出させた部位(以下、「先端チップ24」と記す)を有している。この先端チップ24は、所定の曲率で湾曲形成されている。この湾曲は先端チップ24の全部(つまり、突出した部分の全体)にもたせてもよいし、先端チップ24の一部にもたせてもよい。   The tip side of the lance 10 has a portion (hereinafter referred to as “tip tip 24”) from which only the inner tube is projected. The tip 24 is curved with a predetermined curvature. This curvature may be applied to the entire tip end 24 (that is, the entire protruding portion) or to a part of the tip end 24.

このように曲成された先端チップ24を備えたランス10は、送風管9に配備した状態で、図4に示すように、気体還元材の噴出方向が高炉1の送風管9を流れる熱風の進行方向と同一になるような方向で装着される。つまり、気体還元材の噴出方向と高炉送風の方向が一致するように配備される。これにより噴出した気体還元材が送風管9の近傍で燃焼することが抑制されるため、ランス10に対向する側の送風管9の壁9aの溶損を防止することが可能となる。このような溶損防止効果により、ランス10によって吹込む気体還元材の流量や流速を従来よりも大きくすることができるので、高炉の生産性を向上させることができる。ここで、「気体還元材の噴出方向と高炉送風の方向が一致する」とは、具体的には、図4に示すように、ランス10の先端チップ24から噴出された気体還元材の噴出方向の延長線が、高炉1の炉内に向けて縮径して設けられた羽口8の出口径の範囲内に入るようになっていればよい。このような方向であれば、ランス10から噴出した気体還元材を羽口8を介してスムーズに高炉1内に導入できる。   As shown in FIG. 4, the lance 10 provided with the tip tip 24 bent in this way is arranged in the blower tube 9, and as shown in FIG. 4, the blowing direction of the gas reducing material is the hot air flowing through the blower tube 9 of the blast furnace 1. Mounted in the same direction as the direction of travel. That is, it arrange | positions so that the injection direction of a gas reducing material and the direction of blast furnace ventilation may correspond. As a result, it is possible to prevent the blown-out gas reducing material from being burned in the vicinity of the blower tube 9, thereby preventing the wall 9 a of the blower tube 9 on the side facing the lance 10 from being melted. Due to such a melting damage prevention effect, the flow rate and flow rate of the gas reducing material blown by the lance 10 can be made larger than before, so that the productivity of the blast furnace can be improved. Here, “the direction in which the gas reducing material is ejected coincides with the direction in which the blast furnace air blows” specifically means that the direction in which the gas reducing material is ejected from the tip 24 of the lance 10 as shown in FIG. The extension line may be within the range of the outlet diameter of the tuyere 8 provided with a reduced diameter toward the furnace of the blast furnace 1. In such a direction, the gas reducing material ejected from the lance 10 can be smoothly introduced into the blast furnace 1 through the tuyere 8.

先端チップ24は、内管21をそのまま延長しても良いし、3重管構造のランスを製作後、別途内管21の内径と同一の径を持ち、曲率を設けた単管を用意して、内管21の先端部分に溶接して取り付けても良い。この理由は、一般に溶接部分の高温耐久性は低下するが、ランス10の場合、先端チップ24と内管21の溶接部分は水冷の効果が充分期待できる部分であるから、高温にさらされる心配が無いためである。   The tip 24 may extend the inner tube 21 as it is, or after a lance having a triple tube structure is prepared, a single tube having the same diameter as the inner tube 21 and having a curvature is prepared separately. Alternatively, the inner tube 21 may be welded to the tip portion. The reason for this is that although the high-temperature durability of the welded portion generally decreases, in the case of the lance 10, the welded portion of the tip tip 24 and the inner tube 21 is a portion where the effect of water cooling can be sufficiently expected, so there is a concern that it will be exposed to high temperatures. It is because there is no.

次に、図5から図7を参照しながら、先端チップ24の長さ(つまり、内管21の突出部の長さ)の範囲について説明を行なう。本発明者らは、ランス10の先端チップ24の長さLを種々変更した試作品を製作し、実際に吹込み試験を実施してその耐久性を調査した。図5は先端チップ24の長さLが長い例であり、図6は短い例である。具体的には、ランス10の外管23の外径d1と内管21の外径d2および先端チップ24の長さLとの関係を調べるため、長さLを変えて溶損の有無について試験を行なった。   Next, the range of the length of the tip 24 (that is, the length of the protruding portion of the inner tube 21) will be described with reference to FIGS. The inventors manufactured prototypes in which the length L of the tip tip 24 of the lance 10 was variously changed, and actually conducted a blow test to investigate its durability. FIG. 5 shows an example in which the length L of the tip 24 is long, and FIG. 6 shows a short example. Specifically, in order to examine the relationship between the outer diameter d1 of the outer tube 23 of the lance 10, the outer diameter d2 of the inner tube 21, and the length L of the tip 24, the length L is changed to test for the presence or absence of melting. Was done.

その結果、長さLが160mmを超えると先端部分の溶損が一部発生した。長さLが短い間は水冷部との伝導伝熱により先端チップ24も冷却されるが、長さLが長くなるにしたがい、先端チップ24の先端部分の温度は上昇していき、長さLが160mmで限界に達すると考えられる。この上限値160mmは、気体還元材の種類や流量にはあまり依存しなかった。気体還元材の着火燃焼速度は還元材の種類によって異なるが、先端チップ24の溶損へ影響を与える程の差は無いものと推定された。一方、気体還元材の流量については、気体還元材の流量を増すと気体還元材の燃焼により発生する熱量が増大するため、先端チップ24への熱負荷は増大することになる。ただし、気体還元材は低温(常温)で吹込まれるため、先端チップの冷却材として働くことになり、流量が増大すると先端チップ24の冷却能も上昇する。結果として気体還元材の流量は先端チップ24の溶損に大きな影響を及ぼさないものと推定された。   As a result, when the length L exceeded 160 mm, a part of the tip portion was melted. While the length L is short, the tip 24 is also cooled by conduction heat transfer with the water cooling part, but as the length L increases, the temperature of the tip of the tip 24 increases and the length L Is considered to reach the limit at 160 mm. This upper limit of 160 mm did not depend much on the type and flow rate of the gas reducing material. Although the ignition and burning rate of the gas reducing material varies depending on the type of the reducing material, it is estimated that there is no difference that affects the melting damage of the tip 24. On the other hand, with respect to the flow rate of the gas reducing material, when the flow rate of the gas reducing material is increased, the amount of heat generated by the combustion of the gas reducing material increases, so that the thermal load on the tip tip 24 increases. However, since the gas reducing material is injected at a low temperature (normal temperature), it acts as a coolant for the tip, and as the flow rate increases, the cooling ability of the tip 24 also increases. As a result, it was estimated that the flow rate of the gas reducing material did not greatly affect the melting damage of the tip 24.

一方、先端チップ24の長さLの値を小さくしていくとある長さLで先端チップ24が一部溶損することが分かった。この理由は図6に模式的に図示したように、ランス本体と先端チップ24の段差部分で高炉へ送風される熱風が渦を生成し、先端チップ24から噴出する気体還元材と熱風の混合が促進され、先端チップ24の極近傍で着火燃焼を生じて、先端チップ24への熱負荷が増大したものと考えられる。   On the other hand, it was found that when the value of the length L of the tip 24 is decreased, the tip 24 is partially melted at a certain length L. The reason for this is that, as schematically illustrated in FIG. 6, the hot air blown to the blast furnace at the step portion between the lance body and the tip end 24 generates vortex, and the mixing of the gas reducing material ejected from the tip end 24 and the hot air is It is considered that this is accelerated and ignition combustion occurs in the vicinity of the tip end 24 to increase the heat load on the tip end 24.

耐久性試験結果を図7に示した。この試験では、外管23の外径d1は、60.5mm、内管21の外径d2は42.2mmまたは32.2mmとした。本耐久性試験は、試験燃焼炉を用いて実施されたもので、本試験燃焼炉で24時間以上の耐久性を持てば、実機で4ヶ月以上の耐久性を持つことが確認されているものである。実機では最低4ヶ月以上溶損せずに吹込み可能であれば良い。この理由は約4ヶ月周期で休風と呼ばれる大修理があり、たとえ溶損しても、この機会に交換することができるからである。このため図7では試作ランスを各10本試験し、24時間以内に溶損したものの割合を示した。   The durability test results are shown in FIG. In this test, the outer diameter d1 of the outer tube 23 was 60.5 mm, and the outer diameter d2 of the inner tube 21 was 42.2 mm or 32.2 mm. This durability test was conducted using a test combustion furnace, and if it has a durability of 24 hours or more in this test combustion furnace, it has been confirmed that it has a durability of 4 months or more in actual equipment. It is. It is sufficient that the actual machine can be blown without melting for at least 4 months. The reason for this is that there is a major repair called resting wind every four months, and even if it melts down, it can be replaced at this opportunity. For this reason, in FIG. 7, 10 prototype lances were tested, and the percentage of those that were melted within 24 hours was shown.

図7に示すように、長さLが2×(d1−d2)より短くなると溶損が生じることが明らかとなった。また、長さLが160mmを超えると外径d1および外径d2の値にかかわらず溶損が生じた。   As shown in FIG. 7, it became clear that melting loss occurred when the length L was shorter than 2 × (d1−d2). Further, when the length L exceeded 160 mm, melting damage occurred regardless of the values of the outer diameter d1 and the outer diameter d2.

以上の試験結果から、先端チップ24の長さLの望ましい範囲をまとめると以下の通りである。
2×(d1−d2)≦L≦160mm
[ただし、d1:外管の外径(mm)、d2:内管の外径(mm)である]
From the above test results, a desirable range of the length L of the tip 24 is summarized as follows.
2 × (d1-d2) ≦ L ≦ 160mm
[However, d1: the outer diameter (mm) of the outer tube, d2: the outer diameter (mm) of the inner tube]

以下、実施例および比較例を挙げ、本発明をさらに詳細に説明するが、本発明はこれによって制約されるものではない。実施例、比較例では、実際の高炉において本発明のランス10および比較用のランスを用いて気体還元材の吹込み操業を実施した。すなわち、図1と同様の構成を備え、内容積が3223mである高炉1の送風管9の管壁を貫通して気体還元材吹込みランスを設置した。なお、実施例では、気体還元材の噴出方向と高炉送風の方向が一致するようにした。 EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated in detail, this invention is not restrict | limited by this. In Examples and Comparative Examples, a gas reducing material was blown in an actual blast furnace using the lance 10 of the present invention and a comparative lance. That is, a gas reducing material blowing lance was installed through the wall of the blast pipe 9 of the blast furnace 1 having the same configuration as that of FIG. 1 and having an internal volume of 3223 m 3 . In addition, in the Example, it was made for the jet direction of a gas reducing material and the direction of blast furnace ventilation to correspond.

実施例、比較例において、吹込み気体還元材はメタン(CH)ガスを用いた。メタンガスは天然ガスの主成分であり、高炉吹込み用の気体として入手が比較的容易であることから、実施例および比較例における吹込み気体として選択したが、他にたとえばコークス炉ガス、あるいは石炭ガスにより発生するガスあるいは都市ガスや水素ガスなど高炉内に入って還元材として働く気体であれば代替可能である。 In the examples and comparative examples, methane (CH 4 ) gas was used as the blowing gas reducing material. Methane gas is the main component of natural gas, and since it is relatively easy to obtain as a gas for blast furnace injection, it was selected as the injection gas in the examples and comparative examples, but other examples include coke oven gas or coal. Any gas generated by gas or a gas that acts as a reducing material after entering the blast furnace, such as city gas or hydrogen gas, can be substituted.

表1は、送風圧力一定および羽口先温度一定の条件の下で、各実施例および比較例における高炉の各諸元の変化と生産量の変化を記載している。生産量を上げるためには送風量を上げる(送風圧力を増大する)か、酸素富化率を上げる(結果的に羽口先温度が上昇する)などの方法があるが、図1の高炉では送風圧力は0.38MPaが最大であり、酸素富化率もまた羽口先温度が上限に近い2300℃程度になっていることから、各例で生産量は最大であったと考えることができる。   Table 1 describes changes in specifications of each blast furnace and changes in production amount in each example and comparative example under the conditions of constant air pressure and constant tuyere temperature. In order to increase the production volume, there are methods such as increasing the air flow rate (increasing the air pressure) or increasing the oxygen enrichment rate (resulting in an increase in the tuyere temperature). Since the pressure is maximum at 0.38 MPa and the oxygen enrichment rate is also about 2300 ° C. where the tuyere temperature is close to the upper limit, it can be considered that the production amount was maximum in each example.

Figure 2006312756
Figure 2006312756

実施例1は、本発明の吹込みランス10を用いて、気体還元材を20kg/t-p(溶銑1トンあたり20kgの意味;以下同様である)で高炉に吹込んだ場合の結果を示している。生産量(出銑量)は7735t/dであり、気体還元材の吹込みがない場合(比較例1)の生産量の約1.15倍の銑鉄を生産することができた。   Example 1 shows the result when the gas reducing material is injected into the blast furnace at 20 kg / tp (meaning 20 kg per ton of hot metal; the same applies hereinafter) using the injection lance 10 of the present invention. ing. The production amount (slagging amount) was 7735 t / d, and it was possible to produce pig iron about 1.15 times the production amount when no gas reducing material was blown (Comparative Example 1).

実施例2は、本発明の吹込みランス10を用いて、気体還元材を60kg/t-p高炉に吹込んだ場合の結果を示している。生産量(出銑量)は8058t/dであり、気体還元材の吹込みがない場合(比較例1)の生産量の約1.19倍の銑鉄を生産することができた。   Example 2 has shown the result at the time of blowing a gas reducing material into a 60 kg / tp blast furnace using the blowing lance 10 of this invention. The production amount (the amount of brewing) was 8058 t / d, and it was possible to produce pig iron approximately 1.19 times the production amount when no gas reducing material was blown (Comparative Example 1).

実施例3は、本発明の吹込みランス10を用いて、気体還元材を12kg/t-p高炉に吹込んだ場合の結果を示している。生産量(出銑量)は7574t/dであり、気体還元材の吹込みがない場合(比較例1)の生産量の約1.12倍の銑鉄を生産することができた。   Example 3 shows the results when the gas reducing material was blown into a 12 kg / tp blast furnace using the blowing lance 10 of the present invention. The production amount (slagging amount) was 7574 t / d, and pig iron that was about 1.12 times the production amount when no gas reducing material was blown (Comparative Example 1) could be produced.

実施例4は、本発明の吹込みランス10を用いて、気体還元材を11kg/t-p高炉に吹き込んだ場合の結果を示している。生産量(出銑量)は7381t/dであり、気体還元材の吹込みがない場合(比較例1)の生産量の約1.09倍の銑鉄を生産することができた。   Example 4 has shown the result at the time of blowing a gaseous reducing material into an 11kg / tp blast furnace using the blowing lance 10 of this invention. The production amount (slagging amount) was 7381 t / d, and pig iron that was about 1.09 times the production amount when no gas reducing material was blown (Comparative Example 1) could be produced.

比較例1は、気体還元材比の吹込みを実施しない場合の高炉操業の一例を示したもので、先に示したように、生産量の上限は気体還元材の吹込みを実施した場合に比較して低いものとなった。   Comparative Example 1 shows an example of blast furnace operation in the case where the gas reducing material ratio is not injected. As shown above, the upper limit of the production amount is when the gas reducing material is injected. It became low compared.

比較例2は、図8(a)に示すような内管の突出部(先端チップ24)を有しない従来型の水冷3重管構造のランス50により気体還元材を吹込んだ場合を示している。この場合は、図8(b)に示すように気体吹込みランス50の延長線と送風管壁の交点近傍に温度センサー51を取り付け、送風管壁の温度が上昇した場合、溶損防止のため、気体還元材の吹込みを停止することを実施した。その結果、気体還元材の停止時間が長く、一日平均値でわずか0.2kg/t-pの気体還元材を吹込めたのみであった。このため、気体還元材吹込みによる生産量向上効果を得ることができなかった。   The comparative example 2 shows the case where the gas reducing material is blown by the lance 50 of the conventional water-cooled triple pipe structure which does not have the protrusion part (tip tip 24) of the inner pipe as shown in FIG. Yes. In this case, as shown in FIG. 8 (b), a temperature sensor 51 is attached in the vicinity of the intersection of the extension line of the gas blowing lance 50 and the blower pipe wall, and when the temperature of the blower pipe wall rises, in order to prevent melting damage The injection of the gas reducing material was stopped. As a result, the stop time of the gas reducing material was long, and only 0.2 kg / tp of the gas reducing material was injected on average per day. For this reason, the production volume improvement effect by gas reducing material injection was not able to be acquired.

高炉の概略構成を模式的に示す断面図。Sectional drawing which shows the schematic structure of a blast furnace typically. 気体還元材吹込み用ランスの要部斜視図。The principal part perspective view of the lance for gas reducing material blowing. 気体還元材吹込み用ランスの概略構成を模式的に示す断面図。Sectional drawing which shows typically schematic structure of the lance for gas reducing material blowing. 気体還元材吹込み用ランスを送風管に装着した状態を説明する図面。The figure explaining the state which mounted | wore the ventilation pipe | tube with the lance for gas reducing material blowing. 気体還元材吹込み用ランスの要部断面図。The principal part sectional drawing of the lance for gas reducing material blowing. 気体還元材吹込み用ランスの要部断面図。The principal part sectional drawing of the lance for gas reducing material blowing. 先端チップの長さと溶損率との関係を説明する図面。The drawing explaining the relationship between the length of the tip and the melting rate. 従来技術のランスの説明に供する図面。Drawing used for explanation of lance of prior art.

符号の説明Explanation of symbols

10 ランス
21 内管
22 中間管
23 外管
24 先端チップ
25 冷却用液体取り入れ口
26 排出口
10 Lance 21 Inner tube 22 Intermediate tube 23 Outer tube 24 Tip tip 25 Cooling liquid inlet 26 Discharge port

Claims (7)

高炉の送風管内に管壁を貫通して挿入され、高炉羽口内に気体還元材を吹き込む気体還元材吹込み用のランスであって、
内管、中間管および外管を備えた3重管構造であり、前記内管から気体還元材を吹込み、前記内管と前記中間管および前記中間管と前記外管との間に冷却用の液体を流通させるように構成されており、
前記内管の先端部を前記中間管および前記外管に対して突出させるとともに、この突出部を湾曲させたことを特徴とする、気体還元材吹込み用のランス。
A lance for blowing a gas reducing material, which is inserted through the pipe wall into the blast furnace pipe and blows the gas reducing material into the blast furnace tuyere,
A triple pipe structure including an inner pipe, an intermediate pipe, and an outer pipe, for blowing a gas reducing material from the inner pipe, and for cooling between the inner pipe, the intermediate pipe, and the intermediate pipe and the outer pipe Configured to circulate a liquid of
A lance for injecting a gas reducing material, wherein the tip of the inner tube protrudes from the intermediate tube and the outer tube, and the protrusion is curved.
前記突出部の長さを、2×(d1−d2)以上160mm以下[ただし、d1:外管の外径(mm)、d2:内管の外径(mm)である]としたことを特徴とする、請求項1に記載の気体還元材吹込み用のランス。   The length of the protruding portion is 2 × (d1−d2) or more and 160 mm or less [where d1: the outer diameter (mm) of the outer tube, d2: the outer diameter (mm) of the inner tube]. The lance for blowing the gas reducing material according to claim 1. 請求項1または請求項2に記載の気体還元材吹込み用のランスを設けた送風管を配備したことを特徴とする、高炉。   A blast furnace provided with a blower pipe provided with the lance for injecting the gas reducing material according to claim 1 or 2. 前記ランスを、前記気体還元材の噴出方向と高炉送風の方向が一致するように配備したことを特徴とする、請求項3に記載の高炉。   4. The blast furnace according to claim 3, wherein the lance is arranged so that a jet direction of the gas reducing material coincides with a direction of blast furnace blowing. 5. 内管、中間管および外管を備えた3重管構造であり、前記内管から気体還元材を吹込み、前記内管と前記中間管および前記中間管と前記外管との間に冷却用の液体を流通させるように構成されており、
前記内管の先端部を前記中間管および前記外管に対して突出させるとともに、この突出部を湾曲させた気体還元材吹込み用のランスを、高炉の送風管内に管壁を貫通して挿入し、高炉羽口内に気体還元材を吹き込むことを特徴とする、高炉操業方法。
A triple pipe structure including an inner pipe, an intermediate pipe, and an outer pipe, for blowing a gas reducing material from the inner pipe, and for cooling between the inner pipe, the intermediate pipe, and the intermediate pipe and the outer pipe Configured to circulate a liquid of
The tip of the inner pipe is protruded with respect to the intermediate pipe and the outer pipe, and a lance for injecting a gas reducing material having a curved projection is inserted into the blast furnace blast pipe through the pipe wall. And a blast furnace operating method characterized by blowing a gas reducing material into the blast furnace tuyere.
前記突出部の長さを、2×(d1−d2)以上160mm以下[ただし、d1:外管の外径(mm)、d2:内管の外径(mm)である]としたことを特徴とする、請求項5に記載の高炉操業方法。   The length of the protruding portion is 2 × (d1−d2) or more and 160 mm or less [where d1: the outer diameter (mm) of the outer tube, d2: the outer diameter (mm) of the inner tube]. The blast furnace operating method according to claim 5. 前記ランスを、前記気体還元材の噴出方向と高炉送風の方向が一致するように配備したことを特徴とする、請求項5または請求項6に記載の高炉操業方法。
The blast furnace operating method according to claim 5 or 6, wherein the lance is arranged so that a jet direction of the gas reducing material coincides with a direction of blast furnace blowing.
JP2005134981A 2005-05-06 2005-05-06 Lance for blowing gas reducing material, blast furnace and blast furnace operating method Active JP4747662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005134981A JP4747662B2 (en) 2005-05-06 2005-05-06 Lance for blowing gas reducing material, blast furnace and blast furnace operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005134981A JP4747662B2 (en) 2005-05-06 2005-05-06 Lance for blowing gas reducing material, blast furnace and blast furnace operating method

Publications (2)

Publication Number Publication Date
JP2006312756A true JP2006312756A (en) 2006-11-16
JP4747662B2 JP4747662B2 (en) 2011-08-17

Family

ID=37534361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005134981A Active JP4747662B2 (en) 2005-05-06 2005-05-06 Lance for blowing gas reducing material, blast furnace and blast furnace operating method

Country Status (1)

Country Link
JP (1) JP4747662B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676719A (en) * 2012-04-30 2012-09-19 莱芜钢铁集团有限公司 Novel blast furnace oxygen coal lance
JP2013001910A (en) * 2011-06-13 2013-01-07 Jfe Steel Corp Device and method for blowing reducing material into blast furnace
CN114908201A (en) * 2022-04-19 2022-08-16 北京科技大学 Blast furnace hydrogen-rich solid fuel and hydrogen-rich gas fuel combined type injection device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160216A (en) * 1998-11-25 2000-06-13 Nkk Corp Lance for blowing powdery material into blast furnace
JP2001348605A (en) * 2000-06-06 2001-12-18 Nkk Corp Lance for blowing synthetic resin material into vertical type metallurgical furnace and method for producing molten iron by using vertical type metallurgical furnace with attendant blowing of synthetic resin material
JP2006312757A (en) * 2005-05-06 2006-11-16 Jfe Steel Kk Injection lance for gaseous reducing material, blast furnace and blast furnace operation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160216A (en) * 1998-11-25 2000-06-13 Nkk Corp Lance for blowing powdery material into blast furnace
JP2001348605A (en) * 2000-06-06 2001-12-18 Nkk Corp Lance for blowing synthetic resin material into vertical type metallurgical furnace and method for producing molten iron by using vertical type metallurgical furnace with attendant blowing of synthetic resin material
JP2006312757A (en) * 2005-05-06 2006-11-16 Jfe Steel Kk Injection lance for gaseous reducing material, blast furnace and blast furnace operation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001910A (en) * 2011-06-13 2013-01-07 Jfe Steel Corp Device and method for blowing reducing material into blast furnace
CN102676719A (en) * 2012-04-30 2012-09-19 莱芜钢铁集团有限公司 Novel blast furnace oxygen coal lance
CN114908201A (en) * 2022-04-19 2022-08-16 北京科技大学 Blast furnace hydrogen-rich solid fuel and hydrogen-rich gas fuel combined type injection device

Also Published As

Publication number Publication date
JP4747662B2 (en) 2011-08-17

Similar Documents

Publication Publication Date Title
JP2006312757A (en) Injection lance for gaseous reducing material, blast furnace and blast furnace operation method
JP5087955B2 (en) Melting reduction method
TWI484041B (en) Blast furnace operation method
JP4341131B2 (en) Pulverized coal blowing burner
EP2871247B1 (en) Method for operating blast furnace
JP2017053029A (en) Operation method of oxygen blast furnace
KR20150018892A (en) Blast furnace operating method and tube bundle-type lance
JP4747662B2 (en) Lance for blowing gas reducing material, blast furnace and blast furnace operating method
JP2008231294A (en) Two-stage gasification furnace
CN209989446U (en) Smelting furnace
JP4760985B2 (en) Blast furnace operation method
KR101629123B1 (en) Blast furnace operation method
JP5724654B2 (en) Apparatus and method for injecting reducing material into blast furnace
KR100782684B1 (en) A pulverized solid fuel injecting apparatus
JP3964963B2 (en) Pulverized coal injection method in blast furnace
JP3561982B2 (en) Blast furnace operation method
JPH08157916A (en) Blowing of pulverized fine coal into blast furnace and lance for blowing pulverized fine coal
JP4893290B2 (en) Hot metal production method using vertical scrap melting furnace
KR101629122B1 (en) Blast furnace operation method
JP5724659B2 (en) Apparatus and method for injecting reducing material into blast furnace
KR101693136B1 (en) Blast furnace operation method
JP2004285425A (en) Method for blowing pulverized coal into blast furnace
KR101655213B1 (en) Device for activiting furnace center in blasst furnace, and thr method
JP2013001934A (en) Device and method for blowing reducing material into blast furnace
JPH1053804A (en) Burner for blowing pulverized fine coal into blast furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110502

R150 Certificate of patent or registration of utility model

Ref document number: 4747662

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140527

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250