JP2677405B2 - Method for improving magnetic properties of ultrafine crystal alloy ribbon core - Google Patents

Method for improving magnetic properties of ultrafine crystal alloy ribbon core

Info

Publication number
JP2677405B2
JP2677405B2 JP1014489A JP1448989A JP2677405B2 JP 2677405 B2 JP2677405 B2 JP 2677405B2 JP 1014489 A JP1014489 A JP 1014489A JP 1448989 A JP1448989 A JP 1448989A JP 2677405 B2 JP2677405 B2 JP 2677405B2
Authority
JP
Japan
Prior art keywords
magnetic core
magnetic
core
alloy ribbon
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1014489A
Other languages
Japanese (ja)
Other versions
JPH02197518A (en
Inventor
克仁 吉沢
清隆 山内
則好 平尾
Original Assignee
日立金属 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属 株式会社 filed Critical 日立金属 株式会社
Priority to JP1014489A priority Critical patent/JP2677405B2/en
Publication of JPH02197518A publication Critical patent/JPH02197518A/en
Application granted granted Critical
Publication of JP2677405B2 publication Critical patent/JP2677405B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はトランス,可飽和リアクトル,チョークコイ
ル等各種部品に用いられる超微結晶合金薄帯磁心の磁気
特性改善方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for improving magnetic characteristics of an ultrafine crystal alloy ribbon magnetic core used in various parts such as a transformer, a saturable reactor, and a choke coil.

[従来の技術] 少なくとも組織の50%が微細な結晶粒からなるFe−Cu
−(Si,B)−M系(MはNb,W,Ta等の元素)Fe基軟磁性
合金がヨーロッパ公開特許第0271657号公報に開示され
ている。
[Prior Art] Fe-Cu with at least 50% of the structure consisting of fine crystal grains
A-(Si, B) -M system (M is an element such as Nb, W, Ta, etc.) Fe-based soft magnetic alloy is disclosed in EP-A-0271657.

この合金は、Fe基であるにもかかわらず、低磁歪で、
しかも軟磁気特性が優れているものであった。
This alloy, despite being Fe-based, has low magnetostriction,
Moreover, the soft magnetic characteristics were excellent.

また上記Fe基軟磁性合金は、非晶質合金を得た後に熱
処理することにより、微細な結晶粒からなる組織を得る
ことも上記公報に開示されている。
It is also disclosed in the above-mentioned publication that the Fe-based soft magnetic alloy can obtain a structure composed of fine crystal grains by heat treatment after obtaining an amorphous alloy.

[本発明が解決しようとする課題] 上記Fe−Cu−(Si,B)−M系のFe基軟磁性合金は、組
織が結晶化したものであるため、磁心へ加工する際に
は、脆化していない熱処理前の非晶質合金の状態で巻回
し、処理を行い製造される。
[Problems to be Solved by the Present Invention] Since the Fe-Cu- (Si, B) -M Fe-based soft magnetic alloy has a crystallized structure, it is brittle when processed into a magnetic core. It is manufactured by winding and processing in the state of the amorphous alloy before heat treatment which has not been transformed.

このようにして得られた磁心の実効透磁率は巻回さず
積層しただけの磁心に比べて低いものとなる場合があっ
た。
The effective magnetic permeability of the magnetic core thus obtained may be lower than that of a magnetic core that is simply laminated without winding.

本発明は、上記課題に鑑みFe−Cu−M系の実効透磁率
の高い巻磁心が得られる超微結晶合金薄帯磁心の磁気特
性改善方法を提供することである。
In view of the above problems, the present invention is to provide a method for improving the magnetic characteristics of an ultrafine crystal alloy ribbon magnetic core that can obtain a wound magnetic core of the Fe-Cu-M system having a high effective magnetic permeability.

[課題を解決するための手段] 本発明は、Fe,CuおよびM(ただしMはNb,W,Ta,Zr,H
f,Ti及びMoからなる群から選ばれた少なくとも一種の元
素)を必須元素として含み、組織の少なくとも50%が粒
径500Å以下の微細な結晶粒からなる超微結晶合金薄帯
で構成された磁心を一旦変形させた後元の形状に戻すこ
とを特徴とする超微結晶合金薄帯磁心の磁気特性改善方
法、または、Fe,CuおよびM(ただしMはNb,W,Ta,Zr,H
f,Ti及びMoからなる群から選ばれた少なくとも一種の元
素)を必須元素として含み、組織の少なくとも50%が粒
径500Å以下の微細な結晶粒からなる超微結晶合金薄帯
で構成された磁心に振動を付与することを特徴とする超
微結晶合金薄帯磁心の磁気特性改善方法である。
[Means for Solving the Problems] In the present invention, Fe, Cu and M (where M is Nb, W, Ta, Zr, H
At least one element selected from the group consisting of f, Ti and Mo) is contained as an essential element, and at least 50% of the structure is composed of ultrafine crystalline alloy ribbons composed of fine crystal grains with a grain size of 500Å or less. A method for improving magnetic properties of an ultrafine crystal alloy ribbon magnetic core, which is characterized by deforming the magnetic core once and then returning it to its original shape, or Fe, Cu and M (where M is Nb, W, Ta, Zr, H
At least one element selected from the group consisting of f, Ti and Mo) is contained as an essential element, and at least 50% of the structure is composed of ultrafine crystalline alloy ribbons composed of fine crystal grains with a grain size of 500Å or less. A method for improving magnetic characteristics of an ultrafine crystal alloy ribbon magnetic core, characterized by applying vibration to the magnetic core.

本発明において、上記元素以外に非晶質化促進元素と
してSi,B等を含有した方が好ましい。
In the present invention, it is preferable to contain Si, B or the like as an amorphization promoting element in addition to the above elements.

また、上記CuおよびMは、合金の組織を微細化するの
に必要な元素であり、これらの元素により高い実効透磁
率を得ることができる。
Further, Cu and M are elements necessary for refining the structure of the alloy, and these elements can provide high effective magnetic permeability.

本発明は、上記超微結晶合金薄帯で構成された磁心を
変形後ほぼ元の形状に戻す、あるいは振動させることに
より軟磁気特性が著しく改善できることを見い出したこ
とによるものである。
The present invention is based on the finding that the soft magnetic characteristics can be remarkably improved by returning the magnetic core formed of the ultrafine crystal alloy ribbon to its original shape after deformation or by vibrating it.

変形する方法には、たとえば磁心を押しつぶしたり、
振動を与えたりする方法がある。
To deform, for example, crush the magnetic core,
There is a method of giving vibration.

[実施例] 以下本発明の実施例を説明するが本発明は、これらに
限定されるものではない。
[Examples] Examples of the present invention will be described below, but the present invention is not limited thereto.

実施例1 原子%でCu1%,Nb3%,Si14%,B8.5%残部実質的にFe
からなる合金溶湯を単ロール法により急冷し、厚さ19μ
m,幅15mmの非晶質合金薄帯を作製した。
Example 1 Cu1%, Nb3%, Si14%, B8.5% in atomic% balance Fe substantially
The alloy melt consisting of is rapidly cooled by the single roll method to a thickness of 19μ
An amorphous alloy ribbon with m and width of 15 mm was prepared.

次にこの薄帯をロールと接触した面を外側にし外径
(D1)20mm,内径(D2)10mmに巻回し第1図(a)に示
す形のトロイダル巻磁心を作製した。
Next, the toroidal wound magnetic core having the shape shown in FIG. 1 (a) was produced by winding the thin ribbon so that the surface in contact with the roll was outside and the outer diameter (D1) was 20 mm and the inner diameter (D2) was 10 mm.

次にこの磁心を窒素ガスを流した管状炉に入れ室温か
ら2.5/minの昇温速度で昇温し、550℃に40分保持後、炉
から取り出し空冷した。
Next, this magnetic core was placed in a tubular furnace in which nitrogen gas was flown, heated from room temperature at a heating rate of 2.5 / min, held at 550 ° C. for 40 minutes, taken out of the furnace and air-cooled.

熱処理後の磁心材は透過電子顕微鏡によるミクロ組織
観察およびX線回折の結果ほとんどが粒径500Å以下のb
ccFe固溶体粒からなることが確認された。
After the heat treatment, the magnetic core material was observed by a transmission electron microscope to observe the microstructure and X-ray diffraction.
It was confirmed to consist of ccFe solid solution grains.

次にこの巻磁心をフェノール樹脂製のコアケースに入
れ巻線をほどこし100KHz,2KGにおける磁心損失Pc2/
100k,100KHzにおける実効μe100kを測定した。
Next, put this winding core in a phenol resin core case and wind the winding to remove the core loss at 100 KHz, 2KG Pc 2 /
100 k, was measured the effective μe 100 k in 100KHz.

Pc2/100kは610mW/cc,μe100kは5200であった。Pc 2/100 k is 610mW / cc, μe 100 k was 5200.

次にこの巻磁心をコアケースから取り出し、第1図
(b)に示すように外径(D1)を約15mmになるまでつぶ
した後元の形にもどす工程をつぶす位置を90度ずつずら
して繰返し、前述の特性を測定した。
Next, take out this winding core from the core case, crush it until the outer diameter (D1) becomes about 15 mm as shown in Fig. 1 (b), and then restore it to its original shape. The above characteristics were measured repeatedly.

Pc2/100kは300mW/cc,μe100kは18000であり、著しく
高周波磁気特性が改善されていた。
Pc 2/100 k is 300mW / cc, μe 100 k is 18000, was improved remarkably high frequency magnetic properties.

軟磁気特性が改善できる理由は、磁心の層間の電気的
導通が低減し、渦電流損による磁心損失が小さくなるた
めと考えられる。
It is considered that the reason why the soft magnetic characteristics can be improved is that the electrical conduction between the layers of the magnetic core is reduced and the magnetic core loss due to the eddy current loss is reduced.

実施例2 原子%でCu1%,Nb5%,Si13%,B8.5%残部実質的にFe
からなる合金溶湯を単ロール法により急冷し、厚さ18μ
m,幅12.5mmの非晶質合金薄帯を作製した。
Example 2 Cu1%, Nb5%, Si13%, B8.5% balance atomically Fe
The alloy melt consisting of is rapidly cooled by the single roll method to a thickness of 18μ.
An amorphous alloy ribbon with m and width of 12.5 mm was prepared.

次にこの薄帯を外径(D1)25mm、内径(D2)15mmにロ
ール接触面を内側とし巻き回し、巻磁心とした後この磁
心をArガスを流したソレノイドコイルの巻かれた管状炉
に入れ磁心の磁路と垂直方向(薄帯の幅方向)に約4000
Oeの磁場を印加しながら室温から2℃/minの昇温速度で
昇温し、590℃に1時間保持後、2℃/minの冷却速度で2
00℃まで冷却し、磁場を切り、炉から取り出し室温まで
空冷した。ミクロ組織は透過電子顕微鏡による組織観察
の結果実施例1と同様であった。
Next, this ribbon was wound around an outer diameter (D1) of 25 mm and an inner diameter (D2) of 15 mm with the roll contact surface on the inside, and after forming a winding magnetic core, this magnetic core was formed into a tubular furnace with a solenoid coil flowed with Ar gas. About 4000 in the direction perpendicular to the magnetic path of the insert core (width direction of the ribbon)
While applying a magnetic field of Oe, the temperature was raised from room temperature at a heating rate of 2 ° C / min, held at 590 ° C for 1 hour, and then cooled at a cooling rate of 2 ° C / min.
It was cooled to 00 ° C., the magnetic field was cut off, taken out of the furnace and air-cooled to room temperature. The microstructure was the same as that of Example 1 as a result of the structure observation by a transmission electron microscope.

100KHz,2KGにおける磁心損失Pc2/100kは560mW/cc,100
KHzにおける実効透磁率μe100kは6200であった。
100 KHz, core loss Pc 2/100 k in 2KG is 560 mW / cc, 100
The effective permeability μe 100 k at KHz was 6200.

次にこの巻磁心を実施例1と同様に外径(D1)を約15
mmになるまでつぶした後元の形にもどす工程をつぶす位
置を90度ずつずらして繰返し、前述の特性を測定した。
Next, this wound magnetic core has an outer diameter (D1) of about 15 as in the first embodiment.
After crushing to mm, the step of returning to the original shape was repeated by shifting the crushing position by 90 degrees, and the above characteristics were measured.

Pc2/100kは290mW/cc,μe100kは19600であり著しく改
善されていた。
Pc 2/100 k is 290mW / cc, μe 100 k is the 19600 has been significantly improved.

実施例3 原子%でCu1.5%,Mo3%,Cr0.5%,Si14%,B7.8%残部
実質的にFeからなる合金溶湯を単ロール法により急冷
し、厚さ22μm,幅25mmの非晶質合金薄帯を作製した。
Example 3 Cu 1.5%, Mo 3%, Cr 0.5%, Si 14%, B 7.8% in atomic% The remaining molten alloy consisting essentially of Fe was rapidly cooled by a single roll method to obtain a thickness of 22 μm and a width of 25 mm. An amorphous alloy ribbon was produced.

次にこの薄帯をロール接触面を内側にし巻き回し外径
(D1)100mm,内径(D2)80mmの巻磁心を作製した。
Next, this ribbon was wound with the roll contact surface inside and a wound magnetic core with an outer diameter (D1) of 100 mm and an inner diameter (D2) of 80 mm was produced.

次にこの巻磁心に耐熱線により巻線をほどこし電流を
流し、磁心の磁路方向(薄帯の長手方向)に10Oeの磁場
を印加しながら1.5℃/minの昇温速度で530℃まで昇温し
1時間保持後室温まで約2.5℃/minの平均冷却速度で冷
却した。
Next, a heat-resistant wire was used to wind a current around this winding core, and a current was passed through the winding core. After warming and holding for 1 hour, it was cooled to room temperature at an average cooling rate of about 2.5 ° C./min.

熱処理の磁心の磁心損失は20KHz,2KGにおいて150mW/c
cであった。なおミクロ組織は実施例1と同様であっ
た。
The core loss of heat treated core is 150mW / c at 20KHz, 2KG
c. The microstructure was the same as in Example 1.

次にこの磁心の外周面の一部を振動板上に固定し、20
0cpm、振幅10mmで第1図中の磁心の直径方向(D1方向)
に振動をあたえた。10分間振動させた後、再度測定した
ところ磁心損失の値は80mW/ccにまで低減した。このよ
うに振動させることによっても磁気特性を改善できるこ
とがかる。
Next, fix a part of the outer peripheral surface of this magnetic core on the diaphragm, and
The diameter direction (D1 direction) of the magnetic core in Fig. 1 at 0 cpm and an amplitude of 10 mm
I gave a vibration to. After oscillating for 10 minutes, the value of the core loss was reduced to 80 mW / cc when measured again. The magnetic characteristics can be improved by vibrating in this manner.

実施例4 第1表に示す組成の合金溶湯を単ロールにより急冷
し、厚さ18μm,幅12.5mmの非晶質合金薄帯を作製した。
Example 4 A molten alloy having the composition shown in Table 1 was rapidly cooled with a single roll to produce an amorphous alloy ribbon having a thickness of 18 μm and a width of 12.5 mm.

次にこの薄帯をロール接触面を外側にし外径(D1)25
mm,内径(D2)15mmに巻回し巻磁心を作製した。
Next, with this ribbon, with the roll contact surface facing outside, the outer diameter (D1) 25
mm, the inner diameter (D2) was 15 mm, and a wound magnetic core was produced.

次にこの巻磁心を窒素ガスを流した450℃に保った炉
に入れ磁炉と垂直方向に約3500Oeの磁場を印加しながら
2.5℃/minの冷却速度で450℃まで冷却後磁場を切り炉か
ら取り出し室温まで強制空冷した。この熱処理後、実施
例1と同様に外径(D1)を約15mmになるまで押しつぶし
た後もとにもどす変形工程を90度ずつずらして繰り返し
た。熱処理直後の実効透磁率と、 変形工程終了後の100KHzにおける実効透磁率μe100kを
測定した。その結果を第1表に示す。ミクロの組織は実
施例1と同様粒径が500Å以下の結晶粒からなってい
た。
Next, while putting this wound magnetic core in a furnace kept at 450 ° C in which nitrogen gas was flown, while applying a magnetic field of about 3500 Oe in the direction perpendicular to the magnetic furnace,
After cooling to 450 ° C at a cooling rate of 2.5 ° C / min, the magnetic field was removed from the furnace and forced air cooling to room temperature. After this heat treatment, the deformation step of crushing the outer diameter (D1) to about 15 mm and returning it to the original state was repeated by shifting by 90 degrees in the same manner as in Example 1. Effective magnetic permeability immediately after heat treatment, After the deformation process, the effective magnetic permeability μe 100 k at 100 KHz was measured. Table 1 shows the results. The microstructure was composed of crystal grains having a grain size of 500Å or less as in Example 1.

変形工程を設けることにより実効透磁率が著しく改善
され高周波磁気特性改善に非常に有効な方法であること
がわかる。
It can be seen that by providing the deformation step, the effective magnetic permeability is remarkably improved and it is a very effective method for improving the high frequency magnetic characteristics.

[発明の効果] 本発明によれば、超微結晶合金薄帯磁心の高周波磁気
特性を容易に改善することができるためその効果は著し
いものがある。
[Advantages of the Invention] According to the present invention, the high-frequency magnetic characteristics of the ultrafine crystal alloy ribbon magnetic core can be easily improved, so that the effect is remarkable.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は本発明に作る磁心の形状の一例を示した
概略図、第1図(b)はその磁心を変形させる本発明の
方法を説明するための概略図である。 D1:外径、D2:内径
FIG. 1 (a) is a schematic view showing an example of the shape of the magnetic core made in the present invention, and FIG. 1 (b) is a schematic view for explaining the method of the present invention for deforming the magnetic core. D1: outer diameter, D2: inner diameter

フロントページの続き (72)発明者 平尾 則好 埼玉県熊谷市三ケ尻5200番地 日立金属 株式会社磁性材料研究所内 (56)参考文献 特開 昭63−302504(JP,A) 特開 昭60−250605(JP,A) 特開 昭63−239906(JP,A) 特公 昭62−56203(JP,B2)Front Page Continuation (72) Inventor Noriyoshi Hirao 5200 Mikashiri, Kumagaya City, Saitama, Hitachi Metals Co., Ltd. Magnetic Materials Research Laboratory (56) Reference JP-A-63-302504 (JP, A) JP-A-60-250605 ( JP, A) JP 63-239906 (JP, A) JP 62-56203 (JP, B2)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Fe,CuおよびM(ただしMはNb,W,Ta,Zr,H
f,Ti及びMoからなる群から選ばれた少なくとも一種の元
素)を必須元素として含み、組織の少なくとも50%が粒
径500Å以下の微細な結晶粒からなる超微結晶合金薄帯
で構成された磁心を一旦変形させた後元の形状に戻すこ
とを特徴とする超微結晶合金薄帯磁心の磁気特性改善方
法。
1. Fe, Cu and M (where M is Nb, W, Ta, Zr, H
At least one element selected from the group consisting of f, Ti and Mo) is contained as an essential element, and at least 50% of the structure is composed of ultrafine crystalline alloy ribbons composed of fine crystal grains with a grain size of 500Å or less. A method for improving magnetic characteristics of an ultrafine crystal alloy ribbon magnetic core, which comprises deforming the magnetic core once and then returning it to the original shape.
【請求項2】Fe,CuおよびM(ただしMはNb,W,Ta,Zr,H
f,Ti及びMoからなる群から選ばれた少なくとも一種の元
素)を必須元素として含み、組織の少なくとも50%が粒
径500Å以下の微細な結晶粒からなる超微結晶合金薄帯
で構成された磁心に振動を付与することを特徴とする超
微結晶合金薄帯磁心の磁気特性改善方法。
2. Fe, Cu and M (where M is Nb, W, Ta, Zr, H
At least one element selected from the group consisting of f, Ti and Mo) is contained as an essential element, and at least 50% of the structure is composed of ultrafine crystalline alloy ribbons composed of fine crystal grains with a grain size of 500Å or less. A method for improving magnetic properties of an ultrafine crystal alloy ribbon magnetic core, characterized by applying vibration to a magnetic core.
JP1014489A 1989-01-24 1989-01-24 Method for improving magnetic properties of ultrafine crystal alloy ribbon core Expired - Fee Related JP2677405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1014489A JP2677405B2 (en) 1989-01-24 1989-01-24 Method for improving magnetic properties of ultrafine crystal alloy ribbon core

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1014489A JP2677405B2 (en) 1989-01-24 1989-01-24 Method for improving magnetic properties of ultrafine crystal alloy ribbon core

Publications (2)

Publication Number Publication Date
JPH02197518A JPH02197518A (en) 1990-08-06
JP2677405B2 true JP2677405B2 (en) 1997-11-17

Family

ID=11862463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1014489A Expired - Fee Related JP2677405B2 (en) 1989-01-24 1989-01-24 Method for improving magnetic properties of ultrafine crystal alloy ribbon core

Country Status (1)

Country Link
JP (1) JP2677405B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60250605A (en) * 1984-05-25 1985-12-11 Matsushita Electric Works Ltd Manufacture of magnetic core
JPS6256203A (en) * 1985-09-05 1987-03-11 Haruo Okazaki Method of curling transport belt in curved portion of pipe conveyer
JPS63239906A (en) * 1987-03-27 1988-10-05 Hitachi Metals Ltd Manufacture of fe alloy thin band having excellent high-frequency magnetic characteristic
JP2573606B2 (en) * 1987-06-02 1997-01-22 日立金属 株式会社 Magnetic core and manufacturing method thereof

Also Published As

Publication number Publication date
JPH02197518A (en) 1990-08-06

Similar Documents

Publication Publication Date Title
JP5455040B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5445890B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
JP5316921B2 (en) Fe-based soft magnetic alloy and magnetic component using the same
JP2008196006A (en) Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY THIN STRIP, METHOD FOR PRODUCING Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AND MAGNETIC COMPONENT
JP2015127436A (en) High magnetic flux density soft-magnetic iron base amorphous alloy having high extensibility and workability
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP6867744B2 (en) Method for manufacturing Fe-based nanocrystalline alloy
JP2008231533A5 (en)
JP2009174034A (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
JP3719449B2 (en) Nanocrystalline alloy, method for producing the same, and magnetic core using the same
JP2868121B2 (en) Method for producing Fe-based magnetic alloy core
JP2677405B2 (en) Method for improving magnetic properties of ultrafine crystal alloy ribbon core
CN111101075A (en) Iron-based soft magnetic alloy and method for producing same
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP2019099888A (en) Production method of soft magnetic material
KR100237145B1 (en) Fe amorphous soft-magnetic material and manufacturing method thereof
JP4217038B2 (en) Soft magnetic alloy
CN113053611A (en) Soft magnetic alloy, soft magnetic alloy ribbon, method for producing same, magnetic core, and component
JPH08153614A (en) Magnetic core
JP2001040460A (en) HIGH TOUGHNESS Fe BASE AMORPHOUS ALLOY AND PARTS USED WITH Fe BASE NANOCRYSTAL ALLOY PRODUCED FROM HIGH TOUGHNESS Fe BASE AMORPHOUS ALLOY
JP2001252749A (en) METHOD FOR PRODUCING Fe-BASE AMORPHOUS RIBBON FOR NANO- CRYSTAL MATERIAL AND METHOD FOR PRODUCING NANO-CRYSTAL MATERIAL
JP2945122B2 (en) Fe-based soft magnetic alloy and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees