JPS63239906A - Manufacture of fe alloy thin band having excellent high-frequency magnetic characteristic - Google Patents

Manufacture of fe alloy thin band having excellent high-frequency magnetic characteristic

Info

Publication number
JPS63239906A
JPS63239906A JP62073718A JP7371887A JPS63239906A JP S63239906 A JPS63239906 A JP S63239906A JP 62073718 A JP62073718 A JP 62073718A JP 7371887 A JP7371887 A JP 7371887A JP S63239906 A JPS63239906 A JP S63239906A
Authority
JP
Japan
Prior art keywords
ribbon
based alloy
magnetic properties
excellent high
frequency magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62073718A
Other languages
Japanese (ja)
Inventor
Katsuto Yoshizawa
克仁 吉沢
Shigeru Oguma
小熊 繁
Kiyotaka Yamauchi
山内 清隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP62073718A priority Critical patent/JPS63239906A/en
Publication of JPS63239906A publication Critical patent/JPS63239906A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an Fe group alloy thin band having excellent magnetic characteristics with less core loss in a high frequency band by forming an amorphous alloy thin band by a liquid quenching method from an alloy mainly formed with Fe including, in addition to Cu, at least one of Nb, W, Ta, Zr, Hf, Mo and Ti and then executing local heating the thin band in the form of a line of points or a continuous line to form a region having locally distorted area. CONSTITUTION:After an alloy, mainly consisting of Fe which may form amorphous, including Cu of 0.1-3 atomic% and at least a kind of element selected from Nb, W, Ta, Zr, Hf, Mo, Ti is melted into liquid, the amorphous alloy thin band is formed by a liquid quenching method and then the Fe group alloy thin band having excellent magnetic characteristic in which a greater part of organization is formed of super fine crystal particles can be obtained by a heat treatment of the thin band. This alloy is subjected to local heating in the form of points or continuous line within at least the one period before, during or after the heat treatment to form the region having a local distorted area or different local crystal grain organization and moreover to improve the high frequency magnetic characteristics.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は可飽和リアクトル、高周波トランス。[Detailed description of the invention] [Industrial application field] The present invention is a saturable reactor and high frequency transformer.

チロ−クコイル、柱状トランス等に磁心として用いられ
る磁気特性に優れた、特に高周波におけるコア損失が低
いFe基合金薄帯の製造方法に関するものである。
The present invention relates to a method for manufacturing an Fe-based alloy ribbon that has excellent magnetic properties and particularly low core loss at high frequencies and is used as a magnetic core in Chirok coils, columnar transformers, and the like.

〔従来の技術〕 従来、磁心等に用いられる金属材料としては、ケイ素鋼
やパーマロイ等が用いられていた。最近ではアモルファ
ス合金等が用いられている0これらの磁性合金はそれぞ
れ長所、欠点があり、必ずしも十分な特性とは言い難く
、ケイ素鋼板の場合は飽和磁束密度は高いが高周波にお
いて損失が大きい問題がある。パーマロイも必ずしも十
分な特性を有さす、飽和磁束密度が高い組成では高周波
におけるコア損失が大きい問題がある。アモルファス合
金の場合にも、Co系ではかなり低いコア損失のものが
得られるが飽和磁束密度は低く、Fe系では飽和磁束密
度は高いがコア損失がCo系に比べかなシ大きい問題が
ある。
[Prior Art] Conventionally, silicon steel, permalloy, and the like have been used as metal materials for magnetic cores and the like. Recently, amorphous alloys have been used. Each of these magnetic alloys has its own advantages and disadvantages, and they cannot necessarily be said to have sufficient properties. Silicon steel sheets have a high saturation magnetic flux density, but they suffer from large losses at high frequencies. be. Permalloy also has a problem of large core loss at high frequencies when it has a composition with a high saturation magnetic flux density, although it does not necessarily have sufficient properties. In the case of amorphous alloys as well, there is a problem in that Co-based alloys have a fairly low core loss, but the saturation magnetic flux density is low, and Fe-based alloys have a high saturation magnetic flux density, but the core loss is much larger than that of the Co-based alloys.

特に高角形比のヒステリシス曲線を示す磁性合金の場合
は異常渦電流損失が増加するため、コア損失が大きくな
り問題となっている。
In particular, in the case of a magnetic alloy that exhibits a hysteresis curve with a high squareness ratio, abnormal eddy current loss increases, resulting in a large core loss, which poses a problem.

このような問題を対策する方法として、たとえばアモル
ファス合金の場合には、特開昭57−97606号公報
に記載されているFe基アモルファス合金薄帯の幅方向
に線状あるいは点列状の結晶化領域を形成させ磁区を細
分化し異常渦電流損を低減する方法や、Proceed
ings of 4th International
Conference on Rapidly Que
nched Metals (1982)P1001〜
1004に記載されているFe基アモルファス合金薄帯
に熱処理を施した後薄帯表面をけがいて歪を導入し異常
渦電流損を低渦する方法、特開昭60−233804号
公報に記載されているFe基アモルファス合金薄帯表面
を局部的かつ瞬間的に溶解し、次いで急冷凝固させて再
びアモルファス化することにより異常渦電流損を低減す
る方法等また、ケイ素鋼板においても上記方法が適用さ
れている。
For example, in the case of amorphous alloys, as a method to deal with such problems, crystallization in a line or dot array in the width direction of an Fe-based amorphous alloy ribbon is described in JP-A No. 57-97606. Methods for reducing abnormal eddy current loss by forming regions and subdividing magnetic domains, and
ings of 4th International
Conference on Rapidly Que
nched Metals (1982) P1001~
A method of reducing abnormal eddy current loss by heat-treating an Fe-based amorphous alloy ribbon and then scribing the surface of the ribbon to introduce strain is described in Japanese Patent Laid-Open No. 60-233804. A method of reducing abnormal eddy current loss by locally and instantaneously melting the surface of an Fe-based amorphous alloy ribbon, then rapidly solidifying it to make it amorphous again.The above method has also been applied to silicon steel sheets. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の磁性合金に上記方法を適用しても
、コア損失の低減にある程度効果はあるものの、材料そ
のもののコア損失がもともと大きく、前記処理を行って
も十分コア損失が低減されず特に高周波においては十分
な特性ではない。
However, even if the above method is applied to conventional magnetic alloys, although it is effective to some extent in reducing core loss, the core loss of the material itself is inherently large, and even with the above treatment, the core loss cannot be sufficiently reduced, especially at high frequencies. This is not a sufficient characteristic.

本発明の目的は、高局波磁気特性に優れ、轡にコア損失
の低いFe基合金薄帯の製造方法を提供することである
An object of the present invention is to provide a method for manufacturing an Fe-based alloy ribbon that has excellent high frequency magnetic properties and low core loss.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的に鑑み鋭意研究の結果、本発明者等は、Cuを
0.1原子チ以上3原子チ以下、Nb+W、TauZr
 * Hf + Mo + Ttから選はれる少なくと
も1種の元素を0.1i子チ以上含む、非晶質形成が可
能なFeを主体とした合金を溶湯状態にした後、液体急
冷法により非晶質合金薄帯を作成し、次に前記薄帯を熱
処理することにより組織の大部分が微細結晶粒からなる
とともに優れた磁気時性を有するFe基合金薄帯が得ら
れることを発見した0この合金について更に検討の結果
、前記熱処理工程の前、途中、後のいずれか少くとも1
つの時期に、前記薄帯を点列状あるいは粉状に局所加熱
し、局部的に歪が入った領域を形成する、あるいは局部
的に結晶粒組織の異なる領域を形成することにより更に
高局波磁気特性か改善されることを見い出し、本発明に
想到した。
As a result of intensive research in view of the above objectives, the present inventors have discovered that Cu is 0.1 to 3 atoms, Nb+W, TauZr.
* After making an Fe-based alloy that can form an amorphous state into a molten metal and containing 0.1 or more elements of at least one element selected from Hf + Mo + Tt, it is made into an amorphous state by a liquid quenching method. It was discovered that by preparing a high-quality alloy ribbon and then heat-treating the ribbon, a Fe-based alloy ribbon can be obtained in which most of the structure consists of fine crystal grains and has excellent magnetic properties. As a result of further examination of the alloy, it was found that at least 1 of
At the same time, the ribbon is locally heated in a dot array or powder form to form a locally strained region, or to form a region with a locally different crystal grain structure, thereby further increasing the frequency. They found that the magnetic properties were improved and came up with the present invention.

lた、液体急冷法の際、冷却速度を102〜b粒となる
ように製造した合金薄帯に上記方法を適用しても同様の
効果を得ることができる。
Furthermore, the same effect can be obtained even if the above method is applied to an alloy ribbon produced at a cooling rate of 102 to 10 b grains during the liquid quenching method.

局部的に歪を与えたり、結晶粒組織の異なる領域を形成
する時期は特に熱処理後が効果が大きく好しい結果を得
ることができる。
When applying local strain or forming regions with different crystal grain structures, the effect is particularly great after heat treatment, and favorable results can be obtained.

本発明においてFe基合金薄帯の微細な結晶粒組織の残
部は非晶質であっても良く、組織が実質的に微細な結晶
粒からなっていても良い。
In the present invention, the remainder of the fine grain structure of the Fe-based alloy ribbon may be amorphous, or the structure may be substantially composed of fine crystal grains.

好1しくは前記結晶粒が500X以下の平均粒径を有す
る場合優れた軟磁気特性が得やすく、特に200X以下
の場合は、Co基アモルファス合金薄帯と同等以上の高
局波磁気特性となる。
Preferably, when the crystal grains have an average grain size of 500X or less, excellent soft magnetic properties are easily obtained, and especially when the average grain size is 200X or less, high frequency magnetic properties are equal to or higher than that of a Co-based amorphous alloy ribbon. .

本発明におけるFe基合金薄帯は特に 一般式: %) (ただし、MはCo及び/又はNiであシ、MはNb 
+W+Ta tZr tHf tTi及びMoからなる
群から選けれた少゛くとも1種の元素、MはV 、 C
r 、 Mn、Al m白金属元素+ Se + Y 
+布土類元素* Au e Zn + Sn + Re
からなる群から選ばれた少なくとも1種の元素、XはB
e l c r Ge t p + Ga t sb 
l As l Inからなる群から違にれた少くとも1
種の元素であシ、a + X * y、z、α、β及び
rはそれぞれ、0≦a≦0.3 、0.1≦x≦3.y
≦25,5≦2≦25 、0.1≦α≦10.0≦β≦
10,0≦γ≦20及び15≦y+z+γ≦30を満た
す。) によシ表わされる組成を有する場合、本発明の製造方法
により特に高局波磁気特性に優れたものを得やすい。
The Fe-based alloy ribbon in the present invention has a general formula: %) (where M is Co and/or Ni, M is Nb
+W+Ta tZr tHf tAt least one element selected from the group consisting of Ti and Mo, M is V, C
r, Mn, Al m white metal element + Se + Y
+ Textile element* Au e Zn + Sn + Re
at least one element selected from the group consisting of, X is B
e l cr Ge t p + Ga t sb
At least one member different from the group consisting of l As l In
The seed element is a + X * y, z, α, β and r are 0≦a≦0.3, 0.1≦x≦3, respectively. y
≦25, 5≦2≦25, 0.1≦α≦10.0≦β≦
10, 0≦γ≦20 and 15≦y+z+γ≦30 are satisfied. ) In the case of having a composition represented by the following, it is easy to obtain a product particularly excellent in high frequency magnetic properties by the manufacturing method of the present invention.

本発明の効果は磁場中熱処理工程を含む場合光われやす
く、特に磁場の印加方向が薄帯の長手方向である場合顕
著である。
The effects of the present invention are more apparent when a heat treatment step in a magnetic field is included, and is particularly noticeable when the magnetic field is applied in the longitudinal direction of the ribbon.

また薄帯に張力を印加しなから熱処理する工程を含む場
合も筒周波磁気特性特にコア損失の改善効果が顕著であ
る。
Also, when the method includes a step of heat-treating the ribbon without applying tension to it, the effect of improving the cylindrical frequency magnetic properties, especially the core loss, is remarkable.

また、第1図に示すように薄帯の巾方向となす平均角度
が30以内である点列状あるいは線状の局部歪領域ある
いは、結晶粒組織の異なる領廠を形成す、る場合高周波
磁気特性改善効果が顕著でありより好ましい結果が得ら
れる。また、隣合う線又は点列は平行である必要はなく
、また第2図に示すように直線状である必要もない。
In addition, as shown in Fig. 1, if the average angle with the width direction of the ribbon is within 30, it is possible to form dot-like or linear local strain regions, or regions with different crystal grain structures. The effect of improving properties is remarkable and more favorable results can be obtained. Also, adjacent lines or dots do not need to be parallel, nor do they need to be straight as shown in FIG.

Iた、本発明において局所加熱の手段としてレーザー光
、を子ビームを使用したり、金属針、金属エツジのいず
れかを薄帯表面に近接あるいは接触させ通電する方法等
が運用でき、林産や量産性の点でより好ましい結果が得
られる。
In addition, in the present invention, it is possible to use a laser beam as a means of local heating, or to apply electricity by bringing either a metal needle or a metal edge close to or in contact with the surface of the ribbon, which can be used for forest production or mass production. More favorable results can be obtained in terms of performance.

レーザー光を使用する場合は特に0.5 mφ以下にレ
ーザー光を絞って照射を行うと局部的に熱影響部を形成
し周囲への影響を小さくできるためより好しい結果が得
られる。
When using a laser beam, more preferable results can be obtained by concentrating the laser beam to a diameter of 0.5 mφ or less, in particular, because a heat-affected zone can be formed locally and the influence on the surroundings can be reduced.

本発明に係るFe基合金薄帯は公知の単ロール法。The Fe-based alloy ribbon according to the present invention is produced by a known single roll method.

遠心急冷法、双ロール法等の製造方法により製造するこ
とができる。
It can be manufactured by a manufacturing method such as a centrifugal quenching method or a twin roll method.

熱処理は通常N2ガスやArガス等の不活性ガス中で行
われるが、大気中において行っても良い。
The heat treatment is usually performed in an inert gas such as N2 gas or Ar gas, but it may also be performed in the atmosphere.

本発明の合金薄帯は必要に応じて表面被覆を行い磁気特
性を改善したり、耐食性を改善することができる。また
表面に絶縁層を形成し、積層した場合や巷いた場合の層
間絶縁を行うこともできる。
The alloy ribbon of the present invention can be surface-coated as necessary to improve magnetic properties and corrosion resistance. It is also possible to form an insulating layer on the surface to perform interlayer insulation when laminated or spread.

本発明の合金は通常5μfrL〜100μm程度の板厚
のものであるが、洞周波においては待に25μm以下の
板厚のものが適している。
The alloy of the present invention usually has a thickness of about 5 μfrL to 100 μm, but for sinus frequency applications, a thickness of 25 μm or less is suitable.

本発明におけるCuとNb 、W、Ta 、Zr +H
f 、Mo *Tiから選ばれる少なくとも1穐の元素
は、結晶粒を微細化する効果を有しており、これらの元
素の存在により軟磁気特性が改善される。Crの含有量
は0.1〜3原子チが望−!L<、0.1原子チ未満で
はCuの添加によるコア損失低下の効果がはとんどなく
、一方3原子チより多いとコア損失が未添加のものより
かえりて大きくなる。特に好ましいCuの含有量は0.
5〜2原子チであシ、この範囲で特にコア損失が小さく
なる。この理由は十分間らかにはなっていないが、Cu
添加により結晶化しやすくなるがNb r Ta rW
* Zr 、 Hf + Mo + Ti等が同時に存
在することによシ、結晶化した後結晶粒は成長しにくく
、かつ多数の結晶粒が生じ結晶粒は微細化され軟磁気特
性が良好となると考えられる。CuとNb +Ta +
WtZr 、Hf 、Mo +Tiから選ばれる少なく
とも1橿の元素を添加しないと軟磁気特性は良好となら
ず、本発明の効果はほとんど得られない。
Cu and Nb, W, Ta, Zr + H in the present invention
At least one element selected from f, Mo*Ti has the effect of refining crystal grains, and the presence of these elements improves the soft magnetic properties. The desired Cr content is 0.1 to 3 atoms! If L<, less than 0.1 atomic atoms, the effect of reducing core loss due to the addition of Cu is negligible, while if it exceeds 3 atomic atoms, the core loss will be even greater than that without addition. A particularly preferable Cu content is 0.
It should be between 5 and 2 atoms, and within this range the core loss is particularly small. The reason for this is not clear enough, but Cu
Although the addition facilitates crystallization, Nb r Ta rW
* It is believed that due to the simultaneous presence of Zr, Hf + Mo + Ti, etc., it is difficult for crystal grains to grow after crystallization, and many crystal grains are generated, making the crystal grains finer and improving soft magnetic properties. It will be done. Cu and Nb +Ta +
Unless at least one element selected from WtZr, Hf, and Mo+Ti is added, the soft magnetic properties will not be good and the effects of the present invention will hardly be obtained.

Nb owl Ta 、 Zr 、 Hf 、 Mo 
T Tiから選ばれる少なくとも1極の元素は0.1原
子チ以上含む必要があり、これより少ないと添加の効果
がほとんどなく、コア損失が増大する。
Nb owl Ta, Zr, Hf, Mo
At least one pole element selected from TTi must be contained in an amount of 0.1 or more atoms.If the amount is less than this, there will be little effect of addition, and core loss will increase.

〔実施例〕〔Example〕

以下本発明を実施例に従って説明するが、本発明はこれ
らに限定されるものではない。
The present invention will be described below with reference to Examples, but the present invention is not limited thereto.

実施例1゜ 単ロール法によりf@50■厚さ25μmのFe73.
5原子% 、 Cu j原子% 、 St 10.5原
子チ。
Example 1゜F@50゜25μm thick Fe73.
5 atom%, Cu j atom%, St 10.5 atom%.

B12原子%、Nb3原子チの組成を有する非晶質合金
薄帯を作製し、薄帯を切り出し、次いでN2ガス雰囲気
中で530’C1で薄帯長手方向に100eの磁場を印
加しながら室温から5 C/minの速度で昇温し、1
時間保持後5℃/minの冷却速度で100℃1で冷却
した後、室温1で20℃/m i nの冷却速度で冷却
した。
An amorphous alloy ribbon having a composition of 12 atomic % B and 3 atomic % Nb was prepared, the ribbon was cut out, and then heated from room temperature at 530'C1 in a N2 gas atmosphere while applying a magnetic field of 100 e in the longitudinal direction of the ribbon. The temperature was raised at a rate of 5 C/min, and 1
After holding for a period of time, it was cooled to 100° C.1 at a cooling rate of 5° C./min, and then cooled to room temperature 1 at a cooling rate of 20° C./min.

次に熱処理後の薄帯の自由面に、YAGレーザーを用い
て局所溶解部を導入し、コア損失におよほす影響を―べ
る実験を行った。照射条件は周波数400Hzのパルス
モード、掃引速度10cm/see。
Next, a YAG laser was used to introduce local melting zones onto the free surface of the ribbon after heat treatment, and an experiment was conducted to examine the effect on core loss. The irradiation conditions were a pulse mode with a frequency of 400 Hz and a sweep speed of 10 cm/see.

点列の方向は薄帯の幅方向に平行とし、点列の間隔は5
冒とした。スポット状の溶解部の大きさは照射エネルギ
ーのパワーおよびビーム径により制御した。
The direction of the dot row is parallel to the width direction of the ribbon, and the interval between the dot rows is 5.
blasphemed. The size of the spot-like melted area was controlled by the power of the irradiation energy and the beam diameter.

次にとの薄帯の50Hz 、 Bm 12 KGにおけ
るコア損失W 12150を単板試験器により測定した
Next, the core loss W 12150 of the ribbon at 50 Hz and Bm 12 KG was measured using a single plate tester.

W 12150は0.045W/kfであり、レーザー
処理を行なわなかった場合の値0.060W/1w よ
シ著しく改善された。
W 12150 was 0.045 W/kf, which was significantly improved from the value of 0.060 W/1w without laser treatment.

この値はFe基アモルファス(Fe、、St、 B、、
)合金の値o、osow/kfより著しく小さい。
This value is for Fe-based amorphous (Fe, , St, B, ,
) is significantly smaller than the value of the alloy o, osow/kf.

実施例2゜ 単ロール法によ’) @ 10 wg 、厚さ25μm
の第1表に示す組成の非晶質合金を作製した。
Example 2゜By single roll method') @ 10 wg, thickness 25 μm
An amorphous alloy having the composition shown in Table 1 was prepared.

次に薄帯を切貼し、Arガス雰囲気中で薄帯長手方向に
100eの磁場を印加しながら熱処理を行ない、100
KHz 、 Bm 2KGにおけるコア損失を測定した
。また、透過電子顕微鏡による組織観察の結果組織の5
0%以上が5ooX以下の粒径の微細結晶粒であった。
Next, the ribbon was cut and pasted, and heat treated in an Ar gas atmosphere while applying a magnetic field of 100 e in the longitudinal direction of the ribbon.
Core loss was measured at KHz, Bm 2KG. In addition, as a result of tissue observation using a transmission electron microscope, 5
0% or more were fine crystal grains with a grain size of 5ooX or less.

次に1この薄帯の自由画に、YAGレーザ−。Next, apply a YAG laser to the free image of this thin strip.

電子ビームあるいはダイヤモンド針によるスクラッチに
より局部的に歪を導入した。局部的に歪を与えた方向は
薄帯の幅方向に平行であシ、間隔は5fiとした。次に
この薄帯の100KHz 、 Bm2 KGにおけるコ
ア損失2/100Kを測定した。結果を第1光に示す。
Local strain was introduced by scratching with an electron beam or a diamond needle. The direction in which the local strain was applied was parallel to the width direction of the ribbon, and the interval was 5fi. Next, the core loss 2/100K of this ribbon at 100 KHz and Bm2 KG was measured. The results are shown in the first light.

第   1   表 本発明の製造方法を適用した場合コア損失低減に著しい
効果があり、高周波用磁心材として好適である。
Table 1 When the manufacturing method of the present invention is applied, it has a remarkable effect on reducing core loss, and is suitable as a magnetic core material for high frequency.

実施例3、 双ロール法により幅10m、厚さ40 ttmのF” 
?!、7Cu 0.@ Mo 2 S i +s、s 
B 、 C,非晶質合金薄帯を作製し、520℃で1時
間の熱処理を行い微結晶粒組織とした後、YAGレーザ
ーにより局部的に溶融させ歪を導入した。
Example 3: F'' with a width of 10 m and a thickness of 40 ttm by the twin roll method.
? ! , 7Cu 0. @ Mo 2 S i +s, s
B, C, Amorphous alloy ribbons were prepared and heat-treated at 520° C. for 1 hour to obtain a microcrystalline structure, and then locally melted using a YAG laser to introduce strain.

第3図に線状の歪導入方向と薄帯幅方向のなす角度と1
00KHz、2KGのコア損失Wt/100にの関係を
示す。
Figure 3 shows the angle between the linear strain introduction direction and the ribbon width direction, and 1
The relationship between core loss Wt/100 at 00KHz and 2KG is shown.

線状の歪導入領域の方向と薄帯幅方向のなす角度が30
界内の場合に特にコア損失が低く好ましい結果が得られ
る。
The angle between the direction of the linear strain introduction region and the ribbon width direction is 30
In the case where the core loss is low, favorable results can be obtained.

実施例4゜ 単ロール法によシ幅5m、卑さ18μmのFe、。、。Example 4゜ Fe with a width of 5 m and a baseness of 18 μm by a single roll method. ,.

Cu、、、 st 14 B@ Nb4 Zr、非晶質
合金薄帯を作成し、YAGレーザーによる照射、電子ビ
ームによる照射。
Create an amorphous alloy ribbon of Cu, st 14 B@Nb4 Zr, and irradiate it with a YAG laser and an electron beam.

金属針、金属エツジを薄帯表面に近接させ通電すること
により、線状あるいは点列状の結晶化、領域を形成した
。点列あるいは線状の間隔は511IIとした。次に上
記合金薄帯を外径19■、内径15mに巻き回し、Ar
雰囲気中で薄帯長手方向に磁場をかけながら570℃で
1時間熱処理を行ない、微結晶粒を形成した後100K
Hz、2KGのコア損失Wz/100Kを―j定した。
By bringing a metal needle or a metal edge close to the surface of the ribbon and applying electricity, a linear or dot array crystallization region was formed. The interval between dots or lines was 511II. Next, the above alloy ribbon was wound to an outer diameter of 19 cm and an inner diameter of 15 m, and Ar
Heat treatment was performed at 570°C for 1 hour in an atmosphere while applying a magnetic field in the longitudinal direction of the ribbon to form microcrystalline grains, and then heated at 100K.
The core loss Wz/100K at Hz and 2KG was determined as −j.

比較のため結晶化領域を形成しない従来の製造方法を行
った場合のコア損失も示す。
For comparison, core loss when a conventional manufacturing method without forming a crystallized region is also shown.

第   2   表 本発明の製造方法を適用した場合の方が適用しなかつた
場合に比ベコア損失を低減できる。
Table 2 The core loss can be reduced when the manufacturing method of the present invention is applied compared to when it is not applied.

実施例5゜ 単ロール法により幅10鰐、厚さ15μmの微細結晶粒
からなるFe 74 Cu 2 S 1 u B @ 
Ta 3合金薄帯を作製し、薄帯を切りだした後、薄帯
長手方向に張力をかけながら500℃で1時間熱処理を
行った後室温まで2℃/mt nの速度で冷却した。
Example 5 Fe 74 Cu 2 S 1 u B consisting of fine crystal grains with a width of 10 mm and a thickness of 15 μm was produced using a single roll method.
After producing a Ta 3 alloy ribbon and cutting out the ribbon, it was heat-treated at 500°C for 1 hour while applying tension in the longitudinal direction of the ribbon, and then cooled to room temperature at a rate of 2°C/mt n.

次にYAGレーザー照射によυ幅方向に平行に点列状の
局部歪領域を形成した。間隔は5禦とし九〇 次にこの薄帯の100KHz 、2KGのコア損失WX
00Kを測定したところ480 fnW/c1dの値が
得られ、レーザー処理前の値880 mW/adに比べ
著しくコア損失が低減していた。
Next, YAG laser irradiation was performed to form local strain regions in the form of a dot array parallel to the υ width direction. The spacing is 5mm, 90mm, and the core loss of this thin strip is 100KHz and 2KG.
When 00K was measured, a value of 480 fnW/c1d was obtained, and the core loss was significantly reduced compared to the value of 880 mW/ad before laser treatment.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来にない高局波磁気特性に優れたF
e基合金薄帯を製造することができその効果は著しいも
のがある。
According to the present invention, F
E-based alloy ribbons can be produced, and the effects are remarkable.

4 図面のWplj4Lな説明 第1図(a) (b) (c)および第2図は本発明方
法を行ったFe基合金薄帯を説明する図、第3図は線状
歪導入領域の方向と幅方向のなす角度とコア損失W2/
100にの関係を示す図である。
4 Wplj4L explanation of the drawings Figures 1 (a), (b), (c) and 2 are diagrams explaining the Fe-based alloy ribbon subjected to the method of the present invention, and Figure 3 is the direction of the linear strain introduction region. The angle formed by the width direction and the core loss W2/
100. FIG.

第 / 図 (a)        (b)        (c)
第 2 図 悴3図 婢I(全善人AO或の方向に幅方向酒なす角度(°〕手
続補正帯 62.10.14 昭和   年   月   日 1、事件の表示 昭和62年特許願第 73718号 2、発明の名称 高局波磁気特性に優れたFe基合金薄帯の製造方法3、
補正をする者 事件との関係   特 許 出願人 化 所   東京都千代田区丸の内二丁目1番2号明細
書の「特許請求の範囲」の欄および「発明の詳細な説明
」の欄5、補正の内容 ■、明細書の「特許請求の範囲」の欄の記載を別紙の通
り補正する。
Figure / Figure (a) (b) (c)
No. 2, Figure 3, Figure I (Angle (°) of width direction in a certain direction) Procedural amendment band 62.10.14 Showa year, month, day 1, case description 1988 Patent Application No. 73718 2 , Name of the invention Method for producing Fe-based alloy ribbon with excellent high frequency magnetic properties 3.
Relationship with the case of the person making the amendment Patent Applicant Office 2-1-2 Marunouchi, Chiyoda-ku, Tokyo, "Claims" column and "Detailed description of the invention" column 5, Content ■: The statement in the "Claims" column of the specification is amended as shown in the attached sheet.

■、同書「発明の詳細な説明」の欄を次のとおり補正す
る。
■The column "Detailed Description of the Invention" in the same book is amended as follows.

1、第9頁第9行〜第12行を削除する。1. Delete lines 9 to 12 on page 9.

以上 ÷ 特許請求の範囲 1、非晶質形成が可能なCuを0.1原子%以上3原子
%以下、Nb、 W、 Ta、 Zr、 Hf、 Mo
、 Tiから選ばれる少なくとも1種の元素を0.1原
子%以上含むFeを主体とした合金を溶湯状態にした後
、液体急冷法により非晶質合金薄帯を作製し、次に前記
薄帯を熱処理し、組織の少なくとも50%を微細結晶粒
とする磁心材料用Fe基合金薄帯の製造方法において、
前記熱処理工程の前、途中、後のいずれか少(とも1つ
の時期に、前記薄帯を点列状あるいは線状に局所加熱し
、局部的に歪が入った領域を形成する、あるいは局部的
に非晶質相や結晶粒組織の異なる領域を形成することを
特徴とする高局波磁気特性に優れたFe基合金薄帯の製
造方法。
÷ Claim 1, Cu that can form an amorphous state is 0.1 atomic % or more and 3 atomic % or less, Nb, W, Ta, Zr, Hf, Mo
, An alloy mainly composed of Fe containing at least 0.1 atomic % of at least one element selected from Ti is made into a molten state, and then an amorphous alloy ribbon is produced by a liquid quenching method, and then the ribbon is In a method for producing an Fe-based alloy ribbon for a magnetic core material in which at least 50% of the structure is made into fine crystal grains by heat treatment,
Before, during, or after the heat treatment process, the ribbon is locally heated in a dot array or line to form a locally strained region, or A method for producing a Fe-based alloy ribbon having excellent high frequency magnetic properties, which is characterized by forming regions with different amorphous phases and crystal grain structures.

冬 特許請求の範囲第1項に記載の高局波磁気特性に優
れたFe基合金薄帯の製造方法において、前記の点列状
あるいは線状の局所加熱の代わりに、薄帯表面に点列状
あるいは線状にきずをつけ局部的に歪が入った領域を形
成することを特徴とする高局波磁気特性に優れたFe基
合金薄帯の製造方法。
Winter In the method for producing an Fe-based alloy ribbon having excellent high frequency magnetic properties as set forth in claim 1, instead of the local heating in the form of dots or lines, heating is performed in an array of dots on the surface of the ribbon. A method for producing an Fe-based alloy ribbon having excellent high frequency magnetic properties, which is characterized by forming a locally strained region by creating a flaw in the form of a shape or a line.

3、特許請求の範囲第1項または第1記載の高局波磁気
特性に優れたFe基合金薄帯の製造方法において、前記
合金薄帯の組織の残部が非晶質であることを特徴とする
高局波磁気特性に優れたFe基合金薄帯の製造方法。
3. The method for producing a Fe-based alloy ribbon having excellent high frequency magnetic properties as set forth in claim 1 or 1, characterized in that the remainder of the structure of the alloy ribbon is amorphous. A method for producing a Fe-based alloy ribbon having excellent high frequency magnetic properties.

4、特許請求の範囲第1項または第2項に記載の高局波
磁気特性に優れたFe基合金薄帯の製造方法において、
前記合金薄帯の組織が実質的に微細な結晶粒からなるこ
とを特徴とする高局波磁気特性に優れたFe基合金薄帯
の製造方法。
4. In the method for producing an Fe-based alloy ribbon having excellent high frequency magnetic properties as set forth in claim 1 or 2,
A method for producing an Fe-based alloy ribbon having excellent high frequency magnetic properties, characterized in that the structure of the alloy ribbon is substantially composed of fine crystal grains.

5、特許請求の範囲第1項乃至第4項のいずれ゛ かに
記載の高局波磁気特性に優れたFe基合金薄帯の製造方
法において、前記結晶粒が500Å以下の平均粒径を有
することを特徴とする高局波磁気特性に優れたFe基合
金薄帯の製造方法。
5. In the method for producing an Fe-based alloy ribbon having excellent high frequency magnetic properties according to any one of claims 1 to 4, the crystal grains have an average grain size of 500 Å or less. A method for producing a Fe-based alloy ribbon having excellent high frequency magnetic properties.

6、特許請求の範囲第1項乃至第5項のいずれかに記載
の高局波磁気特性に優れたfe基合金薄帯の製造方法に
おいて、前記Fei合金薄帯が、一般式: %) (ただし、MはCo及び/又はNiであり、M′はNb
6. In the method for producing an Fe-based alloy ribbon having excellent high frequency magnetic properties according to any one of claims 1 to 5, the Fe alloy ribbon has the general formula: %) ( However, M is Co and/or Ni, and M' is Nb
.

W、 Ta、 Zr、 Iff、 Ti及び阿0からな
る群から選ばれた少くとも1種の元素、M′はV、 C
r、 Mn、八l。
At least one element selected from the group consisting of W, Ta, Zr, If, Ti, and A0, M' is V, C
r, Mn, 8l.

白金属元素、 Sc、 Y、希土類元素、八us ZJ
 5JRoからなる群から選ばれた少なくとも1種の元
素、XはBe、  C,Ge、  P、 Ga、 Sb
、八s、  Inからなる群から選ばれた少(とも1種
の元素であり、a、  x。
White metal element, Sc, Y, rare earth element, 8us ZJ
At least one element selected from the group consisting of 5JRo, X is Be, C, Ge, P, Ga, Sb
, 8s, In (both are one type of element, a, x.

y、  z、 cr、 β及びTはそれぞれ、0≦a≦
0.3゜0.1≦x≦3.y≦25,5≦2≦25.0
.1≦α≦10.0≦β≦10.0≦T≦20及び工5
≦y+z+γ≦30を満たす、) により表わされる組成を有することを特徴とする高局波
磁気特性に優れたFe基合金薄帯の製造方法。
y, z, cr, β and T are respectively 0≦a≦
0.3゜0.1≦x≦3. y≦25, 5≦2≦25.0
.. 1≦α≦10.0≦β≦10.0≦T≦20 and work 5
≦y+z+γ≦30.) A method for producing an Fe-based alloy ribbon having excellent high frequency magnetic properties.

7、  Ti1i場中熱処理の工程を含むことを特徴と
す記載の高局波磁気特性応優れたFe基合金薄帯の製造
方法。
7. The method for producing a Fe-based alloy ribbon having excellent high frequency magnetic properties, characterized by including the step of Ti1i in-situ heat treatment.

8、磁場中熱処理の際の磁場の印加方向が薄帯の長手方
向であることを特徴とする特許請求の範囲第11己載の
高局波磁気特性に優れたFe基合金薄帯の製造方法。
8. A method for producing a Fe-based alloy ribbon with excellent high frequency magnetic properties as claimed in claim 11, characterized in that the direction of application of the magnetic field during heat treatment in a magnetic field is the longitudinal direction of the ribbon. .

9、薄帯に張力を印加しながら熱処理する工程を含むこ
とを特徴とする特許請求の範囲第1項乃至第8項のいず
れかに記載の高局波磁気特性に優れたFe基合金薄帯の
製造方法。
9. The Fe-based alloy ribbon having excellent high frequency magnetic properties according to any one of claims 1 to 8, which includes a step of heat-treating the ribbon while applying tension to the ribbon. manufacturing method.

VO8,薄帯のI+1方向となす平均角度が30°以内
である点列状あるいは綿状の局部歪領域あるいは、結晶
粒組織の異なる領域を形成することを特徴とする特許請
求の範囲第1項乃至第旦項のいずれかに記載の高局波磁
気特性に優れたFe基合金薄帯の製造方法。
VO8, Claim 1, characterized in that it forms dot-like or cotton-like locally strained regions whose average angle with the I+1 direction of the ribbon is within 30 degrees, or regions with different crystal grain structures. A method for producing an Fe-based alloy ribbon having excellent high-frequency magnetic properties according to any one of items 1 to 1.

杜1局所加熱の手段としてレーザー光あるいは電子ビー
ムを用いたことを特徴とする特許請求のれかに記載の高
局波磁気特性に優れたFe基合金薄帯の製造方法。
1. A method for producing a Fe-based alloy ribbon having excellent high frequency magnetic properties as claimed in any one of the claims, characterized in that a laser beam or an electron beam is used as means for local heating.

昆、金属針、金属エツジのいずれかを薄帯表面に近接あ
るいは接触させ、通電することにより局部加熱を行ない
局部的に歪を与える、あるいは結晶化領域を形成するこ
とを特徴とする特許請求の範囲第1項、第3項、第4項
、第5項、第五項。
A patent claim characterized in that a metal needle, a metal needle, or a metal edge is brought close to or in contact with the surface of the ribbon, and electricity is applied to locally heat the ribbon to locally apply strain or to form a crystallized region. Range 1, 3, 4, 5, 5.

第ユ項、第溢項、第2項ならびに第H項のいずれかに記
載の高局波磁気特性に優れたFe基合金薄帯の製造方法
A method for producing an Fe-based alloy ribbon having excellent high frequency magnetic properties according to any one of Items U, O, O, II, and H.

13、0.5 inφ以下に絞ったレーザー光を照射す
ることを特徴とする特許請求の範囲第L↓項に記載の高
局波磁気特性に優れたFe基合金薄帯の製造方法。
13. A method for producing a Fe-based alloy ribbon having excellent high frequency magnetic properties as set forth in claim L↓, which comprises irradiating a laser beam focused to 0.5 inφ or less.

Claims (1)

【特許請求の範囲】 1、非晶質形成が可能なCuを0.1原子%以上3原子
%以下、Nb、W、Ta、Zr、Hf、Mo、Tiから
選ばれる少なくとも1種の元素を0.1原子%以上含む
Feを主体とした合金を溶湯状態にした後、液体急冷法
により非晶質合金薄帯を作製し、次に前記薄帯を熱処理
し、組織の少なくとも50%を微細結晶粒とする磁心材
料用Fe基合金薄帯の製造方法において、前記熱処理工
程の前、途中、後のいずれか少くとも1つの時期に、前
記薄帯を点列状あるいは線状に局所加熱し、局部的に歪
が入つた領域を形成する、あるいは局部的に結晶粒組織
の異なる領域を形成することを特徴とする高周波磁気特
性に優れたFe基合金薄帯の製造方法。 2、非晶質形成が可能なCuを0.1原子%以上3原子
%以下、Nb、W、Ta、Zr、Hf、Mo、T、から
選ばれる少なくとも1種の元素を0.1原子%以上含む
Feを主体とした合金を溶湯状態にした後、10^2〜
10^6℃/秒の冷却速度で急冷し、組織の少なくとも
50%を微細結晶粒とした後、前記薄帯を点列状あるい
は線状に局所加熱し、局部的に歪が入った領域を形成す
る、あるいは局部的に結晶粒組織の異なる領域を形成す
ることを特徴とする高周波磁気特性に優れたFe基合金
薄帯の製造方法。 3、特許請求の範囲第1項あるいは第2項に記載の高周
波磁気特性に優れたFe基合金薄帯の製造方法において
、前記の点列状あるいは線状の局所加熱の代わりに、薄
帯表面に点列状あるいは線状にきずをつけ局部的に歪が
入った領域を形成することを特徴とする高周波磁気特性
に優れたFe基合金薄帯の製造方法。 4、特許請求の範囲第1項乃至第3項のいずれかに記載
の高周波磁気特性に優れたFe基合金薄帯の製造方法に
おいて、前記合金薄帯の組織の残部が非晶質であること
を特徴とする高周波磁気特性に優れたFe基合金薄帯の
製造方法。 5、特許請求の範囲第1項乃至第3項のいずれかに記載
の高周波磁気特性に優れたFe基合金薄帯の製造方法に
おいて、前記合金薄帯の組織が実質的に微細な結晶粒か
らなることを特徴とする高周波磁気特性に優れたFe基
合金薄帯の製造方法。 6、特許請求の範囲第1項乃至第5項のいずれかに記載
の高周波磁気特性に優れたFe基合金薄帯の製造方法に
おいて、前記結晶粒が500Å以下の平均粒径を有する
ことを特徴とする高周波磁気特性に優れたFe基合金薄
帯の製造方法。 7、特許請求の範囲第1項乃至第5項のいずれかに記載
の高周波磁気特性に優れたFe基合金薄帯の製造方法に
おいて、前記Fe基合金薄帯が、一般式: (Fe_1_−_aMa)_1_0_0_−_x_−_
y_−_z_−_α_−_β_−_γCu_xSi_y
B_zM′_αM″_βX_γ(原子%) (ただし、MはCo及び/又はNiであり、M′はNb
、W、Ta、Zr、Hf、Ti及びMoからなる群から
選ばれた少くとも1種の元素、M″はV、Cr、Mn、
Al、白金属元素、Sc、Y、希土類元素、Au、Zn
、Sn、Reからなる群から選ばれた少なくとも1種の
元素、XはBe、C、Ge、P、Ga、Sb、As、I
nからなる群から選ばれた少くとも1種の元素であり、
a、x、y、z、α、β及びγはそれぞれ、0≦a≦0
.3、0.1≦x≦3、y≦25、5≦z≦25、0.
1≦α≦10、0≦β≦10、0≦γ≦20及び15≦
y+z+γ≦30を満たす。) により表わされる組成を有することを特徴とする高周波
磁気特性に優れたFe基合金薄帯の製造方法。 8、磁場中熱処理の工程を含むことを特徴とする特許請
求の範囲第1項乃至第7項に記載の高周波磁気特性に優
れたFe基合金薄帯の製造方法。 9、磁場中熱処理の際の磁場の印加方向が薄帯の長手方
向であることを特徴とする特許請求の範囲第8項に記載
の高周波磁気特性に優れたFe基合金薄帯の製造方法。 10、薄帯に張力を印加しながら熱処理する工程を含む
ことを特徴とする特許請求の範囲第1項乃至第9項に記
載の高局波磁気特性に優れたFe基合金薄帯の製造方法
。 11、薄帯の巾方向となす平均角度が30以内である点
列状あるいは線状の局部歪領域あるいは、結晶粒組織の
異なる領域を形成することを特徴とする特許請求の範囲
第1項乃至第10項のいずれかに記載の高周波磁気特性
に優れたFe基合金薄帯の製造方法。 12、局所加熱の手段としてレーザー光あるいは電子ビ
ームを用いたことを特徴とする特許請求の範囲第1項、
第2項、第4項、第5項、第6項、第7項、第8項、第
9項、第10項ならびに第11項のいずれかに記載の高
周波磁気特性に優れたFe基合金薄帯の製造方法。 13、金属針、金属エッジのいずれかを薄帯表面に近接
あるいは接触させ、通電することにより局部加熱を行な
い局部的に歪を与える、あるいは結晶化領域を形成する
ことを特徴とする特許請求の範囲第1項、第2項、第4
項、第5項、第6項、第7項、第8項、第9項、第10
項ならびに第11項のいずれかに記載の高周波磁気特性
に優れたFe基合金薄帯の製造方法。 14、0.5mmφ以下に絞ったレーザー光を照射する
ことを特徴とする特許請求の範囲第12項に記載の高周
波磁気特性に優れたFe基合金薄帯の製造方法。
[Claims] 1. 0.1 atomic % or more and 3 atomic % or less of Cu capable of forming an amorphous state, and at least one element selected from Nb, W, Ta, Zr, Hf, Mo, and Ti. An alloy mainly containing Fe containing 0.1 atomic % or more is brought into a molten state, an amorphous alloy ribbon is produced by a liquid quenching method, and then the ribbon is heat-treated to reduce at least 50% of the structure to a fine grain. In the method for manufacturing an Fe-based alloy ribbon for magnetic core material to be used as crystal grains, the ribbon is locally heated in a dot array or a line at least one time before, during, or after the heat treatment step. A method for producing a Fe-based alloy ribbon having excellent high-frequency magnetic properties, characterized by forming a locally strained region or locally forming a region with a different crystal grain structure. 2. 0.1 atomic % to 3 atomic % of Cu capable of forming an amorphous state, and 0.1 atomic % of at least one element selected from Nb, W, Ta, Zr, Hf, Mo, and T. After making the Fe-based alloy containing the above into a molten state, 10^2 ~
After rapidly cooling at a cooling rate of 10^6°C/sec to make at least 50% of the structure into fine crystal grains, the ribbon is locally heated in a dot array or line to remove locally strained regions. A method for producing an Fe-based alloy ribbon having excellent high-frequency magnetic properties, characterized by forming or forming regions with locally different crystal grain structures. 3. In the method for manufacturing an Fe-based alloy ribbon having excellent high-frequency magnetic properties as set forth in claim 1 or 2, instead of the local heating in the form of dots or lines, the surface of the ribbon is A method for producing an Fe-based alloy ribbon having excellent high-frequency magnetic properties, which is characterized by forming locally strained regions by creating dotted or linear flaws in the strip. 4. In the method for producing a Fe-based alloy ribbon with excellent high-frequency magnetic properties as set forth in any one of claims 1 to 3, the remainder of the structure of the alloy ribbon is amorphous. A method for producing a Fe-based alloy ribbon having excellent high-frequency magnetic properties. 5. The method for producing an Fe-based alloy ribbon having excellent high-frequency magnetic properties according to any one of claims 1 to 3, wherein the structure of the alloy ribbon is substantially composed of fine crystal grains. A method for producing a Fe-based alloy ribbon having excellent high-frequency magnetic properties. 6. The method for producing a Fe-based alloy ribbon having excellent high-frequency magnetic properties according to any one of claims 1 to 5, characterized in that the crystal grains have an average grain size of 500 Å or less. A method for producing a Fe-based alloy ribbon having excellent high-frequency magnetic properties. 7. In the method for producing an Fe-based alloy ribbon having excellent high-frequency magnetic properties according to any one of claims 1 to 5, the Fe-based alloy ribbon has the general formula: (Fe_1_-_aMa )_1_0_0_-_x_-_
y_-_z_-_α_-_β_-_γCu_xSi_y
B_zM′_αM″_βX_γ (atomic %) (M is Co and/or Ni, M′ is Nb
, W, Ta, Zr, Hf, Ti and Mo, M″ is V, Cr, Mn,
Al, platinum metal element, Sc, Y, rare earth element, Au, Zn
, Sn, and Re, and X is Be, C, Ge, P, Ga, Sb, As, and I.
At least one element selected from the group consisting of n,
a, x, y, z, α, β and γ are respectively 0≦a≦0
.. 3, 0.1≦x≦3, y≦25, 5≦z≦25, 0.
1≦α≦10, 0≦β≦10, 0≦γ≦20 and 15≦
Satisfies y+z+γ≦30. ) A method for producing a Fe-based alloy ribbon having excellent high-frequency magnetic properties, characterized by having the composition represented by: 8. A method for producing a Fe-based alloy ribbon with excellent high-frequency magnetic properties as set forth in claims 1 to 7, which includes a step of heat treatment in a magnetic field. 9. The method for producing a Fe-based alloy ribbon with excellent high-frequency magnetic properties as set forth in claim 8, wherein the direction of application of the magnetic field during the magnetic field heat treatment is the longitudinal direction of the ribbon. 10. A method for producing an Fe-based alloy ribbon with excellent high frequency magnetic properties as set forth in claims 1 to 9, which includes the step of heat-treating the ribbon while applying tension to the ribbon. . 11.Claims 1 to 1, characterized in that a dot array or linear local strain region or a region with a different crystal grain structure is formed with an average angle of 30 or less with respect to the width direction of the ribbon. 11. A method for producing an Fe-based alloy ribbon having excellent high-frequency magnetic properties according to any one of Item 10. 12. Claim 1, characterized in that a laser beam or an electron beam is used as means for local heating;
Fe-based alloy with excellent high-frequency magnetic properties according to any one of Items 2, 4, 5, 6, 7, 8, 9, 10, and 11 Method for manufacturing thin strips. 13. A patent claim characterized in that either a metal needle or a metal edge is brought close to or in contact with the surface of the ribbon, and electricity is applied to locally heat the ribbon to locally apply strain or to form a crystallized region. Range 1st, 2nd, 4th
Section 5, Section 6, Section 7, Section 8, Section 9, Section 10
A method for producing an Fe-based alloy ribbon having excellent high-frequency magnetic properties according to any one of Items 1 and 11. 14. A method for producing a Fe-based alloy ribbon having excellent high-frequency magnetic properties as claimed in claim 12, characterized in that a laser beam focused to a diameter of 0.5 mm or less is irradiated.
JP62073718A 1987-03-27 1987-03-27 Manufacture of fe alloy thin band having excellent high-frequency magnetic characteristic Pending JPS63239906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62073718A JPS63239906A (en) 1987-03-27 1987-03-27 Manufacture of fe alloy thin band having excellent high-frequency magnetic characteristic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62073718A JPS63239906A (en) 1987-03-27 1987-03-27 Manufacture of fe alloy thin band having excellent high-frequency magnetic characteristic

Publications (1)

Publication Number Publication Date
JPS63239906A true JPS63239906A (en) 1988-10-05

Family

ID=13526284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62073718A Pending JPS63239906A (en) 1987-03-27 1987-03-27 Manufacture of fe alloy thin band having excellent high-frequency magnetic characteristic

Country Status (1)

Country Link
JP (1) JPS63239906A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02197518A (en) * 1989-01-24 1990-08-06 Hitachi Metals Ltd Improvement of magnetic property of magnetic core composed of ultra-microcrystalline alloy foil
US4985088A (en) * 1988-05-17 1991-01-15 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy product
US5067991A (en) * 1988-06-13 1991-11-26 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy
US5069731A (en) * 1988-03-23 1991-12-03 Hitachi Metals, Ltd. Low-frequency transformer
US5178689A (en) * 1988-05-17 1993-01-12 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy, method of treating same and dust core made therefrom
US5338373A (en) * 1991-08-20 1994-08-16 Vonhoene Robert M Method of encoding and decoding a glassy alloy strip to be used as an identification marker
JPH0855736A (en) * 1995-08-21 1996-02-27 Toshiba Corp Magnetic core for high frequency
US5725686A (en) * 1993-07-30 1998-03-10 Hitachi Metals, Ltd. Magnetic core for pulse transformer and pulse transformer made thereof
JP2012174824A (en) * 2011-02-21 2012-09-10 Hitachi Metals Ltd MELT-QUENCHED Fe-BASED SOFT MAGNETIC ALLOY THIN BAND AND MAGNETIC CORE
JP5440606B2 (en) * 2009-09-14 2014-03-12 日立金属株式会社 Soft magnetic amorphous alloy ribbon, method for producing the same, and magnetic core using the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5069731A (en) * 1988-03-23 1991-12-03 Hitachi Metals, Ltd. Low-frequency transformer
US4985088A (en) * 1988-05-17 1991-01-15 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy product
US5178689A (en) * 1988-05-17 1993-01-12 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy, method of treating same and dust core made therefrom
US5067991A (en) * 1988-06-13 1991-11-26 Kabushiki Kaisha Toshiba Fe-based soft magnetic alloy
JPH02197518A (en) * 1989-01-24 1990-08-06 Hitachi Metals Ltd Improvement of magnetic property of magnetic core composed of ultra-microcrystalline alloy foil
US5338373A (en) * 1991-08-20 1994-08-16 Vonhoene Robert M Method of encoding and decoding a glassy alloy strip to be used as an identification marker
US5725686A (en) * 1993-07-30 1998-03-10 Hitachi Metals, Ltd. Magnetic core for pulse transformer and pulse transformer made thereof
JPH0855736A (en) * 1995-08-21 1996-02-27 Toshiba Corp Magnetic core for high frequency
JP5440606B2 (en) * 2009-09-14 2014-03-12 日立金属株式会社 Soft magnetic amorphous alloy ribbon, method for producing the same, and magnetic core using the same
JP2012174824A (en) * 2011-02-21 2012-09-10 Hitachi Metals Ltd MELT-QUENCHED Fe-BASED SOFT MAGNETIC ALLOY THIN BAND AND MAGNETIC CORE

Similar Documents

Publication Publication Date Title
US10468182B2 (en) Rapidly quenched Fe-based soft-magnetic alloy ribbon and its production method and core
JP2698369B2 (en) Low frequency transformer alloy and low frequency transformer using the same
JPH01242755A (en) Fe-based magnetic alloy
JPS63239906A (en) Manufacture of fe alloy thin band having excellent high-frequency magnetic characteristic
JP4402961B2 (en) Oriented electrical steel sheet with excellent film adhesion and method for producing the same
JPH01156451A (en) Soft-magnetic alloy having high saturation magnetic flux density
JP5656114B2 (en) Ultra-quenched Fe-based soft magnetic alloy ribbon and magnetic core
JPH01281708A (en) Method of fractionalize magnetic domain in electrical steel to reduce core loss
JP2868121B2 (en) Method for producing Fe-based magnetic alloy core
JP3623970B2 (en) Fe-based soft magnetic alloy and manufacturing method
JPH01247555A (en) Hyperfine-crystal fe-base alloy excellent in corrosion resistance and its production
US5415703A (en) Very thin electrical steel strip having low core loss and high magnetic flux density and a process for producing the same
JPS62227070A (en) Manufacture of thin amorphous co alloy strip having superior magnetic characteristic at high frequency
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
JPH0332888B2 (en)
JP4798642B2 (en) Parts using Fe-based nanocrystalline alloys manufactured from high-toughness Fe-based amorphous alloys and high-toughness Fe-based amorphous alloys
JPH07258728A (en) Production of iron-base fine crystal soft magnetic alloy
JPH1046301A (en) Fe base magnetic alloy thin strip and magnetic core
JPH0332886B2 (en)
JPH01247556A (en) Fe-base magnetic alloy excellent in iso-permeability characteristic
JPH08144029A (en) Iron-base amorphous alloy excellent in magnetic property and embrittlement resistance and its production
JPH06158239A (en) Fe base soft magnetic alloy and its production
JPH0238520A (en) Manufacture of fe-base soft-magnetic alloy and magnetic core
JPS62188756A (en) Grain-oriented foil of high saturation magnetic flux density and its production
JPH0413420B2 (en)