JPH0332886B2 - - Google Patents

Info

Publication number
JPH0332886B2
JPH0332886B2 JP59089947A JP8994784A JPH0332886B2 JP H0332886 B2 JPH0332886 B2 JP H0332886B2 JP 59089947 A JP59089947 A JP 59089947A JP 8994784 A JP8994784 A JP 8994784A JP H0332886 B2 JPH0332886 B2 JP H0332886B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
iron loss
alloy ribbon
ribbon
melted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59089947A
Other languages
Japanese (ja)
Other versions
JPS60233804A (en
Inventor
Shun Sato
Toshio Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP59089947A priority Critical patent/JPS60233804A/en
Priority to US06/729,298 priority patent/US4724015A/en
Priority to EP85105443A priority patent/EP0161593B1/en
Priority to DE8585105443T priority patent/DE3578934D1/en
Publication of JPS60233804A publication Critical patent/JPS60233804A/en
Priority to US06/828,948 priority patent/US4685980A/en
Publication of JPH0332886B2 publication Critical patent/JPH0332886B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は主として電力トランス、高周波トラン
スなどの電力変換器の鉄心として用いられるFe
基非晶質合金薄帯の磁気特性、とくに鉄損を改善
する方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention mainly relates to Fe iron cores used as iron cores of power converters such as power transformers and high frequency
The present invention relates to a method for improving the magnetic properties of basic amorphous alloy ribbons, particularly iron loss.

(従来の技術) 溶融状態から急冷凝固することによつて作製さ
れる非晶質合金薄帯は種々のすぐれた性質を示
し、応用上注目されている。なかでもFe基非晶
質合金は磁束密度が高く鉄損が低いため各種鉄心
の材料として利用されつつある。非晶質合金の鉄
損が低い理由として、非晶質合金は原理的に異方
性がなく、結晶粒界等の欠陥がないためヒステリ
シス損が小さい上に、板厚が薄く、電気抵抗が大
きいため渦電流損も小さいことが挙げられてい
る。しかし鉄損値から直流ヒステリシス損を差し
引いた広義の渦電流損は、一様磁化を仮定して計
算される古典的渦電流損に比べて数十倍から100
倍も大きい。これは磁区幅が大きいために不均一
磁化変化に起因する異常渦電流損の割合が大きい
ことを示す。
(Prior Art) Amorphous alloy ribbons produced by rapid solidification from a molten state exhibit various excellent properties and are attracting attention for their applications. Among these, Fe-based amorphous alloys are being used as materials for various iron cores because of their high magnetic flux density and low iron loss. The reason why amorphous alloys have low core loss is that they have no anisotropy in principle and have no defects such as grain boundaries, so hysteresis loss is small, and the plate thickness is thin and electrical resistance is low. It is said that because of its large size, eddy current loss is also small. However, the eddy current loss in a broad sense, which is obtained by subtracting the DC hysteresis loss from the iron loss value, is several tens to 100 times larger than the classical eddy current loss calculated assuming uniform magnetization.
It's twice as big. This indicates that because the magnetic domain width is large, the proportion of abnormal eddy current loss caused by non-uniform magnetization changes is large.

異常渦電流損を低減する方法としては従来から
方向性けい素鋼板に用いられている方法の適用が
まず考えられ試みられた。例えばスクラツチ法で
ある。これは硬い材質の尖つた先端でけい素鋼板
の表面を罫書くもので、磁区が細分化され鉄損が
低減する。しかし、非晶質合金薄帯にこれを適用
しても必ずしも良好な結果を得なかつた。例えば
NaritaらはProceedings of 4th International
Conference on Rapidly Quenched Metals
(1982)P1001〜1004において、Fe基非晶質合金
薄帯に焼鈍を施した後ダイヤモンド針で薄帯の表
面を罫書いて導入した線状の歪が鉄損におよぼす
効果を報告している。それによれば歪の効果は
5kHz以上の高周波数域で表われるが、電力トラ
ンス等で重要な100Hz以下の低周波数域では鉄損
はむしろ増大している。この理由としてけい素鋼
板に比べて板厚の薄い非晶質合金では低周波数域
において元来、渦電流損が小さいため磁区細分化
による鉄損低域効果はわずかであること、むしろ
ヒステリシス損の増大によつて全鉄損が増大する
ためと推定される。
As a method for reducing abnormal eddy current loss, the application of the method conventionally used for grain-oriented silicon steel sheets was first considered and attempted. For example, the scratch method. This is a device that uses a sharp point made of hard material to score the surface of a silicon steel plate, dividing the magnetic domains into smaller pieces and reducing iron loss. However, even when this method was applied to amorphous alloy ribbons, good results were not necessarily obtained. for example
Narita et al. Proceedings of 4th International
Conference on Rapidly Quenched Metals
(1982) reported in P1001-1004 the effect of linear strain introduced by annealing an Fe-based amorphous alloy ribbon on the surface of the ribbon with a diamond needle on the iron loss. . According to this, the effect of distortion is
Iron loss appears in the high frequency range above 5kHz, but it actually increases in the low frequency range below 100Hz, which is important for power transformers. The reason for this is that in amorphous alloys, which are thinner than silicon steel sheets, the eddy current loss is originally small in the low frequency range, so the effect of reducing iron loss due to magnetic domain refinement is slight, and rather the hysteresis loss This is presumed to be due to the increase in total iron loss.

非晶質材料に独特の鉄損低減法としては、局部
結晶化の方法が提案されている。これは特開昭57
−97606号公報にて開示される方法で、薄帯の幅
方向に線状あるいは点列状の結晶化領域を形成さ
せるものである。ここで結晶化の手法はレーザー
光や電子ビームを照射するか、あるいは金属針、
金属エツジの何れかを薄帯表面に近接ないし接触
させながら通電加熱する方法を採用している。こ
の局部結晶化領域を導入する方法は磁区の細分化
に有効な手段であるが低周波数域での鉄損低減に
対して必ずしも一定の効果を示さない欠点があつ
た。例えば前記特開昭57−97606号公報において
は、商用周波数で効果を表わしているのに対して
Naritaらの前記論文は線状結晶化領域を付与す
る効果についても述べているが、それによればス
クラツチ法に比べれば低周波数側まで効果のある
領域は広がつているが、200Hz以下では無効ない
しむしろ劣化している。
A method of local crystallization has been proposed as a method of reducing iron loss unique to amorphous materials. This is JP-A-57
This is a method disclosed in Japanese Patent No. 97606, in which crystallized regions are formed in the form of lines or dots in the width direction of the ribbon. The crystallization method here is to irradiate laser light or electron beam, or use metal needles or
A method is adopted in which one of the metal edges is heated with electricity while being brought close to or in contact with the surface of the ribbon. Although this method of introducing local crystallized regions is an effective means for subdividing magnetic domains, it has the drawback that it does not necessarily have a certain effect on reducing iron loss in the low frequency range. For example, in the above-mentioned Japanese Patent Application Laid-Open No. 57-97606, the effect is expressed at commercial frequencies;
The above-mentioned paper by Narita et al. also describes the effect of adding a linear crystallized region, but according to it, compared to the scratch method, the effective region extends to the low frequency side, but it is ineffective below 200 Hz. In fact, it has deteriorated.

以上のように非晶質磁性合金とくにFe基非晶
質合金薄帯の鉄損を改善するために従来試みられ
てきた方法はいずれも商用周波数帯域では効果を
示さないことが多かつた。
As described above, all the methods conventionally attempted to improve the core loss of amorphous magnetic alloys, particularly Fe-based amorphous alloy ribbons, have often been ineffective in commercial frequency bands.

これに対して本発明は非晶質合金の鉄損低減に
対して低周波数帯域においても安定した効果をも
たらし、かつ、効果の大きな新しい方法を提案す
るものである。
In contrast, the present invention proposes a new method that provides a stable effect even in a low frequency band and is highly effective in reducing iron loss in amorphous alloys.

(発明が解決しようとする問題点) 本発明は非晶質磁性合金の鉄損を著しく、かつ
安定に低減する方法を提供することを目的とす
る。
(Problems to be Solved by the Invention) An object of the present invention is to provide a method for significantly and stably reducing the core loss of an amorphous magnetic alloy.

(問題点を解決するための手段作用) 本発明は非晶質合金薄帯の表面を局所的かつ瞬
間的に溶解し、次いでその部分を急冷凝固させて
再び非晶質化することにより、著しい鉄損の低減
を安定して達成するものである。薄帯の表面を局
所的に溶解するには細く絞られたパルスレーザー
光を用いる。
(Means for Solving the Problems) The present invention melts the surface of an amorphous alloy ribbon locally and instantaneously, and then rapidly solidifies that part to make it amorphous again, thereby achieving a remarkable This stably achieves a reduction in iron loss. A narrowly focused pulsed laser beam is used to locally melt the surface of the ribbon.

導入される局所溶解部の形状および分布は、第
1図に例示するように並列する点列状が好まし
い。個々の溶解部の面積および深さは、加熱中あ
るいは溶解後の再凝固過程において、溶解部およ
び周辺部が結晶化しないことを条件に決められ
る。パルスレーザー光を用いる場合、照射強度、
ビーム径、掃引速度、周波数などが制御すべきパ
ラメータである。
It is preferable that the shape and distribution of the introduced local melting portions be in the form of a series of parallel points, as illustrated in FIG. The area and depth of each melted portion are determined on the condition that the melted portion and the surrounding area do not crystallize during heating or during the resolidification process after melting. When using pulsed laser light, the irradiation intensity,
Beam diameter, sweep speed, frequency, etc. are the parameters to be controlled.

パルスレーザー光を用いて局所溶解する場合、
1つのスポツトの径は0.5mm以下が好ましい。こ
れら範囲を越えると結晶化を生じることがあり、
磁気特性の向上も認められなくなる。
When locally dissolving using pulsed laser light,
The diameter of one spot is preferably 0.5 mm or less. Exceeding these ranges may cause crystallization,
No improvement in magnetic properties can be observed either.

導入する局所溶解部の点列の方向は第1図に示
したように薄帯の幅方向がよいが、30゜程度まで
ならば傾いた方向でもよい。また隣り合う点列は
平行である必要はない。薄帯幅方向に対する平均
傾角が所定数値以下で、隣り合う点列の平均間隔
が所定の範囲内であれば鉄損低減に効果をあらわ
す。したがつて第2図に示す正弦曲線状の溶解部
も本発明の範囲に含まれる。商用周波数に対して
効果を示す点列の平均間隔は1〜20mm、幅方向に
対する平均角度は30゜以下が好ましい。
The direction of the dot array of the local melting portion to be introduced is preferably in the width direction of the ribbon as shown in FIG. 1, but it may be in an inclined direction up to about 30°. Also, adjacent point sequences do not need to be parallel. If the average inclination angle with respect to the ribbon width direction is less than a predetermined value and the average interval between adjacent dots is within a predetermined range, it is effective in reducing iron loss. Therefore, the sinusoidal melting section shown in FIG. 2 is also included within the scope of the present invention. It is preferable that the average spacing of the dot rows exhibiting an effect on commercial frequencies is 1 to 20 mm, and the average angle with respect to the width direction is 30 degrees or less.

本発明において、局所溶解部を導入する時期は
非晶質合金薄帯を熱処理する工程の前、中、後の
いずれでもよい。ただし最適条件は溶解部を導入
する時期によつて異なる。例えばYAGレーザー
のパルスモードを用いて幅方向に局所溶解部を導
入する場合、第3図、および第4図に示すように
導入の時期によつて有効な溶解部の径が異なつて
いる。すなわち熱処理後に導入する場合、最適な
スポツト径は50〜100μmであるが、熱処理前に
導入する場合は200〜250μmの付近で最も効果的
であつた。この理由は溶解部導入の影響が熱処理
によつて緩和することによると考えられる。導入
の時期による効果の違いは励磁特性にも表われ
る。熱処理後に導入したものは、磁界1エルステ
ツドにおける磁束密度が数%〜10%の低下を示す
のに対して、熱処理前に導入したものでは磁束密
度の低下はほとんどなかつた。
In the present invention, the local melting portion may be introduced at any time before, during, or after the step of heat treating the amorphous alloy ribbon. However, the optimum conditions differ depending on the time when the melting part is introduced. For example, when a local melting zone is introduced in the width direction using the pulse mode of a YAG laser, the effective diameter of the melting zone varies depending on the time of introduction, as shown in FIGS. 3 and 4. That is, when introduced after heat treatment, the optimum spot diameter is 50 to 100 μm, but when introduced before heat treatment, the most effective spot diameter is around 200 to 250 μm. The reason for this is thought to be that the effect of introducing the melted zone is alleviated by heat treatment. The difference in effectiveness depending on the time of introduction is also reflected in the excitation characteristics. Those introduced after heat treatment showed a decrease in magnetic flux density of several to 10% at a magnetic field of 1 oersted, whereas those introduced before heat treatment showed almost no decrease in magnetic flux density.

非晶質合金薄帯の表面を局所溶解するために、
急速加熱すべき具体的手段はすでに述べてきたよ
うに細く絞つたパルスレーザー光を短時間照射す
るのが最適である。その他の手段では効果がない
が、むしろ悪影響をもたらす。電子ビームの照射
や高温物体を接触させたり局部的に通電したりす
る方法によつて溶解しようとすると、入射エネル
ギー密度が小さいために熱影響が拡がり結晶化が
生ずるので好ましくない。
In order to locally melt the surface of the amorphous alloy ribbon,
As mentioned above, the best way to rapidly heat the material is to irradiate it with narrowly focused pulsed laser light for a short period of time. Other methods have no effect, but rather have negative effects. Attempting to melt the material by electron beam irradiation, contact with a high-temperature object, or locally applying electricity is not preferred because the thermal influence spreads and crystallization occurs due to the low incident energy density.

本発明を適用するときの鉄損改善効果は材料の
板厚に依存し、第5図のように板厚が大きくなる
ほど改善効果が大きい(図中〇印は照射前、●印
は照射後)。板厚60μmで40〜50%の鉄損低減効
果を示すのに対して、30μm厚以下では10〜20%
程度である。この理由は非晶質合金は一般に板厚
が大きくなるほど磁区幅が大きくなり、異常渦電
流損の絶対値および全鉄損に占める割合が増大す
るためである。本発明の局所溶解部の導入によつ
て磁区幅は板厚60μmの場合、1/3に細分化され
ることが走査型電子顕微鏡による観察によつて検
証された。
The iron loss improvement effect when applying the present invention depends on the thickness of the material, and as shown in Figure 5, the greater the thickness, the greater the improvement effect (○ in the figure is before irradiation, and ● is after irradiation) . A plate thickness of 60 μm shows a 40-50% iron loss reduction effect, while a plate thickness of 30 μm or less shows a 10-20% reduction in iron loss.
That's about it. The reason for this is that in general, as the plate thickness of an amorphous alloy increases, the magnetic domain width increases, and the absolute value of the abnormal eddy current loss and its proportion in the total core loss increase. It was verified by observation using a scanning electron microscope that by introducing the local melting portion of the present invention, the magnetic domain width can be subdivided into 1/3 in the case of a plate thickness of 60 μm.

本発明においてパルスレーザー照射された部分
が一旦溶解した後再凝固したか否かは照射部を光
学顕微鏡あるいは走査型電子顕微鏡で観察するこ
とによつて明瞭に区別できる。パルスで照射した
場合溶解した部分の中心部はくぼみとなり、周辺
はやや盛り上つている。急激な熱エネルギーの入
射により溶解された合金は周辺に溢れ出すためと
考えられる。パルス・レーザーにより導入された
溶解部の一例を第6図に示した。
In the present invention, whether or not the part irradiated with the pulsed laser has once melted and then resolidified can be clearly distinguished by observing the irradiated part with an optical microscope or a scanning electron microscope. When irradiated with pulses, the center of the melted part becomes a depression, and the periphery is slightly raised. This is thought to be because the alloy melted by the rapid incidence of thermal energy overflows into the surrounding area. An example of a melted zone introduced by a pulsed laser is shown in FIG.

なお、本発明においてパルスレーザー照射によ
つて局所溶解され再凝固した部分およびその周辺
部が結晶化していないことはX線回折、透過型電
子顕微鏡、光学顕微鏡などによつて確認された。
In the present invention, it was confirmed by X-ray diffraction, transmission electron microscopy, optical microscopy, etc. that the portion locally dissolved and resolidified by pulsed laser irradiation and the surrounding area were not crystallized.

また、本発明方法は薄帯表面に絶縁乃至防錆を
目的とした表面処理を施す前または後に適用して
も同様の効果を示した。
Further, the method of the present invention showed similar effects even when applied before or after surface treatment for the purpose of insulation or rust prevention was applied to the surface of the ribbon.

(実施例) 実施例 1 単ロール法で作製された組成Fe80.5Si6.5B12C1
板厚65μmの非晶質合金薄帯を360℃で60分間N2
ガス中で磁場焼鈍後その自由面に、YAGレーザ
ーを用いて局所溶解部を導入し、鉄損におよぼす
影響を調べる実験を行なつた。照射条件は周波数
400Hzのパルスモード、掃引速度10cm/sec、点列
の方向は薄帯の幅方向に平行で、点列の間隔は5
mmとし、溶解部の大きさは、照射エネルギーのパ
ワーおよびビーム径によつて制御した。導入され
たスポツト状溶解部の直径と鉄損の関係を第3図
に示す。溶解部の直径が30〜150μmの範囲で鉄
損低減の効果が大きい。ここで鉄損の測定には単
板試験器を用いた。鉄損低減効果の大きな照射条
件で照射された個所およびその周囲が結晶化して
いないことは幅0.5mmのスリツトを通したX線を
点列に沿つて照射した時の回折像から確認され
た。
(Example) Example 1 Composition Fe 80.5 Si 6.5 B 12 C 1 produced by single roll method,
An amorphous alloy ribbon with a thickness of 65 μm was heated to 360°C for 60 minutes with N 2
After magnetic field annealing in gas, a YAG laser was used to introduce a localized melt onto the free surface, and an experiment was conducted to investigate the effect on iron loss. Irradiation conditions are frequency
400Hz pulse mode, sweep speed 10cm/sec, dot row direction parallel to ribbon width direction, dot row interval 5
mm, and the size of the melted part was controlled by the power of the irradiation energy and the beam diameter. Figure 3 shows the relationship between the diameter of the introduced spot-shaped melted portion and iron loss. The effect of reducing iron loss is large when the diameter of the melted part is in the range of 30 to 150 μm. Here, a single plate tester was used to measure iron loss. It was confirmed from the diffraction image obtained when X-rays were irradiated along a dot array through a slit with a width of 0.5 mm that the area irradiated under irradiation conditions with a large iron loss reduction effect and its surroundings were not crystallized.

実施例 2 実施例1で用いたものと同じロツトの鋳造まま
の非晶質合金薄帯の自由面に実施例1と同じ照射
条件でパルスレーザーを照射した。照射後360℃
で60分間N2ガス中で磁場焼鈍した後の鉄損と溶
解部の直径との間係は第4図のようであつた。溶
解部の直径が200μm付近で鉄損低減の効果が著
しい。磁場焼鈍後の前記薄帯の溶解部を実施例1
で述べた方法でX線回折を行なつたが結晶の存在
は認められなかつた。
Example 2 The free surface of an as-cast amorphous alloy ribbon in the same lot as that used in Example 1 was irradiated with a pulsed laser under the same irradiation conditions as in Example 1. 360℃ after irradiation
The relationship between iron loss and diameter of the melted part after magnetic field annealing in N 2 gas for 60 minutes was as shown in Figure 4. The effect of reducing iron loss is remarkable when the diameter of the melted part is around 200 μm. Example 1 shows the melted part of the ribbon after magnetic field annealing.
Although X-ray diffraction was carried out using the method described in 1., the presence of crystals was not observed.

(発明の効果) 以上説明したように本発明によれば低周波数帯
域においても鉄損の低減をはかることができるの
で、本発明は極めて有用である。
(Effects of the Invention) As explained above, according to the present invention, iron loss can be reduced even in a low frequency band, so the present invention is extremely useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は本発明方法を適用した非
晶質合金薄帯を示す説明図、第3図および第4図
は本発明方法における溶解部径と鉄損との関係を
示す説明図、第5図は本発明方法における板厚と
鉄損との関係を示す説明図、第6図は本発明方法
による溶解部の金属組織の状態を示す顕微鏡写真
である。
Figures 1 and 2 are explanatory diagrams showing an amorphous alloy ribbon to which the method of the present invention is applied, and Figures 3 and 4 are explanatory diagrams showing the relationship between the diameter of the melted part and iron loss in the method of the present invention. , FIG. 5 is an explanatory diagram showing the relationship between plate thickness and iron loss in the method of the present invention, and FIG. 6 is a microscopic photograph showing the state of the metal structure of the melted part by the method of the present invention.

Claims (1)

【特許請求の範囲】 1 パルスレーザーを非晶質合金薄帯の幅方向に
照射することにより、該非晶質合金薄帯の表面を
局部的かつ瞬間的に溶解し、次いで急冷凝固させ
て再び非晶質化させた円ないし楕円状の領域を点
列状に導入することを特徴とする非晶質合金薄帯
の磁性改善方法。 2 200〜250μm径の溶解部を導入した薄帯を焼
鈍することを特徴とする特許請求の範囲第1項記
載の非晶質合金薄帯の磁性改善方法。 3 焼鈍した非晶質合金薄帯に50〜100μm径の
溶解部を導入することを特徴とする特許請求の範
囲第1項記載の非晶質合金薄帯の磁性改善方法。
[Claims] 1. By irradiating a pulsed laser in the width direction of the amorphous alloy ribbon, the surface of the amorphous alloy ribbon is locally and instantaneously melted, and then rapidly solidified to become amorphous again. A method for improving the magnetism of an amorphous alloy ribbon, characterized by introducing crystallized circular or elliptical regions in a dot array. 2. A method for improving the magnetism of an amorphous alloy ribbon according to claim 1, which comprises annealing a ribbon into which a melted portion having a diameter of 200 to 250 μm has been introduced. 3. A method for improving the magnetism of an amorphous alloy ribbon according to claim 1, which comprises introducing a melted part with a diameter of 50 to 100 μm into the annealed amorphous alloy ribbon.
JP59089947A 1984-05-04 1984-05-04 Improvement of magnetism in amorphous alloy thin film Granted JPS60233804A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59089947A JPS60233804A (en) 1984-05-04 1984-05-04 Improvement of magnetism in amorphous alloy thin film
US06/729,298 US4724015A (en) 1984-05-04 1985-05-01 Method for improving the magnetic properties of Fe-based amorphous-alloy thin strip
EP85105443A EP0161593B1 (en) 1984-05-04 1985-05-03 Method for improving the magnetic properties of fe-based amorphous-alloy thin strip
DE8585105443T DE3578934D1 (en) 1984-05-04 1985-05-03 METHOD FOR IMPROVING THE MAGNETIC PROPERTIES OF THIN STRAPS MADE OF AMORPHOUS IRON ALLOYS.
US06/828,948 US4685980A (en) 1984-05-04 1986-02-12 Method for improving the magnetic properties of Fe-based amorphous-alloy thin strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59089947A JPS60233804A (en) 1984-05-04 1984-05-04 Improvement of magnetism in amorphous alloy thin film

Publications (2)

Publication Number Publication Date
JPS60233804A JPS60233804A (en) 1985-11-20
JPH0332886B2 true JPH0332886B2 (en) 1991-05-15

Family

ID=13984896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59089947A Granted JPS60233804A (en) 1984-05-04 1984-05-04 Improvement of magnetism in amorphous alloy thin film

Country Status (1)

Country Link
JP (1) JPS60233804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030907A1 (en) 2009-09-14 2011-03-17 日立金属株式会社 Soft magnetic amorphous alloy ribbon, method for producing same, and magnetic core using same
US10468182B2 (en) 2011-01-28 2019-11-05 Hitachi Metals, Ltd. Rapidly quenched Fe-based soft-magnetic alloy ribbon and its production method and core
WO2020262493A1 (en) 2019-06-28 2020-12-30 日立金属株式会社 Fe-based amorphous alloy ribbon, iron core, and transformer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5656114B2 (en) * 2011-02-21 2015-01-21 日立金属株式会社 Ultra-quenched Fe-based soft magnetic alloy ribbon and magnetic core
JP6041181B2 (en) * 2011-03-04 2016-12-07 日立金属株式会社 Wound core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161031A (en) * 1981-03-28 1982-10-04 Nippon Steel Corp Improving method for watt loss of thin strip of amorphous magnetic alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161031A (en) * 1981-03-28 1982-10-04 Nippon Steel Corp Improving method for watt loss of thin strip of amorphous magnetic alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030907A1 (en) 2009-09-14 2011-03-17 日立金属株式会社 Soft magnetic amorphous alloy ribbon, method for producing same, and magnetic core using same
US10468182B2 (en) 2011-01-28 2019-11-05 Hitachi Metals, Ltd. Rapidly quenched Fe-based soft-magnetic alloy ribbon and its production method and core
WO2020262493A1 (en) 2019-06-28 2020-12-30 日立金属株式会社 Fe-based amorphous alloy ribbon, iron core, and transformer
WO2020262494A1 (en) 2019-06-28 2020-12-30 日立金属株式会社 Fe-based amorphous alloy ribbon, production method therefor, iron core, and transformer
EP4258302A2 (en) 2019-06-28 2023-10-11 Proterial, Ltd. Fe-based amorphous alloy ribbon, iron core, and transformer
US11802328B2 (en) 2019-06-28 2023-10-31 Proterial, Ltd. Fe-based amorphous alloy ribbon, iron core, and transformer
US11952651B2 (en) 2019-06-28 2024-04-09 Proterial, Ltd. Fe-based amorphous alloy ribbon, production method thereof, iron core, and transformer

Also Published As

Publication number Publication date
JPS60233804A (en) 1985-11-20

Similar Documents

Publication Publication Date Title
JP5158285B2 (en) Oriented electrical steel sheet
US9978497B2 (en) Wound magnetic core and method of producing the same
US4685980A (en) Method for improving the magnetic properties of Fe-based amorphous-alloy thin strip
JPH0151527B2 (en)
JPH0532881B2 (en)
JP5696380B2 (en) Iron loss improvement device and iron loss improvement method for grain-oriented electrical steel sheet
US4919733A (en) Method for refining magnetic domains of electrical steels to reduce core loss
US20210130922A1 (en) Method for refining magnetic domains of grain-oriented electrical steel sheet
US4915750A (en) Method for providing heat resistant domain refinement of electrical steels to reduce core loss
JPH0332886B2 (en)
JPH0253935B2 (en)
JPS6323243B2 (en)
JPH0332888B2 (en)
JP5928607B2 (en) Directional electrical steel sheet and method of manufacturing the grain oriented electrical steel sheet
JPS62227070A (en) Manufacture of thin amorphous co alloy strip having superior magnetic characteristic at high frequency
JP6838321B2 (en) Manufacturing method of grain-oriented electrical steel sheet and grain-oriented electrical steel sheet
JPS63239906A (en) Manufacture of fe alloy thin band having excellent high-frequency magnetic characteristic
JPH062042A (en) Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
CN114829639B (en) Oriented electrical steel sheet and method for refining magnetic domains thereof
JPS61248507A (en) Method for improvement in magnetic properties of amorphous alloy stacked core
JPS60216511A (en) Improving method of magnetism of amorphous magnetic alloy thin-band
CN113196423B (en) Oriented electrical steel sheet and method for manufacturing same
Mathé et al. Induced Effects of a Laser Pulse on Defects and Disorder Creation in Some Ordered Alloys
US20220044855A1 (en) Oriented electrical steel sheet and method for producing same