JPS6323243B2 - - Google Patents

Info

Publication number
JPS6323243B2
JPS6323243B2 JP56044711A JP4471181A JPS6323243B2 JP S6323243 B2 JPS6323243 B2 JP S6323243B2 JP 56044711 A JP56044711 A JP 56044711A JP 4471181 A JP4471181 A JP 4471181A JP S6323243 B2 JPS6323243 B2 JP S6323243B2
Authority
JP
Japan
Prior art keywords
annealing
ribbon
magnetic alloy
temperature
amorphous magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56044711A
Other languages
Japanese (ja)
Other versions
JPS57161031A (en
Inventor
Shun Sato
Tsutomu Ozawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP56044711A priority Critical patent/JPS57161031A/en
Publication of JPS57161031A publication Critical patent/JPS57161031A/en
Publication of JPS6323243B2 publication Critical patent/JPS6323243B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】 本発明はアモルフアス磁性合金薄帯の鉄損を改
良する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for improving the core loss of an amorphous magnetic alloy ribbon.

近時、磁性材料を高温の溶融状態から超急冷す
ることによつて原子配列が液体と同じようなラン
ダム(非同期)構造をもつ薄帯を作る方法が提案
されている。この材料は原理的に異方性がなく、
電気抵抗が高くかつ鉄損が珪素鋼板に比較して1/
5程度と極めて低く、しかも厚さの薄いものが容
易に得られる等の利点がある。従つて電力トラン
ス用鉄心としての利用が期待されている。しかし
ながらこのアモルフアス磁性合金薄帯の鉄損値は
理論的に予想された値よりも悪い。その原因は渦
電流損失が大きいためとされている。また熱的安
定性が悪い等の問題点がある。
Recently, a method has been proposed in which a magnetic material is ultra-rapidly cooled from a high-temperature molten state to produce a thin ribbon with a random (asynchronous) structure in which the atomic arrangement is similar to that of a liquid. This material has no anisotropy in principle,
High electrical resistance and 1/1 iron loss compared to silicon steel sheet
It has the advantage that it is extremely low, about 5, and can easily be obtained with a thin thickness. Therefore, it is expected to be used as an iron core for power transformers. However, the core loss value of this amorphous magnetic alloy ribbon is worse than the theoretically predicted value. The cause is said to be large eddy current loss. Further, there are problems such as poor thermal stability.

一方、珪素鋼板の表面に歪を与えることによつ
て磁区を細分化し鉄損の改善を図ることが提案さ
れている。そこで本発明者等はこの改善方法をア
モルフアス磁性合金薄帯に適用する実験を行つた
ところ珪素鋼板に適用した場合のような効果が得
られなかつた。また実用上の問題としては、電力
用トランスの場合には巻鉄心に成形した後、歪取
り焼鈍を行う必要があるが、この焼鈍により前記
の歪導入による磁区の細分化の効果は全く消失し
てしまう。またこの効果が消失しない程度の温度
で焼鈍を施す場合には焼鈍の効果が充分に達成さ
れない。このような事情から本発明者等はさらに
検討を進めた結果、アモルフアス磁性合金薄帯に
部分的に線状の熱影響部を導入した場合には一時
的に鉄損は劣化するが、焼鈍後は熱を導入しない
ものに比較して鉄損が向上することを見出した。
On the other hand, it has been proposed to improve iron loss by applying strain to the surface of a silicon steel plate to subdivide the magnetic domains. Therefore, when the present inventors conducted an experiment in which this improvement method was applied to an amorphous magnetic alloy ribbon, it was not possible to obtain the same effect as when applied to a silicon steel plate. In addition, as a practical problem, in the case of power transformers, it is necessary to perform strain relief annealing after forming into a wound core, but this annealing completely eliminates the effect of subdividing the magnetic domains due to the introduction of strain. I end up. Furthermore, if annealing is performed at a temperature that does not eliminate this effect, the effect of annealing will not be sufficiently achieved. Under these circumstances, the inventors conducted further studies and found that when a linear heat-affected zone is partially introduced into an amorphous magnetic alloy ribbon, the iron loss temporarily deteriorates, but after annealing, the iron loss decreases. found that the iron loss was improved compared to one that did not introduce heat.

本発明はこのような知見に基ずきアモルフアス
磁性合金薄帯により電力トランス用巻鉄心のよう
な巻鉄心を構成した場合の問題点を解決したもの
である。
Based on this knowledge, the present invention solves the problems when a wound core such as a wound core for a power transformer is constructed from an amorphous magnetic alloy ribbon.

すなわち本発明は、Fe−Si−B系アモルフア
ス磁性合金薄帯の長手方向に対して60〜90゜の角
度をもつ方向に幅0.5mm以下、深さは板厚の1/2以
下、間隔1〜10mmの線条の熱影響部を導入し、し
かる後Tx−100℃<Ta<Tx+50℃ ただし、Ta=焼鈍温度 Tx=結晶化温度 の式で表される温度範囲で1〜60分焼鈍を行うこ
とを特徴とするFe−Si−B系アモルフアス磁性
合金薄帯の鉄損改良方法に関するものである。
That is, the present invention provides a Fe-Si-B amorphous magnetic alloy thin strip with a width of 0.5 mm or less, a depth of 1/2 or less of the plate thickness, and a spacing of 1 A heat-affected zone of ~10 mm filaments is introduced, and then annealed for 1 to 60 minutes in the temperature range expressed by the formula, where Ta = annealing temperature Tx = crystallization temperature. The present invention relates to a method for improving iron loss of an Fe-Si-B amorphous magnetic alloy ribbon.

以下本発明の要旨を説明する。 The gist of the present invention will be explained below.

本発明は先ず例えばFe−Si−Bの組成からな
るアモルフアス合金を溶融し、ロール法等の適宜
な方法で薄帯を製造する。次いで該薄帯の長手方
向と角度をもつ方向(幅方向)に電子ビーム、レ
ーザーブーム、アーク、スパーク、高温物体との
接触等の適宜な手段によつて薄帯の幅方向に間欠
的に熱を付与する。この場合熱影響部の幅は0.5
mm以下、深さは板厚の1/2以下、互に相隣れる熱
影響部との間隔は1〜10mm程度であることが好ま
しい。また長手方向に対する角度は60〜90゜が適
当である。このように熱影響部を導入したアモル
フアス磁性合金薄帯を巻き(この場合熱を導入し
た側を外側に巻くと張力効果が得られるので効果
的である)、巻鉄心を構成した後磁界中で歪取り
焼鈍を行う。このときの焼鈍温度(Ta)は合金
の結晶化温度をTxとした場合、 Tx−100℃<Ta<Tx+50℃ の範囲で1〜60分程度行うことが望ましい。
In the present invention, first, an amorphous alloy having a composition of, for example, Fe--Si--B is melted and a ribbon is manufactured by an appropriate method such as a rolling method. Next, the ribbon is intermittently heated in the widthwise direction (width direction) at an angle to the longitudinal direction of the ribbon by an appropriate means such as an electron beam, a laser boom, an arc, a spark, or contact with a high-temperature object. Grant. In this case the width of the heat affected zone is 0.5
The depth is preferably 1/2 or less of the plate thickness, and the distance between adjacent heat affected zones is preferably about 1 to 10 mm. Also, the appropriate angle to the longitudinal direction is 60 to 90 degrees. After winding the amorphous magnetic alloy ribbon into which the heat-affected zone has been introduced (in this case, it is effective to wind the side to which heat has been introduced outward to obtain a tension effect) and constructing the wound core, it is placed in a magnetic field. Perform strain relief annealing. The annealing temperature (Ta) at this time is desirably within the range of Tx-100°C<Ta<Tx+50°C for about 1 to 60 minutes, where Tx is the crystallization temperature of the alloy.

このような条件で焼鈍を行うと、予め熱を導入
された熱影響部は他の部分に比較して結晶化が早
く、その結果該部分の180゜磁区が細分化され鉄損
は著しく向上する。
When annealing is performed under these conditions, the heat-affected zone, where heat has been introduced in advance, crystallizes faster than other parts, and as a result, the 180° magnetic domain in that part is subdivided, significantly improving iron loss. .

以下本発明の実施例を示す。 Examples of the present invention will be shown below.

実施例 1 Fe78Si12B10(原子%)の組成からなり、厚さ
40μm、幅20mmのアモルフアス磁性合金薄帯に
40kVで加速した0.2ミリアンペアの電流でビーム
径0.2mmφの電子をスキヤンスピード2m/minで
薄帯の長手方向に対して80゜の角度をもつ方向に
平行に照射した。照射した幅は0.3mm、深さは
15μm(板厚の1/2以下)、間隔4mmであつた。照射
部をX線回折法で調べたところアモルフアスのま
まであつた。この薄帯約3mを内径50mmのトロイ
ダル状に巻き、磁界10Oeをかけながら500℃×10
分の焼鈍をアルゴン中で行なつた。
Example 1 Composition of Fe 78 Si 12 B 10 (atomic %), thickness
40μm, width 20mm amorphous magnetic alloy ribbon
Electrons with a beam diameter of 0.2 mmφ were irradiated with a current of 0.2 milliamperes accelerated at 40 kV at a scan speed of 2 m/min parallel to a direction at an angle of 80° to the longitudinal direction of the ribbon. The irradiated width was 0.3mm and the depth was
They were 15 μm (less than 1/2 of the board thickness) and 4 mm apart. When the irradiated area was examined by X-ray diffraction, it remained amorphous. This thin ribbon of about 3 m was wound into a toroidal shape with an inner diameter of 50 mm, and heated to 50°C x 10 m
Annealing for minutes was carried out in argon.

なお、Fe78Si12B10の結晶化開始温度は走査型
熱量計(DSC)で測定したところ505℃であつ
た。
Note that the crystallization initiation temperature of Fe 78 Si 12 B 10 was 505° C. as measured by a scanning calorimeter (DSC).

本サンプルの50Hzで測定した磁気特性は次のと
おりであつた。
The magnetic properties of this sample measured at 50Hz were as follows.

B1 =1.50T(テスラ) W1.3/50=0.086watt/Kg 但し、B1は1Oeにおける磁束密度、W1.3/50は50
Hz、1.3Tにおける鉄損を示す。
B 1 = 1.50T (Tesla) W 1.3/50 = 0.086watt/Kg However, B 1 is the magnetic flux density at 1Oe, W 1.3/50 is 50
Shows iron loss at Hz and 1.3T.

また3000Hz,0.6Tにおける鉄損W0.6/3000
4.1watt/Kgであつた。
Also, the iron loss W 0.6/3000 at 3000Hz and 0.6T is
It was 4.1watt/Kg.

なお、比較として行つた同一組成、同一サイズ
の熱影響を与えない薄帯の同じ条件で焼鈍した後
の磁気特性は下記のとおりであつた。
As a comparison, a ribbon of the same composition and size that was not affected by heat was annealed under the same conditions, and its magnetic properties were as follows.

B1 =1.51T(50Hz) W1.3/50 =0.094watt/Kg W0.6/3000=6.3watt/Kg 実施例 2 実施例1と同じ組成、同じサイズのアモルフア
ス磁性合金薄帯にYAGレーザーを用いて、ビー
ム径0.1mmφ、照射密度10J/cm2、幅0.4mm、深さ
15μm(板厚の1/2以下)、間隔2mmの条件で、薄帯
の長手方向に対して70゜角度をもつ方向に平行に
照射して線状の熱影響部を導入した。照射部をX
線回折法で調べたところアモルフアスのままであ
つた。この薄帯約3mを内径50mmのトロイダル状
に巻き、磁界10Oeをかけながら450℃×10分の焼
鈍を水素中で行なつた。
B 1 = 1.51T (50Hz) W 1.3/50 = 0.094watt/Kg W 0.6/3000 = 6.3watt/Kg Example 2 Using a YAG laser, an amorphous magnetic alloy ribbon with the same composition and size as Example 1 was used. , beam diameter 0.1mmφ, irradiation density 10J/cm 2 , width 0.4mm, depth
A linear heat-affected zone was introduced by irradiating parallel to a direction at a 70° angle to the longitudinal direction of the ribbon under the conditions of 15 μm (less than 1/2 of the plate thickness) and a spacing of 2 mm. X the irradiation area
When examined by line diffraction, it remained amorphous. Approximately 3 m of this ribbon was wound into a toroidal shape with an inner diameter of 50 mm, and annealed in hydrogen at 450°C for 10 minutes while applying a magnetic field of 10 Oe.

本サンプルの50Hzおよび3kHzで測定した磁気
特性は次の通りであつた。
The magnetic properties of this sample measured at 50Hz and 3kHz were as follows.

B1 =1.50T(50Hz) W1.3/50 =0.079watt/Kg W0.6/3000=3.8watt/Kg 比較として行つた同一組成、同一サイズのレー
ザービームを照射しない薄帯の同じ条件で焼鈍し
た後の磁気特性は下記の通りであつた。
B 1 = 1.50T (50Hz) W 1.3/50 = 0.079watt/Kg W 0.6/3000 = 3.8watt/Kg After annealing under the same conditions for a thin strip of the same composition and size that was not irradiated with a laser beam for comparison. The magnetic properties of were as follows.

B1 =1.52T(50Hz) W1.3/50 =0.088watt/Kg W0.6/3000=7.0watt/Kg 以上薄帯の場合について説明したが、予め所定
の寸法に切揃えたものに適用した場合も本発明の
範囲に属することは勿論である。
B 1 = 1.52T (50Hz) W 1.3/50 = 0.088watt/Kg W 0.6/3000 = 7.0watt/Kg We have explained the case of a thin strip, but it can also be applied to a thin strip that has been cut to a predetermined size. Of course, it falls within the scope of the present invention.

Claims (1)

【特許請求の範囲】 1 Fe−Si−B系アモルフアス磁性合金薄帯の
長手方向に対して60〜90゜の角度をもつ方向に幅
0.5mm以下、深さは板厚の1/2以下、間隔1〜10mm
の線条の熱影響部を導入し、しかる後 Tx−100℃<Ta<Tx+50℃ ただし、Ta=焼鈍温度 Tx=結晶化温度 の式で表される温度範囲で1〜60分焼鈍を行うこ
とを特徴とするFe−Si−B系アモルフアス磁性
合金薄帯の鉄損改良方法。
[Claims] 1. Width in a direction at an angle of 60 to 90 degrees with respect to the longitudinal direction of the Fe-Si-B amorphous magnetic alloy ribbon.
0.5mm or less, depth less than 1/2 of the plate thickness, spacing 1 to 10mm
After that, annealing should be performed for 1 to 60 minutes in the temperature range expressed by the formula: Tx - 100℃ < Ta < Tx + 50℃, where Ta = annealing temperature Tx = crystallization temperature. A method for improving iron loss of an Fe-Si-B amorphous magnetic alloy ribbon, characterized by:
JP56044711A 1981-03-28 1981-03-28 Improving method for watt loss of thin strip of amorphous magnetic alloy Granted JPS57161031A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56044711A JPS57161031A (en) 1981-03-28 1981-03-28 Improving method for watt loss of thin strip of amorphous magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56044711A JPS57161031A (en) 1981-03-28 1981-03-28 Improving method for watt loss of thin strip of amorphous magnetic alloy

Publications (2)

Publication Number Publication Date
JPS57161031A JPS57161031A (en) 1982-10-04
JPS6323243B2 true JPS6323243B2 (en) 1988-05-16

Family

ID=12698999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56044711A Granted JPS57161031A (en) 1981-03-28 1981-03-28 Improving method for watt loss of thin strip of amorphous magnetic alloy

Country Status (1)

Country Link
JP (1) JPS57161031A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233804A (en) * 1984-05-04 1985-11-20 Nippon Steel Corp Improvement of magnetism in amorphous alloy thin film
US4724015A (en) * 1984-05-04 1988-02-09 Nippon Steel Corporation Method for improving the magnetic properties of Fe-based amorphous-alloy thin strip
JPS6129103A (en) * 1984-07-19 1986-02-10 Nippon Steel Corp Magnetic improving method of amorphous alloy thin strip
US4919733A (en) * 1988-03-03 1990-04-24 Allegheny Ludlum Corporation Method for refining magnetic domains of electrical steels to reduce core loss
US7540899B1 (en) * 2005-05-25 2009-06-02 Tini Alloy Company Shape memory alloy thin film, method of fabrication, and articles of manufacture
WO2008133738A2 (en) 2006-12-01 2008-11-06 Tini Alloy Company Method of alloying reactive components
US8007674B2 (en) 2007-07-30 2011-08-30 Tini Alloy Company Method and devices for preventing restenosis in cardiovascular stents
WO2009073609A1 (en) 2007-11-30 2009-06-11 Tini Alloy Company Biocompatible copper-based single-crystal shape memory alloys
US8382917B2 (en) 2007-12-03 2013-02-26 Ormco Corporation Hyperelastic shape setting devices and fabrication methods
US9290831B2 (en) 2009-09-14 2016-03-22 Hitachi Metals, Ltd. Soft-magnetic, amorphous alloy ribbon and its production method, and magnetic core constituted thereby
JP6041181B2 (en) * 2011-03-04 2016-12-07 日立金属株式会社 Wound core
US10124197B2 (en) 2012-08-31 2018-11-13 TiNi Allot Company Fire sprinkler valve actuator
US11040230B2 (en) 2012-08-31 2021-06-22 Tini Alloy Company Fire sprinkler valve actuator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173923A (en) * 1974-12-24 1976-06-26 Tohoku Daigaku Kinzoku Zairyo
JPS54148122A (en) * 1978-04-20 1979-11-20 Gen Electric Amorphous alloy
JPS5518566A (en) * 1978-07-26 1980-02-08 Nippon Steel Corp Improving method for iron loss characteristic of directional electrical steel sheet
JPS55152150A (en) * 1979-05-17 1980-11-27 Res Inst Electric Magnetic Alloys High magnetic flux amorphous iron alloy
JPS5797606A (en) * 1980-12-10 1982-06-17 Kawasaki Steel Corp Manufacture of amorphous alloy thin belt having extremely low iron loss

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5173923A (en) * 1974-12-24 1976-06-26 Tohoku Daigaku Kinzoku Zairyo
JPS54148122A (en) * 1978-04-20 1979-11-20 Gen Electric Amorphous alloy
JPS5518566A (en) * 1978-07-26 1980-02-08 Nippon Steel Corp Improving method for iron loss characteristic of directional electrical steel sheet
JPS55152150A (en) * 1979-05-17 1980-11-27 Res Inst Electric Magnetic Alloys High magnetic flux amorphous iron alloy
JPS5797606A (en) * 1980-12-10 1982-06-17 Kawasaki Steel Corp Manufacture of amorphous alloy thin belt having extremely low iron loss

Also Published As

Publication number Publication date
JPS57161031A (en) 1982-10-04

Similar Documents

Publication Publication Date Title
JP5158285B2 (en) Oriented electrical steel sheet
JPS6323243B2 (en)
CA1160480A (en) Amorphous metal alloys having enhanced magnetic properties and method of making and using
US4685980A (en) Method for improving the magnetic properties of Fe-based amorphous-alloy thin strip
WO2018227792A1 (en) Iron-based amorphous alloy having low stress sensitivity, and preparation method therefor
KR930001948B1 (en) Ultra-rapid annealing of nonoriented electrical steel
US4919733A (en) Method for refining magnetic domains of electrical steels to reduce core loss
US5069428A (en) Method and apparatus of continuous dynamic joule heating to improve magnetic properties and to avoid annealing embrittlement of ferro-magnetic amorphous alloys
JPH0229735B2 (en)
JP6077445B2 (en) Ferromagnetic amorphous alloy ribbons and their manufacture
JP4636365B2 (en) Fe-based amorphous alloy ribbon and magnetic core
KR960014945B1 (en) Method for providing heat-resistant domain refinement of electrical steels to reduce core loss
US4834815A (en) Iron-based amorphous alloys containing cobalt
JPH0253935B2 (en)
JP2023507438A (en) Grain-oriented electrical steel sheet and its magnetic domain refinement method
JPH062042A (en) Production of grain-oriented silicon steel sheet with low iron loss for laminated iron core
JPS6323242B2 (en)
JPS62227070A (en) Manufacture of thin amorphous co alloy strip having superior magnetic characteristic at high frequency
JPH0332888B2 (en)
JPS6335688B2 (en)
JPH02277780A (en) Grain-oriented silicon steel sheet having small iron loss and production thereof
KR930009975B1 (en) Process for preparing wound core having low core loss
Raybould et al. Reducing the magnetic losses of amorphous ribbon
JPH0332886B2 (en)
JPH05311241A (en) Manufacture of low core loss grain-oriented silicon steel sheet and irradiation device for electron beam