JPH0332888B2 - - Google Patents

Info

Publication number
JPH0332888B2
JPH0332888B2 JP59148569A JP14856984A JPH0332888B2 JP H0332888 B2 JPH0332888 B2 JP H0332888B2 JP 59148569 A JP59148569 A JP 59148569A JP 14856984 A JP14856984 A JP 14856984A JP H0332888 B2 JPH0332888 B2 JP H0332888B2
Authority
JP
Japan
Prior art keywords
ribbon
amorphous alloy
annealing
iron loss
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59148569A
Other languages
Japanese (ja)
Other versions
JPS6129103A (en
Inventor
Shun Sato
Toshio Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14856984A priority Critical patent/JPS6129103A/en
Priority to US06/729,298 priority patent/US4724015A/en
Priority to DE8585105443T priority patent/DE3578934D1/en
Priority to EP85105443A priority patent/EP0161593B1/en
Publication of JPS6129103A publication Critical patent/JPS6129103A/en
Priority to US06/828,948 priority patent/US4685980A/en
Publication of JPH0332888B2 publication Critical patent/JPH0332888B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は主として電力トランス、高周波トラン
ス、パルストランス、リアクターなどの電力変換
器の鉄心として用いられるFe基非晶質合金薄帯
の磁気特性とくに鉄損と励磁特性を同時に改善す
る方法に関するものである。 (従来の技術) 溶融状態から急冷凝固することによつて作製さ
れる非晶質合金薄帯は種々のすぐれた性質を示
し、応用上注目されている。なかでもFe基非晶
質合金は磁束密度が高く鉄損が低いため各種鉄心
の材料として利用されつつある。非晶質合金の鉄
損が低い理由として、非晶質合金は原理的に異方
性がなく、結晶粒界等の欠陥がないためヒステリ
シス損が小さい上に、板厚が薄く、電気抵抗が大
きいため渦電流損も小さいことが挙げられてい
る。しかし鉄損値から直流ヒステリシス損を差し
引いた広義の渦電流損は、一様磁化を仮定して計
算される古典的渦電流損に比べて数十倍から100
倍も大きい。これは磁区幅が大きいために不均一
磁化変化に起因する異常渦電流損の割合が大きい
ことを示す。さらに、異常渦電流損の絶対値およ
び全鉄損に占める割合は材料の板厚が増すにした
がい大きくなることが本発明者らの研究によつて
明らかになつた。したがつて、従来材の板厚(20
〜30μm)より大きな板厚(40〜80μm)の非晶
質合金の性能を十分に引き出すためには渦電流損
を低減する手段を講ずることが望ましい。 異常渦電流損を低減する方法としては従来から
方向性けい素鋼板に用いられている方法の適用が
まず考えられ試みられた。例えばスクラツチ法で
ある。これは硬い材質の尖つた先端でけい素鋼板
の表面を罫書くもので、磁区が細分化され鉄損が
低減する。しかし、非晶質合金薄帯にこれを適用
しても必ずしも良好な結果を得なかつた。例えば
NaritaらはProceedings of 4th International
Conference on Rapidly Quenched Metals
(1982)p.1001〜1004において、Fe基非晶質合金
薄帯に焼鈍を施した後ダイヤモンド針で薄帯の表
面を罫書いて導入した線状の歪が鉄損におよぼす
効果を報告している。それによれば歪の効果は
5kHz以上の高周波数域で表われるが、電力トラ
ンス等で重要な100Hz以下の低周波数域では鉄損
はむしろ増大している。この理由としてけい素鋼
板に比べて板厚の薄い非晶質合金では低周波数域
において元来、渦電流損が小さいため磁区細分化
による鉄損低減効果はわずかであること、むしろ
ヒステリシス損の増大によつて全鉄損が増大する
ためと推定される。 非晶質材料に独特の鉄損低減法としては、局部
結晶化の方法が提案されている。これは特開昭57
−97606号公報にて開示される方法で、薄帯の幅
方向に線状あるいは点列状の結晶化領域を形成さ
せるものである。ここで結晶化の手法はレーザー
光や電子ビームを照射するか、あるいは金属針、
金属エツジの何れかを薄帯表面に近接ないし接触
させながら通電加熱する方法を採用している。こ
の局部結晶化領域を導入する方法は磁区の細分化
に有効な手段ではあるが、低周波数域での鉄損低
減に対して必ずしも一定の効果を示さない欠点が
あつた。例えば前記特開昭57−97606号公報にお
いては、商用周波数で効果を表わしているのに対
してNaritaらの前記論文は線状結晶化領域を付
与する効果についても述べているが、それによれ
ばスクラツチ法に比べれば低周波数側まで効果の
ある領域は広がつているが、200Hz以下では無効
ないしむしろ劣化している。 また、レーザ光を照射して、結晶化させずに鉄
損を低減する方法は特開昭56−44710号および特
開昭56−44711号公報にて開示されている方法が
ある。この方法は鉄損低減には有効であつたが、
励磁特性がやや劣化する欠点があつた。 以上述べたように従来技術の適用は非晶質合金
の鉄損低減に効果がほとんどないか、効果がある
場合でも励磁特性を劣化させる欠点を有してい
た。励磁特性は通常、所定の磁束密度を得るため
に必要な励磁電力(励磁実効VA)の大きさで表
わされるが、より簡単には一定の磁界(例えば
10e)の下で誘導される磁束密度の大きさB1によ
つても表わすことができる。通常のレーザ照射や
スクラツチ法による励磁特性の劣化の原因は局部
的に導入された歪による垂直異方性の形成による
ものと考えられる。 一方向性けい素鋼板において採用されるレーザ
照射およびスクラツチ処理の効果は歪取り焼鈍に
より全く効果を失うため、処理後の垂直異方性の
原因である局所歪を除去するために歪取り焼鈍を
することはできない。したがつて鉄損の改善に主
眼をおき、励磁特性の劣化はやむを得ないものと
甘受していた。非晶質材料についても、上述した
ように従来の公知文献からみる限り事情は同じ
で、励磁特性の劣化はやむを得ないものと考えら
れていた。 これに対して本発明は非晶質合金の鉄損を低減
するとともに同時に励磁特性をも改善することを
目的として新しい方法を提案するものである。 (発明が解決しようとする問題点) 本発明はFe基非晶質合金の鉄損および励磁特
性を同時に改善する方法を提供することを目的と
している。 (問題点を解決するための手段・作用) 本発明は非晶質合金薄帯の表面を局所的かつ瞬
間的に溶解し、次いでその部分を急冷凝固させて
非晶質化することにより、局所的に熱歪を導入す
る工程および該熱歪付与後の焼鈍工程の組合せに
よつて構成される。照射は通常鋳造ままの薄帯に
なされるが、絶縁や防錆を目的とする表面処理が
施されたものでもよい。 局所溶解部の付与はビーム径を細く絞つたパル
スレーザの照射による。導入される溶解部の個々
の形状は第1図のように円ないし楕円形状をして
いる。照射部が結晶化しないため、ビーム径は
0.5mmφ以下のパルスレーザを用いる必要がある。
結晶化すると磁性は一般に劣化した。パルスレー
ザの照射によつて形成された局所溶解部は中央部
がへこみ周辺部は盛り上つている。ここでいう溶
解部とは周辺部を含めるものとする。周辺部の盛
り上りはレーザ照射による急激な熱エネルギの入
射により溶解された合金が周辺に溢れ出して凝固
した結果と考えられる。 本発明の構成要件の1つである溶解部の平均径
を所定の範囲とするために、パルスレーザの照射
強度、ビーム径、周波数、掃引速度などのパラメ
ータを制御する。具体的にはビーム径0.5mmφ以
下で照射エネルギ密度が溶解部の単位面積当り
0.02〜1.0J/mm2となるように、照射強度(レーザ
パワー)、周波数、掃引速度を調整する。0.02J/
mm2以下では焼鈍によつて照射の効果は消失する。
1.0J/mm2を越えると鉄損は改善されても磁束密度
が劣化する。 また溶解部の点列の方向は薄帯の幅方向に対し
て30度以下の平均角度で隣り合う点列の平均間隔
が1〜20mmとなるようにライン速度(薄帯の移動
速度)および照射に掃引速度を選定する。隣り合
う点列は平行である必要はなくまた直線である必
要もない。例えば第2図に示す正弦曲線状の点列
も本発明の範囲に含まれる。 さらに本発明において重要なことは溶解部の分
布密度である。分布密度を第3図に図示するよう
に点列が構成する直線または曲線の長さLに占め
る溶解部の径の和(l=l1+l2+……)の比率と
して表わすとき、これが10%以上でなければなら
ない。この範囲は10%未満では後に行なわれる焼
鈍により局部歪が完全に除去されて照射の効果が
表われなことから定められた。 本発明の構成要件としてレーザ照射後の焼鈍に
関する条件がある。焼鈍条件(温度および時間)
はレーザ照射条件または形成される溶解部の性状
および分布密度などに応じて選定する必要があ
る。焼鈍条件の適正範囲は合金の組成にも依存す
るため具体的数値で表示することが難かしいが、
実験的に次の方法で定めることができる。すなわ
ち、同一の合金組成の薄帯のレーザ処理なしの最
適焼鈍条件を前もつて実験的に求めておく。も
し、この温度がTaであればレーザ処理材はこれ
より高い温度で行なう。この場合の焼鈍温度は通
常Ta+10〜40℃の範囲であり、レーザ照射条件
が強い場合(本発明が選定する範囲内で)高目と
し、照射条件が強い場合低目とする。組成Fe80.5
Si6.5B12C1(at%)で、板厚65μmの非晶質薄帯の
場合、レーザ照射をしない場合、鉄損に対する最
適焼鈍温度は360℃×60分(N2中)であつたが、
約200μmφの溶解部を線密度70%、点列間隔5
mmで有するレーザ処理材は実施例1に示すように
380℃×60分(N2中)の焼鈍後に鉄損だけでな
く、励磁特性の向上が認められた。 照射後の焼鈍条件が不適切なものは鉄損の向上
は認められても、励磁特性の向上は達成できな
い。 本発明の方法において、レーザ照射後の薄帯を
層間絶縁などを目的としてコーテイング処理をし
てもよい。 (実施例) 次に実施例をあげて説明する。 実施例 1 単ロール法で作製された組成Fe80.5Si6.5B12C1
板幅50mm、板厚65μmの鋳造ままの非晶質薄帯の
自由面にYAGレーザを照射して局所溶解部を導
入した。照射条件は周波数400Hz、ビーム径0.2mm
φ、出力5W、ビーム掃引速度10cm/sec、点列の
間隔5mmであつた。光学顕微鏡で観察した溶解部
はほぼ円形をしており、その面積は約0.04mm2、線
密度は約70%であつた。したがつて照射エネルギ
密度はほぼ0.3J/mm2と計算される。また溶解部お
よび周辺部が結晶化していないことが、X線回折
および光学顕微鏡観察により確認された。 上記照射後の薄帯を380℃×60分(N2中)で磁
場焼鈍した後の磁気特性は第1表の通りであつ
た。比較として行なつた未照射材を最適条件であ
る360℃×60分(N2中)で焼鈍した後の磁気特性
を同じく第1表に示してある。本発明の方法によ
つて処理された薄帯の磁気特性は鉄損、磁束密度
ともに比較例に比べてすぐれていることが分る。
(Industrial Application Field) The present invention aims to improve the magnetic properties of Fe-based amorphous alloy ribbons, which are mainly used as iron cores of power converters such as power transformers, high-frequency transformers, pulse transformers, and reactors, and in particular to simultaneously improve iron loss and excitation properties. It's about how to improve. (Prior Art) Amorphous alloy ribbons produced by rapid solidification from a molten state exhibit various excellent properties and are attracting attention for their applications. Among these, Fe-based amorphous alloys are being used as materials for various iron cores because of their high magnetic flux density and low iron loss. The reason why amorphous alloys have low core loss is that they have no anisotropy in principle and have no defects such as grain boundaries, so hysteresis loss is small, and the plate thickness is thin and electrical resistance is low. It is said that because of its large size, eddy current loss is also small. However, the eddy current loss in a broad sense, which is obtained by subtracting the DC hysteresis loss from the iron loss value, is several tens to 100 times larger than the classical eddy current loss calculated assuming uniform magnetization.
It's twice as big. This indicates that because the magnetic domain width is large, the proportion of abnormal eddy current loss caused by non-uniform magnetization changes is large. Furthermore, research by the present inventors has revealed that the absolute value of abnormal eddy current loss and its proportion to total iron loss increase as the thickness of the material increases. Therefore, the thickness of the conventional material (20
In order to fully bring out the performance of an amorphous alloy having a thickness (40 to 80 μm) greater than 30 μm), it is desirable to take measures to reduce eddy current loss. As a method for reducing abnormal eddy current loss, the application of the method conventionally used for grain-oriented silicon steel sheets was first considered and attempted. For example, the scratch method. This is a device that uses a sharp point made of hard material to score the surface of a silicon steel plate, dividing the magnetic domains into smaller pieces and reducing iron loss. However, even when this method was applied to amorphous alloy ribbons, good results were not necessarily obtained. for example
Narita et al. Proceedings of 4th International
Conference on Rapidly Quenched Metals
(1982) p.1001-1004 reported the effect on core loss of linear strain introduced by scribing the surface of an Fe-based amorphous alloy ribbon with a diamond needle after annealing. ing. According to this, the effect of distortion is
Iron loss appears in the high frequency range above 5kHz, but it actually increases in the low frequency range below 100Hz, which is important for power transformers. The reason for this is that in amorphous alloys, which are thinner than silicon steel sheets, the eddy current loss is originally small in the low frequency range, so the effect of reducing iron loss by magnetic domain refinement is slight, and on the contrary, the hysteresis loss increases. This is presumed to be because the total iron loss increases due to A method of local crystallization has been proposed as a method of reducing iron loss unique to amorphous materials. This is JP-A-57
This is a method disclosed in Japanese Patent No. 97606, in which crystallized regions are formed in the form of lines or dots in the width direction of the ribbon. The crystallization method here is to irradiate laser light or electron beam, or use metal needles or
A method is adopted in which one of the metal edges is heated with electricity while being brought close to or in contact with the surface of the ribbon. Although this method of introducing local crystallized regions is an effective means for subdividing magnetic domains, it has the drawback that it does not necessarily have a certain effect on reducing iron loss in a low frequency range. For example, in the above-mentioned Japanese Patent Application Laid-Open No. 57-97606, the effect is expressed at commercial frequencies, whereas the above-mentioned paper by Narita et al. also describes the effect of providing a linear crystallized region; Compared to the scratch method, the range in which it is effective extends to the low frequency side, but it is not effective or even deteriorates below 200Hz. Furthermore, methods for reducing core loss without crystallization by irradiating laser light include methods disclosed in Japanese Patent Laid-Open No. 56-44710 and Japanese Patent Laid-Open No. 56-44711. Although this method was effective in reducing iron loss,
The drawback was that the excitation characteristics deteriorated somewhat. As described above, the application of the prior art has little effect on reducing the iron loss of amorphous alloys, or even when it is effective, it has the drawback of deteriorating the excitation characteristics. Excitation characteristics are usually expressed by the magnitude of excitation power (excitation effective VA) required to obtain a predetermined magnetic flux density, but more simply, they are expressed by the magnitude of excitation power (excitation effective VA) required to obtain a predetermined magnetic flux density.
10e) can also be expressed by the magnitude B 1 of the magnetic flux density induced under The cause of deterioration in excitation characteristics caused by normal laser irradiation and scratching methods is thought to be due to the formation of perpendicular anisotropy due to locally introduced strain. The effects of laser irradiation and scratch treatment applied to unidirectional silicon steel sheets are completely lost after strain relief annealing, so strain relief annealing is performed to remove the local strain that is the cause of vertical anisotropy after treatment. I can't. Therefore, the main focus was on improving iron loss, and the deterioration of excitation characteristics was accepted as unavoidable. Regarding amorphous materials, as described above, the situation is the same as far as conventional known literature is concerned, and deterioration of excitation characteristics was thought to be unavoidable. In contrast, the present invention proposes a new method for the purpose of reducing the iron loss of an amorphous alloy and improving the excitation characteristics at the same time. (Problems to be Solved by the Invention) An object of the present invention is to provide a method for simultaneously improving the iron loss and excitation characteristics of an Fe-based amorphous alloy. (Means/effects for solving the problem) The present invention locally and instantaneously melts the surface of an amorphous alloy ribbon, and then rapidly solidifies that part to make it amorphous. It is constituted by a combination of a step of introducing thermal strain and an annealing step after applying the thermal strain. Irradiation is usually carried out on the as-cast ribbon, but it may also be applied to a ribbon that has been surface-treated for the purpose of insulation or rust prevention. The local melting area is created by irradiation with a pulsed laser with a narrow beam diameter. The individual melting portions to be introduced have a circular or elliptical shape as shown in FIG. Since the irradiated area does not crystallize, the beam diameter is
It is necessary to use a pulsed laser with a diameter of 0.5 mmφ or less.
Magnetism generally deteriorated upon crystallization. The local melted portion formed by pulsed laser irradiation has a depressed central portion and a raised peripheral portion. The dissolving part here includes the peripheral part. The swelling at the periphery is thought to be the result of melted alloy overflowing to the periphery and solidifying due to the rapid incidence of thermal energy due to laser irradiation. In order to keep the average diameter of the melted part, which is one of the constituent elements of the present invention, within a predetermined range, parameters such as the irradiation intensity, beam diameter, frequency, and sweep speed of the pulsed laser are controlled. Specifically, with a beam diameter of 0.5 mmφ or less, the irradiation energy density is per unit area of the melted part.
Adjust the irradiation intensity (laser power), frequency, and sweep speed so that it becomes 0.02 to 1.0 J/ mm2 . 0.02J/
Below mm2 , the effect of irradiation disappears due to annealing.
If it exceeds 1.0J/ mm2 , the magnetic flux density will deteriorate even if the iron loss is improved. In addition, the direction of the dot array in the melting zone is set at an average angle of 30 degrees or less with respect to the width direction of the ribbon, and the line speed (travel speed of the ribbon) and irradiation are adjusted so that the average distance between adjacent dot arrays is 1 to 20 mm. Select the sweep speed. Adjacent points do not need to be parallel, nor do they need to be straight lines. For example, a sinusoidal point sequence shown in FIG. 2 is also included within the scope of the present invention. Furthermore, what is important in the present invention is the distribution density of the melted portion. When the distribution density is expressed as the ratio of the sum of the diameters of the melted parts (l = l 1 + l 2 +...) to the length L of the straight line or curve formed by the point sequence as shown in Figure 3, this is 10 Must be greater than or equal to %. This range was determined because if it is less than 10%, the local strain will be completely removed by the subsequent annealing and the effect of irradiation will be visible. As a component of the present invention, there are conditions regarding annealing after laser irradiation. Annealing conditions (temperature and time)
must be selected depending on the laser irradiation conditions, the properties and distribution density of the melted part to be formed, etc. The appropriate range of annealing conditions depends on the composition of the alloy, so it is difficult to express them in concrete numbers.
It can be determined experimentally by the following method. That is, the optimum annealing conditions for a ribbon having the same alloy composition without laser treatment are experimentally determined in advance. If this temperature is Ta, the laser treatment is performed at a higher temperature. The annealing temperature in this case is usually in the range of Ta + 10 to 40°C, and is set higher when the laser irradiation conditions are strong (within the range selected by the present invention), and set lower when the irradiation conditions are strong. Composition Fe 80.5
In the case of an amorphous ribbon with Si 6.5 B 12 C 1 (at%) and a thickness of 65 μm, the optimum annealing temperature for iron loss was 360°C x 60 minutes (in N 2 ) without laser irradiation. but,
Dissolved area of approximately 200μmφ with linear density of 70% and dot row spacing of 5
The laser treated material with mm is as shown in Example 1.
After annealing at 380°C for 60 minutes (in N2 ), improvements in not only iron loss but also excitation characteristics were observed. If the annealing conditions after irradiation are inappropriate, even if an improvement in iron loss is recognized, an improvement in excitation characteristics cannot be achieved. In the method of the present invention, the ribbon after laser irradiation may be coated for the purpose of interlayer insulation. (Example) Next, an example will be given and explained. Example 1 Composition Fe 80.5 Si 6.5 B 12 C 1 produced by single roll method,
A YAG laser was irradiated onto the free surface of an as-cast amorphous thin strip with a width of 50 mm and a thickness of 65 μm to introduce local melting zones. Irradiation conditions are frequency 400Hz, beam diameter 0.2mm
φ, output 5W, beam sweep speed 10cm/sec, and dot array spacing 5mm. The melted area observed with an optical microscope was approximately circular, with an area of approximately 0.04 mm 2 and a linear density of approximately 70%. Therefore, the irradiation energy density is calculated to be approximately 0.3 J/mm 2 . Furthermore, it was confirmed by X-ray diffraction and optical microscopy that the dissolved area and the surrounding area were not crystallized. The magnetic properties of the irradiated ribbon after magnetic field annealing at 380° C. for 60 minutes (in N 2 ) were as shown in Table 1. Table 1 also shows the magnetic properties of an unirradiated material, which was used for comparison, after annealing at 360° C. for 60 minutes (in N 2 ), which is the optimum condition. It can be seen that the magnetic properties of the ribbon processed by the method of the present invention are superior to those of the comparative example in both iron loss and magnetic flux density.

【表】 ここでW13/50は周波数50Hz、磁束密度1.3Tで測
定した鉄損、B1は磁場10eにおける磁束密度。測
定は単板測定器を用いた。 実施例 2 実施例1と同一組成、同一板幅および板厚の鋳
造ままの非晶質薄帯の自由面にYAGレーザを照
射して局所溶解部を導入した。照射条件は周波数
400Hz、ビーム径0.2mm2φ、出力5W、ライン速度
2cm/sec、ビーム掃引速度10cm/secであつた。
光学顕微鏡で観察した薄帯の照射部は実施例1と
ほぼ同じ性状をしていた。この照射した薄帯1300
gを外径120mmφのステンレス製巻き枠に巻いて、
380℃×120分磁場中で焼鈍した。ただし昇温は
150℃で約120分保持した後、平均毎分約3℃で上
げた。降温は炉冷で、250℃まで平均毎分約2℃
であつた。 焼鈍後の鉄心の磁気特性を第2表に示した。レ
ーザ処理をしない同一組成、同一形状の薄帯を同
一重量、同一形状の巻き鉄心に成形し、360℃×
120分の磁場焼鈍をした後の磁気特性を比較とし
て第2表に示した。本発明の方法で処理された鉄
心の磁気特性は鉄損、励磁特性ともに比較例に比
べてすぐれていることが分る。
[Table] Here, W 13/50 is the iron loss measured at a frequency of 50Hz and magnetic flux density of 1.3T, and B 1 is the magnetic flux density at a magnetic field of 10e. A single plate measuring device was used for measurement. Example 2 A YAG laser was irradiated onto the free surface of an as-cast amorphous ribbon having the same composition, width, and thickness as in Example 1 to introduce local melting zones. Irradiation conditions are frequency
It was 400Hz, beam diameter 0.2mm 2 φ, output 5W, line speed 2cm/sec, and beam sweep speed 10cm/sec.
The irradiated area of the ribbon observed with an optical microscope had almost the same properties as in Example 1. This irradiated thin strip 1300
Wrap g onto a stainless steel reel with an outer diameter of 120 mmφ,
Annealed in a magnetic field at 380°C for 120 minutes. However, the temperature rise
After holding at 150°C for about 120 minutes, the temperature was raised at an average rate of about 3°C per minute. The temperature decreases by furnace cooling, with an average rate of about 2°C per minute up to 250°C.
It was hot. The magnetic properties of the core after annealing are shown in Table 2. A thin strip of the same composition and shape without laser treatment is formed into a wound core of the same weight and shape, and heated at 360℃
The magnetic properties after magnetic field annealing for 120 minutes are shown in Table 2 for comparison. It can be seen that the magnetic properties of the iron core treated by the method of the present invention are superior to those of the comparative example in both iron loss and excitation properties.

【表】 (発明の効果) 以上説明したように本発明によれば非晶質磁性
合金薄帯の鉄損および励磁特性を同時に改善する
ことができる。
[Table] (Effects of the Invention) As explained above, according to the present invention, the core loss and excitation characteristics of an amorphous magnetic alloy ribbon can be simultaneously improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における溶解・急冷凝固部分の
組織を示す顕微鏡写真、第2図は本発明において
溶解・急冷凝固を行なう一実例を示す説明図、第
3図は本発明における溶解・急冷凝固部の大きさ
および間隔を示す説明図である。
Fig. 1 is a microscopic photograph showing the structure of the melted and rapidly solidified portion in the present invention, Fig. 2 is an explanatory diagram showing an example of melting and rapidly solidified in the present invention, and Fig. 3 is a photomicrograph showing the structure of the melted and rapidly solidified portion in the present invention. FIG. 3 is an explanatory diagram showing the size and spacing of parts.

Claims (1)

【特許請求の範囲】[Claims] 1 ビーム径0.5mmφ以下、単一パルス当たりの
エネルギ密度が0.02〜1.0J/mm2のパルスレーザを
非晶質合金薄帯の幅方向に照射することにより、
該非晶質合金薄帯の表面を局部的かつ瞬間的に溶
解し、次いで急冷凝固させて再び非晶質化させた
円ないし楕円状の領域を線密度が10%以上の点列
状として導入した後、該非晶質合金薄膜を焼鈍す
ることを特徴とする非晶質合金薄帯の磁性改善方
法。
1. By irradiating the width direction of the amorphous alloy ribbon with a pulsed laser with a beam diameter of 0.5 mmφ or less and an energy density of 0.02 to 1.0 J/mm 2 per single pulse,
The surface of the amorphous alloy ribbon was locally and instantaneously melted, then rapidly solidified to become amorphous again, and a circular or elliptical region was introduced as a dot array with a linear density of 10% or more. A method for improving magnetism of an amorphous alloy ribbon, the method comprising: thereafter annealing the amorphous alloy thin film.
JP14856984A 1984-05-04 1984-07-19 Magnetic improving method of amorphous alloy thin strip Granted JPS6129103A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP14856984A JPS6129103A (en) 1984-07-19 1984-07-19 Magnetic improving method of amorphous alloy thin strip
US06/729,298 US4724015A (en) 1984-05-04 1985-05-01 Method for improving the magnetic properties of Fe-based amorphous-alloy thin strip
DE8585105443T DE3578934D1 (en) 1984-05-04 1985-05-03 METHOD FOR IMPROVING THE MAGNETIC PROPERTIES OF THIN STRAPS MADE OF AMORPHOUS IRON ALLOYS.
EP85105443A EP0161593B1 (en) 1984-05-04 1985-05-03 Method for improving the magnetic properties of fe-based amorphous-alloy thin strip
US06/828,948 US4685980A (en) 1984-05-04 1986-02-12 Method for improving the magnetic properties of Fe-based amorphous-alloy thin strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14856984A JPS6129103A (en) 1984-07-19 1984-07-19 Magnetic improving method of amorphous alloy thin strip

Publications (2)

Publication Number Publication Date
JPS6129103A JPS6129103A (en) 1986-02-10
JPH0332888B2 true JPH0332888B2 (en) 1991-05-15

Family

ID=15455675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14856984A Granted JPS6129103A (en) 1984-05-04 1984-07-19 Magnetic improving method of amorphous alloy thin strip

Country Status (1)

Country Link
JP (1) JPS6129103A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030907A1 (en) 2009-09-14 2011-03-17 日立金属株式会社 Soft magnetic amorphous alloy ribbon, method for producing same, and magnetic core using same
US8850980B2 (en) 2006-04-03 2014-10-07 Canon Nanotechnologies, Inc. Tessellated patterns in imprint lithography
US11802328B2 (en) 2019-06-28 2023-10-31 Proterial, Ltd. Fe-based amorphous alloy ribbon, iron core, and transformer

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202009666YA (en) * 2018-03-30 2020-10-29 Hitachi Metals Ltd Fe-BASED AMORPHOUS ALLOY RIBBON AND METHOD FOR PRODUCING SAME, IRON CORE, AND TRANSFORMER
CN112582148A (en) 2019-09-30 2021-03-30 日立金属株式会社 Transformer device
JP2022086092A (en) 2020-11-30 2022-06-09 日立金属株式会社 Manufacturing method of laminated amorphous alloy ribbon holding spool, and manufacturing method of iron core
JP2022127034A (en) 2021-02-19 2022-08-31 セイコーエプソン株式会社 Amorphous metal ribbon, method for manufacturing amorphous metal ribbon, and magnetic core

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161031A (en) * 1981-03-28 1982-10-04 Nippon Steel Corp Improving method for watt loss of thin strip of amorphous magnetic alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57161031A (en) * 1981-03-28 1982-10-04 Nippon Steel Corp Improving method for watt loss of thin strip of amorphous magnetic alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8850980B2 (en) 2006-04-03 2014-10-07 Canon Nanotechnologies, Inc. Tessellated patterns in imprint lithography
WO2011030907A1 (en) 2009-09-14 2011-03-17 日立金属株式会社 Soft magnetic amorphous alloy ribbon, method for producing same, and magnetic core using same
US9290831B2 (en) 2009-09-14 2016-03-22 Hitachi Metals, Ltd. Soft-magnetic, amorphous alloy ribbon and its production method, and magnetic core constituted thereby
US11802328B2 (en) 2019-06-28 2023-10-31 Proterial, Ltd. Fe-based amorphous alloy ribbon, iron core, and transformer
US11952651B2 (en) 2019-06-28 2024-04-09 Proterial, Ltd. Fe-based amorphous alloy ribbon, production method thereof, iron core, and transformer

Also Published As

Publication number Publication date
JPS6129103A (en) 1986-02-10

Similar Documents

Publication Publication Date Title
US10468182B2 (en) Rapidly quenched Fe-based soft-magnetic alloy ribbon and its production method and core
JP5477438B2 (en) Method for producing grain-oriented electrical steel sheet
JP5327075B2 (en) Soft magnetic alloy ribbon, method of manufacturing the same, and magnetic component having soft magnetic alloy ribbon
JP5327074B2 (en) Soft magnetic alloy ribbon, method of manufacturing the same, and magnetic component having soft magnetic alloy ribbon
JP5440606B2 (en) Soft magnetic amorphous alloy ribbon, method for producing the same, and magnetic core using the same
JP6350516B2 (en) Winding core and manufacturing method thereof
US4724015A (en) Method for improving the magnetic properties of Fe-based amorphous-alloy thin strip
KR102069927B1 (en) Ultrafine crystal alloy ribbon, fine crystal soft magnetic alloy ribbon, and magnetic parts using same
US4919733A (en) Method for refining magnetic domains of electrical steels to reduce core loss
JP5656114B2 (en) Ultra-quenched Fe-based soft magnetic alloy ribbon and magnetic core
JPH0332888B2 (en)
JPS6323243B2 (en)
US4915750A (en) Method for providing heat resistant domain refinement of electrical steels to reduce core loss
JPH0253935B2 (en)
JPS62227070A (en) Manufacture of thin amorphous co alloy strip having superior magnetic characteristic at high frequency
JPS63239906A (en) Manufacture of fe alloy thin band having excellent high-frequency magnetic characteristic
JP5645108B2 (en) Amorphous alloy ribbon and magnetic component having amorphous alloy ribbon
JPWO2014080763A1 (en) Directional electrical steel sheet and method of manufacturing the grain oriented electrical steel sheet
JPH0332886B2 (en)
CN115917020A (en) Method for producing grain-oriented electromagnetic steel sheet
JPS60216511A (en) Improving method of magnetism of amorphous magnetic alloy thin-band
JPS6323242B2 (en)
JPS61248507A (en) Method for improvement in magnetic properties of amorphous alloy stacked core
JPS5825433A (en) Directional property silicon steel band
JPS60145358A (en) Amorphous magnetic alloy and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term