JP5645108B2 - Amorphous alloy ribbon and magnetic component having amorphous alloy ribbon - Google Patents

Amorphous alloy ribbon and magnetic component having amorphous alloy ribbon Download PDF

Info

Publication number
JP5645108B2
JP5645108B2 JP2010159444A JP2010159444A JP5645108B2 JP 5645108 B2 JP5645108 B2 JP 5645108B2 JP 2010159444 A JP2010159444 A JP 2010159444A JP 2010159444 A JP2010159444 A JP 2010159444A JP 5645108 B2 JP5645108 B2 JP 5645108B2
Authority
JP
Japan
Prior art keywords
alloy ribbon
amorphous alloy
roll
concentration
ribbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010159444A
Other languages
Japanese (ja)
Other versions
JP2012021190A (en
Inventor
克仁 吉沢
克仁 吉沢
元基 太田
元基 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2010159444A priority Critical patent/JP5645108B2/en
Publication of JP2012021190A publication Critical patent/JP2012021190A/en
Application granted granted Critical
Publication of JP5645108B2 publication Critical patent/JP5645108B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、各種トランス、リアクトル、チョークコイル、 ノイズ対策部品、レーザ電源や加速器、通信用パルストランス、 モータ磁心、
発電機、磁気センサ、アンテナ磁心、電流センサ、磁気シールド等に用いられる加工性と軟磁気特性に優れた非晶質合金薄帯および非晶質合金薄帯を有する磁性部品に関する。
The present invention includes various transformers, reactors, choke coils, noise countermeasure parts, laser power supplies and accelerators, communication pulse transformers, motor cores,
The present invention relates to an amorphous alloy ribbon and an amorphous alloy ribbon that are excellent in workability and soft magnetic properties used for generators, magnetic sensors, antenna cores, current sensors, magnetic shields, and the like.

各種トランス、リアクトル・チョークコイル、ノイズ対策部品、レーザ電源や加速器、通信用パルストランス、モータ、発電機、磁気センサ、アンテナ、電流センサなどに用いられる磁心や磁気シールド部材等に用いられる軟磁性材料としては、けい素鋼板、フェライトやFe基やCo基の非晶質合金等が知られている。
フェライト材料は、飽和磁束密度が低く、温度特性が悪い問題があり、大容量インバータ・電源のコイル部品や配電用トランスなど高いエネルギー密度で使用される用途には、磁気的に飽和しやすく、部品サイズが大きくなってしまうため不向きである。
けい素鋼板は、材料が安価で磁束密度は高いが、非晶質合金に比べると磁心損失が大きいという課題がある。
Soft magnetic materials used in various transformers, reactors / choke coils, noise countermeasure components, laser power supplies and accelerators, pulse transformers for communication, motors, generators, magnetic sensors, antennas, current sensors, etc. Examples of such materials include silicon steel sheets, ferrite, Fe-based, and Co-based amorphous alloys.
Ferrite materials have low saturation magnetic flux density and poor temperature characteristics, and are easily magnetically saturated for applications that use high energy density, such as large-capacity inverters, power supply coil parts, and distribution transformers. It is unsuitable because the size increases.
A silicon steel sheet is inexpensive and has a high magnetic flux density, but has a problem that the magnetic core loss is larger than that of an amorphous alloy.

非晶質合金は、通常液相や気相から急冷し製造され、Fe-Co-Ni系の非晶質合金は結晶が存在しないため結晶磁気異方性が存在せず、結晶粒界も存在しないため、優れた軟磁気特性を示すことが知られている。非晶質合金の中で、飽和磁束密度Bsが高いFe基非晶質合金は軟磁性に優れ低損失であるため、配電用トランス、リアクトル、チョークコイルなどの磁心材料として使用されている。一方、磁歪が小さく特に軟磁性に優れているCo基非晶質合金は磁気ヘッド、可飽和コアや電流センサなどの磁心材料として使用されている。   Amorphous alloys are usually manufactured by quenching from the liquid phase or gas phase, and Fe-Co-Ni amorphous alloys do not have crystals, so there is no magnetocrystalline anisotropy, and there are also grain boundaries. Therefore, it is known to exhibit excellent soft magnetic properties. Among amorphous alloys, Fe-based amorphous alloys having a high saturation magnetic flux density Bs have excellent soft magnetism and low loss, and are therefore used as magnetic core materials for power distribution transformers, reactors, choke coils, and the like. On the other hand, a Co-based amorphous alloy having a small magnetostriction and particularly excellent in soft magnetism is used as a magnetic core material for magnetic heads, saturable cores, current sensors and the like.

非晶質合金薄帯は、通常単ロール法などの超急冷法により製造される。単ロール法は、合金溶湯をノズルから高速に回転している合金製の冷却ロール上に噴出し合金薄帯を製造する方法である。量産性に優れているため、非晶質合金薄帯の製造に一般的に使われている。非晶質合金薄帯を量産する場合には、生産性を向上し材料コストを低減するため、広幅の非晶質合金薄帯を長時間製造することにより、連続の非晶質合金薄帯を作製した後に、この連続合金薄帯に対して、必要に応じてスリットや切断などの加工を行い、加工後の非晶質合金薄帯を用いて磁性部品・部材に成形し、これを場合によっては熱処理を行い製品とする。このため、熱処理前の作製したままの状態の非晶質合金薄帯は加工性に優れ、かつ熱処理後優れた軟磁気特性を示すことが重要である。   Amorphous alloy ribbon is usually produced by a rapid quenching method such as a single roll method. The single roll method is a method for producing an alloy ribbon by ejecting molten alloy from a nozzle onto a cooling roll made of alloy rotating at high speed. Because of its excellent mass productivity, it is generally used for the production of amorphous alloy ribbons. When mass-producing amorphous alloy ribbons, continuous amorphous alloy ribbons can be produced by producing wide amorphous alloy ribbons for a long time in order to improve productivity and reduce material costs. After the production, the continuous alloy ribbon is subjected to processing such as slitting and cutting as necessary, and the processed amorphous alloy ribbon is formed into a magnetic part / member. Is a heat treated product. For this reason, it is important that the amorphous alloy ribbon as produced before heat treatment is excellent in workability and exhibits excellent soft magnetic properties after heat treatment.

特許文献1は、主成分にCuを含有しているFe100-a-b-c-dMaSibBcCud組成のFe基ナノ結晶軟磁性合金用の非晶質合金薄帯を開示している。この文献1では、Cuの表面偏析を制御しないと加工性が著しく劣化することが報告されている。すなわち、非晶質合金薄帯の表面(自由面とロール面)から深さ方向に、最表面部よりも高い濃度のCu偏析部が存在し、このCu偏析部のCu濃度の最大値を4原子%以下に制御するものである。 Patent Document 1 discloses an amorphous alloy ribbon for Fe 100-a-bcd M a Si b B c Cu d Fe group nanocrystalline soft magnetic alloy having a composition containing Cu as a main component . In this document 1, it is reported that the workability is remarkably deteriorated unless the surface segregation of Cu is controlled. That is, a Cu segregation portion having a concentration higher than that of the outermost surface portion exists in the depth direction from the surface (free surface and roll surface) of the amorphous alloy ribbon, and the maximum value of the Cu concentration of this Cu segregation portion is 4 It is controlled to atomic% or less.

特許文献2は、主成分にCuを含まないFeSibBcCd組成のFe基非晶質合金薄帯を開示している。この文献2では、Cの表面偏析を制御することにより角形性を向上できることが報告されている。すなわち、非晶質合金薄帯の表面(自由面とロール面)から深さ2〜20nmの範囲にC濃度のピーク値が存在するように制御するものである。 Patent Document 2 discloses a Fe-based amorphous alloy ribbon having a Fe a Si b B c C d composition that does not contain Cu as a main component. This document 2 reports that the squareness can be improved by controlling the surface segregation of C. That is, the control is performed so that the peak value of the C concentration exists in the range of 2 to 20 nm in depth from the surface (free surface and roll surface) of the amorphous alloy ribbon.

特開2009−263775号公報JP 2009-263775 A 特開2006−045662号公報JP 2006-045662 A

しかし、特許文献2のように主成分にCuを含まないFe基非晶質合金薄帯でもCを添加していることで熱安定性が低下する課題がある。特許文献1にしても特許文献2にしても、広幅の非晶質合金薄帯の加工性や軟磁気特性は、製造条件の影響を受けやすく、通常の製造を続けると、加工性や軟磁気特性に影響を与えるため、量産レベルで加工性、特に切断性に優れ、且つ軟磁気特性が良好な非晶質合金薄帯の出現が強く望まれている。   However, there is a problem that thermal stability is lowered by adding C even in an Fe-based amorphous alloy ribbon that does not contain Cu as a main component as in Patent Document 2. In both Patent Document 1 and Patent Document 2, the workability and soft magnetic properties of a wide amorphous alloy ribbon are easily affected by manufacturing conditions. Since the properties are affected, it is strongly desired to develop amorphous alloy ribbons that are excellent in workability, particularly in cutting properties, and have good soft magnetic properties at the mass production level.

そこで、本発明は主成分にCuを含まないFe−Si−B系非晶質合金薄帯において、切断時やスリット時の割れが発生しにくく加工性と軟磁気特性の両方に優れた非晶質合金薄帯を提供することを目的とする。   Therefore, the present invention is an amorphous amorphous Fe-Si-B-based amorphous alloy ribbon that does not contain Cu as a main component, is less prone to cracking at the time of cutting or slitting, and has both excellent workability and soft magnetic properties. An object is to provide a quality alloy ribbon.

本発明は、主成分にCuを含まない合金組成でありながら、超急冷直後の薄帯の表面にはCuが偏析し、このCu偏析が加工性や軟磁気特性に影響があると言う事実を知見した。Cu濃度は自由面とロール接触面とでは異なり、特にロール接触面側に現れるCu濃度を所定量に制御することが重要であり、これによって加工性と軟磁気特性に優れたまま製造することができることを見出し、以下の発明に想到した。   Although the present invention has an alloy composition that does not contain Cu as a main component, Cu is segregated on the surface of the ribbon immediately after ultra-quenching, and the fact that this Cu segregation has an effect on workability and soft magnetic properties. I found out. The Cu concentration differs between the free surface and the roll contact surface, and in particular, it is important to control the Cu concentration appearing on the roll contact surface side to a predetermined amount, which makes it possible to manufacture with excellent workability and soft magnetic properties. As a result, the inventors have come up with the following invention.

すなわち、本発明の非晶質合金薄帯は、Fe100−a−bSi(ただし、a、bはそれぞれ原子%で1≦a≦20、4≦b≦20、14≦a+b≦30の条件を満たす数である。)および不可避不純物以外の主要成分にCuを含まない合金組成を有し、銅合金製のロールを用いた単ロール法により製造された未熱処理の非晶質合金薄帯であって、前記薄帯のロール接触面側は、最表面を除く、深さ2〜50nmの範囲のCu濃度ピークを0.1原子%以上4原子%以下となしたものである。 That is, the amorphous alloy ribbon of the present invention is Fe 100-ab Si a B b (where a and b are atomic%, respectively 1 ≦ a ≦ 20, 4 ≦ b ≦ 20, 14 ≦ a + b ≦). And an unheat-treated amorphous alloy having an alloy composition that does not contain Cu as a main component other than inevitable impurities and is manufactured by a single roll method using a copper alloy roll. A thin ribbon, on the roll contact surface side of the ribbon, a Cu concentration peak in a range of 2 to 50 nm in depth excluding the outermost surface is 0.1 atomic% or more and 4 atomic% or less.

ロール接触面側の薄帯表面近傍において、Cu濃度が4原子%を超える領域が存在すると、非晶質合金が薄帯製造後に脆化しやすくなるため、切断やスリットなどの際に割れが発生し加工が困難になる。さらに、熱処理後にロール接触面近傍が結晶化しやすくなるため、適正な熱処理温度を高くできなくなり、鉄損が熱処理条件に大きく影響を受けるようになる。結果、大型の磁心では熱処理が難しくなり特性がばらつきやすいため好ましくない。一方、ロール接触面側近傍のCu濃度が0.1原子%未満の場合は、皮相電力の増加や角形性の劣化が生じ軟磁気特性が劣る傾向があり好ましくないことが明らかとなった。   In the vicinity of the ribbon surface on the roll contact surface side, if there is a region where the Cu concentration exceeds 4 atomic%, the amorphous alloy tends to become brittle after the ribbon production, and cracks occur during cutting and slitting. Processing becomes difficult. Furthermore, since the vicinity of the roll contact surface is easily crystallized after the heat treatment, the appropriate heat treatment temperature cannot be increased, and the iron loss is greatly affected by the heat treatment conditions. As a result, a large magnetic core is not preferable because heat treatment becomes difficult and characteristics tend to vary. On the other hand, when the Cu concentration in the vicinity of the roll contact surface side is less than 0.1 atomic%, the apparent power is increased and the squareness is deteriorated, and the soft magnetic characteristics tend to be inferior.

本発明に係る単ロール装置において、溶湯を冷却するために使用されている冷却ロールには、一般的には熱伝導性の良いCu合金製のロールが使用されている。このCu合金ロール上に合金溶湯が噴出され超急冷凝固して非晶質合金薄帯が製造されている。我々は種々検討の結果、Cu合金製ロ−ルと溶湯の適度の反応が、これらの非晶質合金薄帯の加工性の改善や軟磁気特性の改善に効果があることを見出した。すなわち、ロール接触面側の薄帯表面近傍のCu濃度が低く、Cu濃度のピークが小さいか、存在しない非晶質合金薄帯は、軟磁気特性、中でも鉄損が劣るため好ましくない。一方、溶湯がロールと適度に反応し、非晶質合金薄帯のロール接触面側の薄帯表面近傍にCu濃度ピークが存在している合金薄帯が加工性及び鉄損に優れていることが明らかとなった。具体的には、ロール接触面側近傍のCu濃度のピーク値が4原子%を超える領域が存在すると、非晶質合金が薄帯製造後に脆化しやすくなり、ロール接触面近傍が熱処理後結晶化しやすく、鉄損が劣化しやすくなるため好ましくない。好ましくはCu濃度の高い領域のCu濃度のピーク値が0.2原子%以上4原子%以下である場合に、加工性に優れた非晶質合金薄帯を得ることができ、熱処理を行った後も結晶化を抑制し優れた軟磁気特性を示す。さらに好ましくはCu濃度ピーク値が概ね0.2原子%以上0.5原子%以下の場合に、特に加工性に優れ、且つ低鉄損の効果を安定的に得られる。また、ロール接触面側近傍のCu濃度が0.1原子%未満の場合は、皮相電力の増加や角形性の劣化などの軟磁気特性の劣化が起こり好ましくない。   In the single roll apparatus according to the present invention, a Cu alloy roll having good thermal conductivity is generally used as the cooling roll used for cooling the molten metal. An alloy melt is ejected onto the Cu alloy roll and is rapidly quenched and solidified to produce an amorphous alloy ribbon. As a result of various studies, we have found that an appropriate reaction between the roll made of Cu alloy and the molten metal is effective in improving the workability and soft magnetic properties of these amorphous alloy ribbons. That is, an amorphous alloy ribbon having a low Cu concentration in the vicinity of the ribbon surface on the roll contact surface side and having a small or low Cu concentration peak is not preferable because of poor soft magnetic properties, particularly iron loss. On the other hand, an alloy ribbon in which the molten metal reacts moderately with the roll and a Cu concentration peak exists in the vicinity of the ribbon surface on the roll contact surface side of the amorphous alloy ribbon is excellent in workability and iron loss. Became clear. Specifically, if there is a region where the peak value of Cu concentration in the vicinity of the roll contact surface exceeds 4 atomic%, the amorphous alloy is likely to become brittle after the production of the ribbon, and the vicinity of the roll contact surface is crystallized after the heat treatment. This is not preferable because the iron loss tends to deteriorate. Preferably, when the peak value of the Cu concentration in the high Cu concentration region is 0.2 atomic% or more and 4 atomic% or less, an amorphous alloy ribbon having excellent workability can be obtained and heat treatment is performed. Later, crystallization is suppressed and excellent soft magnetic properties are exhibited. More preferably, when the Cu concentration peak value is approximately 0.2 atomic% or more and 0.5 atomic% or less, the workability is particularly excellent and the effect of low iron loss can be stably obtained. Further, when the Cu concentration in the vicinity of the roll contact surface side is less than 0.1 atomic%, soft magnetic characteristics such as an increase in apparent power and a deterioration in squareness occur, which is not preferable.

主要成分にCuを含まない合金薄帯の場合でも、原材料の鉄源材などから不可避不純物としてCuが混入することはあるが、それでも含有量は0.01原子%未満程度である。本発明において、Cu濃度ピークは鋳造中の適度な反応が相俟って、主として合金薄帯のロール接触面の表面からCuが拡散して形成されるものであると考えられる。Cu濃度ピークを含むCu濃度の高い領域はロール接触面側の薄帯表面近傍にある。Cuの偏析は表面に現れようとするが表面に形成される酸化物層が妨げとなり、これとの兼ね合いでロールと接触した表面から2nmよりも深く、50nmまでの位置に存在する。尚、最表面は溶湯がCu合金製ロ−ルと接触し凝固するためにCu濃度が高くなる傾向がある。本発明においてCu濃度ピークは最表面ではなく内部に存在するものを意味する。
一方、自由面側のCu濃度は、深さ方向にほぼ一様に0.1原子%未満となっており、母相まで継続していると考えられるが少なくとも深さ50nmまでの位置にCu濃度の高い領域やCu濃度のピークが現れることはない。自由面側のCu濃度は、上記した加工性や鉄損に与える影響はないと考えており、むしろ自由面側にCu濃度の高い領域やCu濃度のピークが現れないようにすることが必要である。逆にこれらが現れる場合は、もはや主要成分にCuを含まない合金組成であるとは言えない。
Even in the case of an alloy ribbon that does not contain Cu as a main component, Cu may be mixed as an inevitable impurity from the iron source material, etc., but the content is still less than about 0.01 atomic%. In the present invention, the Cu concentration peak is considered to be formed mainly by the diffusion of Cu from the surface of the roll contact surface of the alloy ribbon in combination with an appropriate reaction during casting. The high Cu concentration region including the Cu concentration peak is in the vicinity of the ribbon surface on the roll contact surface side. Although the segregation of Cu tends to appear on the surface, the oxide layer formed on the surface is obstructed, and due to this, it exists at a position deeper than 2 nm and up to 50 nm from the surface in contact with the roll. The outermost surface tends to increase the Cu concentration because the molten metal comes into contact with the Cu alloy roll and solidifies. In the present invention, the Cu concentration peak means not in the outermost surface but in the inside.
On the other hand, the Cu concentration on the free surface side is almost uniformly less than 0.1 atomic% in the depth direction and is considered to continue up to the parent phase, but at least at a position up to a depth of 50 nm. A high region and a peak of Cu concentration do not appear. We believe that the Cu concentration on the free surface side has no effect on the workability and iron loss described above. Rather, it is necessary to prevent a region with a high Cu concentration or a peak of Cu concentration from appearing on the free surface side. is there. On the contrary, when these appear, it cannot be said that it is an alloy composition which does not contain Cu as a main component any longer.

Cu濃度の高い領域およびCu濃度のピークを制御するためには、非晶質合金薄帯を製造する際の冷却を制御し、合金薄帯の表面温度を制御することに加えて、大量に非晶質合金薄帯を製造する場合は、製造中のロール表面を適切な方法で研磨し、ロール表面の平滑度を製造中に良好に保つ必要がある。ロール表面が粗くなると薄帯表面に反映された凹部が細長いエアポケット状となり熱拡散の効率が落ちて冷却性が悪くなる。このとき薄帯は局所的なダメージを受けると共に表面温度が高くなる。その結果、反応性が高まりCuの偏析が生じ易くなりCu濃度の高い領域およびCu濃度のピークが現れると考えられる。鋳造中の適度な反応の実体は不明であるが、上述したような製造情況にならないようにロールとの濡れ性を良好に保つことが必要であると考えられる。その為には、薄帯の表面温度を300℃以上400℃未満、好ましくは320℃以上390℃未満、さらに好ましくは340℃前後の温度とする。また、薄帯の表面粗さRaを0.6μm以下となるようにロール側のRaを0.1μm〜0.6μm程度にすることが良い。   In order to control the high Cu concentration region and the peak of the Cu concentration, in addition to controlling the cooling of the amorphous alloy ribbon and controlling the surface temperature of the alloy ribbon, When producing an amorphous alloy ribbon, it is necessary to polish the roll surface being produced by an appropriate method and maintain the smoothness of the roll surface during production. When the roll surface becomes rough, the concave portion reflected on the surface of the ribbon becomes an elongated air pocket shape, and the efficiency of heat diffusion is lowered and the cooling performance is deteriorated. At this time, the ribbon is locally damaged and the surface temperature is increased. As a result, it is considered that reactivity increases and Cu segregation is likely to occur, and a region having a high Cu concentration and a peak of Cu concentration appear. Although the substance of the moderate reaction during casting is unknown, it is thought that it is necessary to maintain good wettability with the roll so as to avoid the manufacturing situation as described above. For this purpose, the surface temperature of the ribbon is set to 300 ° C. or higher and lower than 400 ° C., preferably 320 ° C. or higher and lower than 390 ° C., more preferably around 340 ° C. Further, Ra on the roll side is preferably about 0.1 μm to 0.6 μm so that the surface roughness Ra of the ribbon is 0.6 μm or less.

以下、組成の限定理由等について説明する。
上記した本発明の合金組成において、Si量aが2≦a≦8、B量bが13≦b≦18である合金は、比較的高飽和磁束密度で、板厚が厚くても軟磁気特性が良好な変圧器などに適する非晶質合金薄帯が得られより好ましい結果が得られる。特に好ましいSi量aの範囲は、2≦a≦5、B量bの範囲は13≦b≦16である。
Hereinafter, the reasons for limiting the composition will be described.
In the alloy composition of the present invention described above, an alloy in which the Si amount a is 2 ≦ a ≦ 8 and the B amount b is 13 ≦ b ≦ 18 has a relatively high saturation magnetic flux density and soft magnetic characteristics even when the plate thickness is large. Therefore, an amorphous alloy ribbon suitable for a transformer having good resistance can be obtained, and a more preferable result can be obtained. A particularly preferable range of the Si amount a is 2 ≦ a ≦ 5, and a range of the B amount b is 13 ≦ b ≦ 16.

SiとBの総量の10%以下をC、P、Ga、Geから選ばれた少なくとも1種の元素で置換することができる。これらの元素を置換した場合、磁歪やキュリー温度を調整することができる。他方、これらの元素はSiとBの総量の10%を超える量を置換すると合金が著しく脆化し、加工性が大幅に劣化するため好ましくない。   10% or less of the total amount of Si and B can be replaced with at least one element selected from C, P, Ga, and Ge. When these elements are substituted, magnetostriction and Curie temperature can be adjusted. On the other hand, if these elements are substituted in an amount exceeding 10% of the total amount of Si and B, the alloy becomes extremely brittle and the workability is greatly deteriorated.

Fe量の2%以下をCr、Mn、V、Nb、Mo、Ta、W、Sn、白金族元素から選ばれた少なくとも1種の元素で置換することができる。これらの元素を置換することにより、軟磁気特性や耐食性などの改善を行うことができる。これらの元素をFe量の2%を超える量を置換すると飽和磁束密度の著しい低下や加工性の劣化が起こり好ましくない。
また、Fe量の10原子%以下をCo、Niから選ばれた少なくとも1種の元素で置換することができる。
2% or less of the amount of Fe can be replaced with at least one element selected from Cr, Mn, V, Nb, Mo, Ta, W, Sn, and a platinum group element. By substituting these elements, it is possible to improve soft magnetic properties and corrosion resistance. Substituting these elements with an amount exceeding 2% of the amount of Fe is not preferable because a significant decrease in saturation magnetic flux density and deterioration of workability occur.
Moreover, 10 atomic% or less of the amount of Fe can be substituted with at least one element selected from Co and Ni.

なお、不可避不純物として、S、Al、O、Ti、Nなどを含んでも良いが、これらの元素の中で、特にAlやTiは表面結晶化を促進する元素であり、軟磁気特性を劣化させるため、できる限り少ない方が望ましい。   Inevitable impurities may include S, Al, O, Ti, N, etc. Among these elements, Al and Ti are elements that promote surface crystallization, and deteriorate soft magnetic properties. Therefore, as few as possible is desirable.

単ロール法で本発明非晶質合金薄帯を作製する場合、作製される合金薄帯の板厚は5μm以上100μm以下程度であるが、加工性が良好な板厚は50μm以下、特に加工性が良好な板厚は30μm以下である。
単ロ−ル装置で作製した直後の合金薄帯の幅は、通常100mm以上であり、広幅の合金薄帯を多量に製造する際に本発明の効果が顕著に現れる。
When producing the amorphous alloy ribbon of the present invention by the single roll method, the thickness of the alloy ribbon to be produced is about 5 μm to 100 μm, but the plate thickness with good workability is 50 μm or less, particularly workability. However, the preferable thickness is 30 μm or less.
The width of the alloy ribbon immediately after being produced by a single roll apparatus is usually 100 mm or more, and the effect of the present invention is remarkably exhibited when a large amount of a wide alloy ribbon is produced.

本発明の非晶質合金薄帯は、熱処理前の段階では、加工が容易で切断、スリット、打ち抜きなどの加工を行うことができ、磁心形状に成形した後に熱処理することにより種々の形状の高性能な非晶質合金薄帯磁心を製造することができる点で効果が大きい。一般に、非晶質合金薄帯を変圧器に使用する場合は、非晶質合金薄帯を切断し、オーバーラップやステップラップなどの構造の磁心を作製する。このため、加工性が良好な本発明非晶質合金薄帯は、変圧器などの用途に特に適している。非晶質合金薄帯が熱処理前の段階で脆化すると切断時に薄帯が割れたり、切断面をきれいにできないため、変圧器特性が著しく劣化し好ましくない。   The amorphous alloy ribbon of the present invention is easy to process before the heat treatment and can be processed such as cutting, slitting and punching. The effect is great in that a high performance amorphous alloy ribbon magnetic core can be produced. In general, when an amorphous alloy ribbon is used for a transformer, the amorphous alloy ribbon is cut to produce a magnetic core having a structure such as an overlap or a step wrap. For this reason, the amorphous alloy ribbon of the present invention having good workability is particularly suitable for applications such as transformers. If the amorphous alloy ribbon becomes brittle before the heat treatment, the ribbon will be broken at the time of cutting, or the cut surface cannot be cleaned.

本発明の非晶質合金薄帯は、非晶質合金薄帯作製後、必要に応じてSiO、MgO、Al等の粉末を合金表面につける、あるいはSiO、MgO、Alなどの酸化物あるいは窒化物を主体とする膜を形成して合金表面を被覆する、リン酸塩処理などの化成処理により表面処理し絶縁層を形成する、アノード酸化処理により表面に酸化物絶縁層を形成する等の処理を行うことができる。このような処理により、磁心を作製した際に層間の絶縁性がより向上し、より好ましい結果が得られる。これは、特に層間を渡る高周波における渦電流の影響を低減し、高周波における磁心損失を改善する効果があるためである。この効果は表面状態が良好でかつ広幅の合金薄帯から構成された磁心に使用した場合に特に著しい。 The amorphous alloy ribbon of the present invention is prepared by applying a powder of SiO 2 , MgO, Al 2 O 3 or the like to the alloy surface as necessary after the preparation of the amorphous alloy ribbon, or SiO 2 , MgO, Al 2 Oxide such as O 3 or a film mainly composed of nitride is formed to cover the alloy surface, surface treatment is performed by chemical conversion treatment such as phosphate treatment, and an insulating layer is formed. Processing such as formation of an insulating layer can be performed. By such treatment, the insulation between layers is further improved when a magnetic core is produced, and a more preferable result is obtained. This is because, in particular, the effect of eddy currents at high frequencies across the layers is reduced, and the magnetic core loss at high frequencies is improved. This effect is particularly remarkable when used in a magnetic core having a good surface state and a wide alloy ribbon.

更に、本発明合金から磁心を作製する際に必要に応じて含浸やコーティング等を行うことも可能である。
本発明の非晶質合金薄帯は積層磁心とすることもでき、合金表面に樹脂などを塗布し接着し積層磁心として使用することもできる。
本発明の非晶質合金薄帯は高周波の用途、センサや低周波の磁性部品の用途に使用可能である。特に、Fe基の非晶質合金薄帯は、磁気飽和が問題となる用途で優れた特性を発揮でき、配電用トランス、発電機、リアクトルや高エネルギ−密度のパワーエレクトロニクス用途の磁心に適する。Co基合金は磁歪が小さく、高透磁率で優れた高周波磁気特性を示すため、電流センサ、スイッチング電源用可飽和コア、パルスパワー応用などの磁心に適する。Ni基合金はセンサ材に適する。
Furthermore, impregnation and coating can be performed as necessary when producing a magnetic core from the alloy of the present invention.
The amorphous alloy ribbon of the present invention can be a laminated magnetic core, or can be used as a laminated magnetic core by applying a resin or the like to the alloy surface and bonding it.
The amorphous alloy ribbon of the present invention can be used for high frequency applications, sensors and low frequency magnetic parts. In particular, Fe-based amorphous alloy ribbons can exhibit excellent characteristics in applications where magnetic saturation is a problem, and are suitable for power transformers, generators, reactors, and magnetic cores for high energy density power electronics. Co-based alloys have low magnetostriction, high permeability, and excellent high-frequency magnetic properties, and are therefore suitable for magnetic cores such as current sensors, saturable cores for switching power supplies, and pulse power applications. Ni-based alloys are suitable for sensor materials.

本発明の非晶質合金薄帯は、使用時に磁化する方向と同じ方向に磁界を印加しながら熱処理すると、高角形比となり皮相電力が低く、配電用変圧器や可飽和リアクトルに適する。また、使用時に磁化する方向とほぼ垂直な方向に磁界を印加しながら熱処理すると、高周波において低い磁心損失が得られる。   When the amorphous alloy ribbon of the present invention is heat-treated while applying a magnetic field in the same direction as the direction of magnetization during use, it has a high squareness ratio and low apparent power, and is suitable for a distribution transformer and a saturable reactor. Further, when heat treatment is performed while applying a magnetic field in a direction substantially perpendicular to the direction of magnetization during use, a low core loss can be obtained at high frequencies.

本発明の非晶質合金薄帯は、熱処理前の非晶質合金薄帯状態で加工が容易なため、熱処理前にスリット、切断、打ち抜きなどの加工を効率的に行い、種々の形状の磁心を作製することができる。この磁心は、熱処理後において特に低い磁心損失を示し、高性能磁心を実現できる。また、得られた合金薄帯を粉砕し、圧粉磁心などに使用する粉末材料としても使用でき、同様に優れた特性を得ることができる。   Since the amorphous alloy ribbon of the present invention is easily processed in the amorphous alloy ribbon state before heat treatment, it can be efficiently processed such as slitting, cutting, punching, etc. Can be produced. This magnetic core exhibits a particularly low core loss after heat treatment, and can realize a high-performance magnetic core. Further, the obtained alloy ribbon can be pulverized and used as a powder material used for a dust core and the like, and excellent characteristics can be obtained as well.

本発明に係わる単ロール法により作製した非晶質合金薄帯のロール接触面(ロールと接触して凝固した面)の表面から内部に向かってGD−OESにより測定したCu濃度分布の測定結果の一例を示した図である。Results of measurement of Cu concentration distribution measured by GD-OES from the surface of the roll contact surface (surface solidified by contact with the roll) of the amorphous alloy ribbon produced by the single roll method according to the present invention. It is the figure which showed an example. 本発明に係わる単ロール法により作製した非晶質合金薄帯の自由面(自由凝固した面)の表面から内部に向かってGD−OESにより測定したCu濃度分布の測定結果の一例を示した図である。The figure which showed an example of the measurement result of Cu concentration distribution measured by GD-OES toward the inside from the surface of the free surface (free solidified surface) of the amorphous alloy ribbon manufactured by the single roll method concerning the present invention It is. 単ロール法により作製する際にロール研磨を行わないで作成した比較例を示し、非晶質合金薄帯のロール接触面の表面から内部に向かってGD−OESにより測定したCu濃度分布の測定結果の一例を示した図である。A comparative example prepared without performing roll polishing when producing by a single roll method is shown, and the measurement result of Cu concentration distribution measured by GD-OES from the surface of the roll contact surface of the amorphous alloy ribbon toward the inside It is the figure which showed an example.

次に本発明を実施例によって具体的に説明するが、これら実施例により本発明が限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention concretely, this invention is not limited by these Examples.

(実施例1)
Siを4原子%、Bを15原子%、残部Feおよび不可避不純物からなるFe81Si15(原子%)組成の合金溶湯を25m/sで回転する単ロール装置に大気中で噴出し急冷して、幅170mm、厚さ約25μmの非晶質合金薄帯を作製した。単ロール装置のロールはCu−Be合金製の水冷ロールであり、ロールをステンレスワイヤー製のブラシで研磨しながら非晶質合金薄帯を作製した。ロール研磨により発生した研磨粉は、吸引装置で吸引した。定常状態の合金薄帯の温度は、ノズル先端部からロール上45mmの位置で340℃であった。作製した非晶質合金薄帯のロール接触面および自由面側のX線回折を行った結果、非晶質合金薄帯特有のハローパターンを示し、非晶質単相であることが確認された。
Example 1
A molten alloy of Fe 81 Si 4 B 15 (atomic%) composed of 4 atomic% Si, 15 atomic% B, the balance Fe and inevitable impurities is jetted into a single roll device rotating at 25 m / s in the air and quenched. Thus, an amorphous alloy ribbon having a width of 170 mm and a thickness of about 25 μm was produced. The roll of the single roll apparatus was a water-cooled roll made of Cu—Be alloy, and an amorphous alloy ribbon was produced while polishing the roll with a brush made of stainless wire. The polishing powder generated by roll polishing was sucked with a suction device. The temperature of the alloy ribbon in the steady state was 340 ° C. at a position 45 mm above the roll from the nozzle tip. As a result of X-ray diffraction on the roll contact surface and free surface side of the produced amorphous alloy ribbon, it showed a halo pattern unique to the amorphous alloy ribbon and was confirmed to be an amorphous single phase. .

次に、グロー放電発光分光分析法(Glow discharge optical emission spectrometry:GD−OES、堀場製作所製JY−5000RF)により、この合金薄帯のロール接触面側(ロールと接触して凝固した面)および自由面側(自由凝固した面)のCu濃度分布を表面から内部に向かって測定した。測定領域は、直径2mmの範囲であり、測定値はこの範囲の平均値を示している。
図1にGD−OESにより測定したロール接触面側のCu元素の濃度分布を示す。図2に自由面側のCu元素の濃度分布を示す。図1より、ロール接触面側においては、薄帯表面近傍のCu濃度が内部のCu濃度よりも高く、表面から深さ約10nm付近に0.3原子%を超えるCu濃度のピークが存在することが分かる。これに対して、図2をみると自由面側のCu濃度は内部と表面とに変化はなく一様に0.1原子%未満であり、明確なCu濃度のピークは存在しなかった。尚、ロール接触面側の最表面のCu濃度は最大値を示しているが、上述したようにCu濃度ピークから除外する。
Next, the roll contact surface side (the surface solidified in contact with the roll) and free of the alloy ribbon by glow discharge optical emission spectroscopy (GD-OES, JY-5000RF manufactured by HORIBA, Ltd.) The Cu concentration distribution on the surface side (free solidified surface) was measured from the surface toward the inside. The measurement area is a range having a diameter of 2 mm, and the measurement value indicates an average value in this range.
FIG. 1 shows the concentration distribution of Cu element on the roll contact surface side measured by GD-OES. FIG. 2 shows the concentration distribution of the Cu element on the free surface side. From FIG. 1, on the roll contact surface side, the Cu concentration in the vicinity of the ribbon surface is higher than the internal Cu concentration, and there is a peak of Cu concentration exceeding 0.3 atomic% at a depth of about 10 nm from the surface. I understand. On the other hand, as shown in FIG. 2, the Cu concentration on the free surface side did not change between the inside and the surface and was uniformly less than 0.1 atomic%, and there was no clear peak of Cu concentration. Although the Cu concentration on the outermost surface on the roll contact surface side shows the maximum value, it is excluded from the Cu concentration peak as described above.

次に、この合金薄帯を切断し、割れが発生しないかを調査した。本発明の非晶質合金薄帯は、切断しても割れは発生せず加工性に優れていることが確認された。また、この合金薄帯の表面粗さRaは0.3〜0.6μmにあり、ロール側の表面粗さは0.6μm以下であった。   Next, this alloy ribbon was cut and examined for cracks. The amorphous alloy ribbon of the present invention was confirmed to be excellent in workability without cracking even when cut. Further, the surface roughness Ra of the alloy ribbon was 0.3 to 0.6 μm, and the surface roughness on the roll side was 0.6 μm or less.

次に、切断した非晶質合金薄帯を用いてオーバーラップ構造の磁心を作製した。まず、この磁心の磁路方向に1600A/mの磁界を印加しながら磁界中熱処理を行った。保持熱処理温度は340℃、保持時間は1hであり、昇温速度は約5℃/min、冷却速度は約3.5℃/minとした。
その後、以下の磁気特性を測定したところ、800A/mにおける磁束密度B800=1.63T、保磁力Hc=2.0A/m、及び50Hz、1.4Tにおける鉄損P14/50=0.18W/kgが得られ、変圧器用磁心として好適な特性を有していることが確認された。
Next, an overlap structure magnetic core was produced using the cut amorphous alloy ribbon. First, heat treatment in a magnetic field was performed while applying a magnetic field of 1600 A / m in the magnetic path direction of the magnetic core. The holding heat treatment temperature was 340 ° C., the holding time was 1 h, the heating rate was about 5 ° C./min, and the cooling rate was about 3.5 ° C./min.
Then, when the following magnetic properties were measured, the magnetic flux density B 800 = 1.63T at 800 A / m, the coercive force Hc = 2.0 A / m, and the iron loss P 14/50 = 0.50 at 50 Hz, 1.4 T. 18 W / kg was obtained, and it was confirmed that it had characteristics suitable as a magnetic core for a transformer.

(比較例1)
上記実施例と同じ合金と同じ製造装置を用いているが比較のために、ロール研磨を行わず非晶質合金薄帯を作製した。定常状態の合金薄帯の温度は、ノズル先端部からロール上45mmの位置で390℃であった。作製した非晶質合金薄帯のロール接触面側および自由面側のX線回折を行った結果、非晶質合金薄帯特有のハローパターンを示し、非晶質単相であることが確認された。
(Comparative Example 1)
Although the same manufacturing apparatus as the same alloy as the above Example was used, for comparison, an amorphous alloy ribbon was prepared without roll polishing. The temperature of the alloy ribbon in the steady state was 390 ° C. at a position 45 mm above the roll from the nozzle tip. As a result of X-ray diffraction on the roll contact surface side and the free surface side of the prepared amorphous alloy ribbon, a halo pattern peculiar to the amorphous alloy ribbon was shown, and it was confirmed that it was an amorphous single phase. It was.

次に、上記実施例1と同様にGD−OESにより、この合金薄帯のロール接触面側のCu濃度分布を内部に向かって測定した。図3にCu元素の濃度分布の測定結果を示す。この例では表面近傍がCu濃度の高い領域となっており、最表面以外の深さ10nm付近にCu濃度ピークが存在するものの4原子%を超える高Cu濃度が存在し、ロールとの反応が進んでいることが確認された。なお、自由面側についても同様にGD−OESによりCu元素の濃度分布を測定した。結果は図2と同様でCu濃度は一様に0.1原子%未満であり、明確なCu濃度のピークは存在しなかった。   Next, the Cu concentration distribution on the roll contact surface side of this alloy ribbon was measured toward the inside by GD-OES as in Example 1 above. FIG. 3 shows the measurement results of the concentration distribution of the Cu element. In this example, the vicinity of the surface is a region having a high Cu concentration, and although there is a Cu concentration peak near a depth of 10 nm other than the outermost surface, a high Cu concentration exceeding 4 atomic% exists and the reaction with the roll proceeds. It was confirmed that Note that the Cu element concentration distribution was also measured on the free surface side by GD-OES. The result was the same as in FIG. 2, and the Cu concentration was uniformly less than 0.1 atomic%, and there was no clear peak of Cu concentration.

次に、この合金薄帯を切断し、割れが発生しないかを実施例1と同様に調査した。その結果、切断後の合金薄帯は一部に割れが発生し、きれいな切断面にできなかった。また、この合金薄帯の表面粗さRaは1.0μm以上となり、ロール側の表面粗さも1.0μm以上であった。   Next, this alloy ribbon was cut and examined for cracks in the same manner as in Example 1. As a result, the alloy ribbon after cutting was partially cracked and could not have a clean cut surface. Further, the surface roughness Ra of the alloy ribbon was 1.0 μm or more, and the surface roughness on the roll side was 1.0 μm or more.

次に、上記実施例1と同様に切断した非晶質合金薄帯を用いてオーバーラップ構造の磁心を作製した。この磁心の磁路方向に1600A/mの磁界を印加しながら磁界中熱処理を行った。保持熱処理温度は340℃、保持時間は1hであり、昇温速度は約5℃/min、冷却速度は約3.5℃/minとした。
この例では、50Hz、1.4Tにおける鉄損P14/50=0.28W/kgであり、上記実施例に比べて鉄損が増加していた。
Next, a magnetic core having an overlap structure was manufactured using an amorphous alloy ribbon cut in the same manner as in Example 1. Heat treatment in a magnetic field was performed while applying a magnetic field of 1600 A / m in the magnetic path direction of the magnetic core. The holding heat treatment temperature was 340 ° C., the holding time was 1 h, the heating rate was about 5 ° C./min, and the cooling rate was about 3.5 ° C./min.
In this example, the iron loss P 14/50 = 0.28 W / kg at 50 Hz and 1.4 T, and the iron loss increased compared to the above example.

以上の結果を表1に示す。このように本発明の非晶質合金薄帯は加工性に優れ、また、これを用いて作製した磁心は、より低損失の磁心を実現できることが確認された。   The results are shown in Table 1. As described above, it was confirmed that the amorphous alloy ribbon of the present invention is excellent in workability, and a magnetic core produced using this can realize a lower loss magnetic core.

Figure 0005645108
Figure 0005645108

(実施例2)
表2に示す組成の合金溶湯を25m/sで回転する単ロール装置に噴出し急冷して、幅100〜170mm、厚さ約25〜30μmの非晶質合金薄帯を作製した。ここで用いた単ロール装置のロールはCu−Cr−Zr合金製の水冷ロールであり、ロールをステンレスワイヤー製のブラシで研磨しながら非晶質合金薄帯を作製した。ロール研磨により発生した研磨粉は、吸引装置で吸引した。定常状態の合金薄帯の温度は、ノズル先端部からロール上45mmの位置で320℃であった。作製した非晶質合金薄帯のロール接触面および自由面側のX線回折を行った結果、非晶質合金特有のハローパターンを示し、非晶質単相であることが確認された。
(Example 2)
The molten alloy having the composition shown in Table 2 was jetted and rapidly cooled to a single roll apparatus rotating at 25 m / s to produce an amorphous alloy ribbon having a width of 100 to 170 mm and a thickness of about 25 to 30 μm. The roll of the single roll apparatus used here was a water-cooled roll made of Cu—Cr—Zr alloy, and an amorphous alloy ribbon was produced while polishing the roll with a brush made of stainless wire. The polishing powder generated by roll polishing was sucked with a suction device. The temperature of the alloy ribbon in a steady state was 320 ° C. at a position 45 mm above the roll from the nozzle tip. As a result of X-ray diffraction of the roll contact surface and free surface side of the produced amorphous alloy ribbon, a halo pattern peculiar to the amorphous alloy was shown, and it was confirmed that the amorphous alloy was an amorphous single phase.

次に、グロー放電発光分光分析法(GD−OES)により、この合金薄帯のロール接触面側および自由面側のCu濃度分布を内部に向かって測定した。ロール接触面側については、Cu濃度ピーク値を測定した結果、夫々Cu濃度ピークは表面から5〜50nmの深さに存在することが確認された。このときのCu濃度ピーク値を表2に示す。また、自由面側については、0.1原子%を超えるCu濃度のピークの存在有無を確認した。また、作製した非晶質合金薄帯を上記実施例1と同様に切断し、割れ発生の有無を確認した。結果を表2に示す。なお、この合金薄帯の表面粗さRaは0.3〜0.6μmの間にあり、多くは0.3〜0.45μmにあった。また、このときのロール側の表面粗さは0.6μm以下であった。   Next, the Cu concentration distribution on the roll contact surface side and the free surface side of the alloy ribbon was measured toward the inside by glow discharge optical emission spectrometry (GD-OES). As a result of measuring the Cu concentration peak value on the roll contact surface side, it was confirmed that the Cu concentration peak was present at a depth of 5 to 50 nm from the surface. Table 2 shows the Cu concentration peak values at this time. Moreover, about the free surface side, presence or absence of the peak of Cu concentration exceeding 0.1 atomic% was confirmed. Further, the produced amorphous alloy ribbon was cut in the same manner as in Example 1 above, and the presence or absence of cracks was confirmed. The results are shown in Table 2. The surface roughness Ra of the alloy ribbon was between 0.3 and 0.6 μm, and many were between 0.3 and 0.45 μm. Moreover, the surface roughness of the roll side at this time was 0.6 micrometer or less.

さらに、切断した非晶質合金薄帯を用いてオーバーラップ構造の磁心を作製した。この磁心の磁路方向に1600A/mの磁界を印加しながら磁界中熱処理を行った。保持熱処理温度は320℃〜370℃、保持時間は1hであり、昇温速度は約5℃/min、冷却速度は約3.5℃/minとした。
そして、この磁心について50Hz、1.4Tにおける鉄損P14/50を測定した。結果を表2に示す。
Furthermore, a magnetic core having an overlap structure was produced using the cut amorphous alloy ribbon. Heat treatment in a magnetic field was performed while applying a magnetic field of 1600 A / m in the magnetic path direction of the magnetic core. The holding heat treatment temperature was 320 ° C. to 370 ° C., the holding time was 1 h, the heating rate was about 5 ° C./min, and the cooling rate was about 3.5 ° C./min.
And about this magnetic core, the iron loss P14 / 50 in 50 Hz and 1.4T was measured. The results are shown in Table 2.

(比較例2)
比較のために表2に示す組成の合金溶湯をCu−Be合金製のロール(水冷なし)を用いてステンレスワイヤー製のブラシによりロール研磨を行いながら、非晶質合金薄帯を作製した。ロール研磨により発生した研磨粉は、吸引装置で吸引した。定常状態の合金薄帯の温度は、ノズル先端部からロール上45mmの位置で420℃であった。作製した非晶質合金薄帯のロール接触面および自由面側のX線回折を行った結果、非晶質合金特有のハローパターンを示し、非晶質単相であることが確認された。
実施例2と同様にCu濃度分布と割れの有無を確認し、オーバーラップ構造の磁心を作製し、同様の条件で熱処理を行い鉄損を測定した。以上によって得られた結果を表2に示す。
(Comparative Example 2)
For comparison, an amorphous alloy ribbon was prepared while roll polishing of a molten alloy having a composition shown in Table 2 with a brush made of stainless steel using a roll made of Cu-Be alloy (without water cooling). The polishing powder generated by roll polishing was sucked with a suction device. The temperature of the steady state alloy ribbon was 420 ° C. at a position 45 mm above the roll from the nozzle tip. As a result of X-ray diffraction of the roll contact surface and free surface side of the produced amorphous alloy ribbon, a halo pattern peculiar to the amorphous alloy was shown, and it was confirmed that the amorphous alloy was an amorphous single phase.
In the same manner as in Example 2, the Cu concentration distribution and the presence or absence of cracks were confirmed, an overlap structure magnetic core was prepared, and heat treatment was performed under the same conditions to measure the iron loss. The results obtained as described above are shown in Table 2.

Figure 0005645108
Figure 0005645108

表2より、本発明の非晶質合金薄帯は、ロール接触面側の表面から深さ5〜50nmの範囲に0.1原子%を超え3.5原子%未満のCu濃度のピークが存在していた。他方、自由面側については0.1原子%を越えるCu濃度のピークは何れも存在していなかった。また、加工性は極わずかな割れが発生するものが一部に見られたが実用上の問題はなかった、その他は割れの発生はなく極めて良好であった。そして、オーバーラップ構造の磁心をきれいに効率よく作製できた。また、この磁心の50Hz、1.4Tにおける鉄損P14/50は何れも0.20W/Kg以下の低鉄損で良好な結果が得られた。 From Table 2, the amorphous alloy ribbon of the present invention has a peak with a Cu concentration of more than 0.1 atomic% and less than 3.5 atomic% in a depth range of 5 to 50 nm from the surface on the roll contact surface side. Was. On the other hand, no peak of Cu concentration exceeding 0.1 atomic% was present on the free surface side. In addition, the workability was found to be slightly cracked in some cases, but there was no practical problem, and the others were extremely good with no cracks. And the magnetic core of the overlap structure could be manufactured cleanly and efficiently. Further, 50 Hz of the magnetic core, iron loss P 14/50 good results in the following low iron loss either 0.20 W / Kg at 1.4T was obtained.

一方、比較例の非晶質合金薄帯では、ロール接触面側のCu濃度は何れも4原子%を超えるピークが現れている。理由は製造中のロールの冷却能が悪く、ロール表面の荒れが激しくなり、ロールとの反応が進むとともに合金薄帯の熱伝達が悪くなりCuの偏析が大きくなるためであると考える。なお、この合金薄帯の表面粗さRaは1.3〜1.6μm程度となっており、ロール側の表面粗さも同程度であった。また、比較例では割れが発生しており加工性が極めて悪く、鉄損も比較的大きかった。
以上の結果から、本発明の非晶質合金薄帯は加工性に優れ、この非晶質合金薄帯を用いて磁心を作製した場合、より低損失の磁心を実現できることが確認された。
On the other hand, in the amorphous alloy ribbon of the comparative example, the Cu concentration on the roll contact surface side has a peak exceeding 4 atomic%. The reason for this is considered to be that the cooling ability of the roll being manufactured is poor, the surface of the roll becomes rough, the reaction with the roll proceeds, the heat transfer of the alloy ribbon becomes poor, and the segregation of Cu increases. In addition, the surface roughness Ra of the alloy ribbon was about 1.3 to 1.6 μm, and the surface roughness on the roll side was also about the same. In the comparative example, cracks occurred, the workability was extremely poor, and the iron loss was relatively large.
From the above results, it was confirmed that the amorphous alloy ribbon of the present invention was excellent in workability, and when a magnetic core was produced using this amorphous alloy ribbon, a lower loss magnetic core could be realized.

本発明は、各種トランス、リアクトル、チョークコイル、ノイズ対策部品、レーザ電源や加速器、通信用パルストランス、モータ磁心、発電機、磁気センサ、アンテナ磁心、電流センサ、磁気シールド等の磁性部品に用いられる加工性に優れた非晶質合金薄帯として利用できる。また、本発明合金は特に熱処理後に優れた軟磁気特性を示し、これらの磁心材料として使用した場合、優れた特性を示す製品を実現することができる。   The present invention is used for magnetic parts such as various transformers, reactors, choke coils, noise countermeasure parts, laser power supplies and accelerators, pulse transformers for communication, motor cores, generators, magnetic sensors, antenna cores, current sensors, and magnetic shields. It can be used as an amorphous alloy ribbon with excellent workability. Moreover, the alloy of the present invention exhibits excellent soft magnetic properties particularly after heat treatment, and when used as a magnetic core material, a product exhibiting excellent properties can be realized.

Claims (7)

Fe100−a−bSi(ただし、a、bはそれぞれ原子%で1≦a≦20、4≦b≦20、14≦a+b≦30の条件を満たす数である。)および不可避不純物以外の主要成分にCuを含まない合金組成を有し、銅合金製のロールを用いた単ロール法により製造された未熱処理の非晶質合金薄帯であって、前記薄帯のロール接触面側のCu濃度は、最表面を除く、深さ5〜50nmの範囲のCu濃度ピークを0.1原子%以上4原子%以下となしたことを特徴とする非晶質合金薄帯。 Fe 100-a-b Si a B b (where a and b are numbers in atomic percent satisfying the conditions of 1 ≦ a ≦ 20, 4 ≦ b ≦ 20, and 14 ≦ a + b ≦ 30) and inevitable impurities A non-heat-treated amorphous alloy ribbon manufactured by a single roll method using a copper alloy roll, having an alloy composition that does not contain Cu as a main component other than the roll contact surface of the ribbon An amorphous alloy ribbon characterized in that the Cu concentration on the side is such that the Cu concentration peak in the range of 5 to 50 nm in depth excluding the outermost surface is 0.1 atomic% to 4 atomic%. 前記薄帯の自由面側の表面から少なくとも深さ50nmまでの間のCu濃度は0.1原子%未満となしたことを特徴とする請求項1に記載の非晶質合金薄帯。 2. The amorphous alloy ribbon according to claim 1, wherein a Cu concentration between the surface on the free surface side of the ribbon and a depth of at least 50 nm is less than 0.1 atomic%. Si量aが2≦a≦5、B量bが13≦b≦16であることを特徴とする請求項1または2に記載の非晶質合金薄帯。 3. The amorphous alloy ribbon according to claim 1, wherein the Si amount a is 2 ≦ a ≦ 5 and the B amount b is 13 ≦ b ≦ 16. SiとBの総量の10原子%以下をC、P、Ga、Geから選ばれた少なくとも1種の元素で置換したことを特徴とする請求項1〜3の何れか1項に記載の非晶質合金薄帯。 The amorphous material according to any one of claims 1 to 3, wherein 10 atomic% or less of the total amount of Si and B is substituted with at least one element selected from C, P, Ga, and Ge. Quality alloy ribbon. Fe量の2原子%以下をCr、Mn、V、Nb、Mo、Ta、W、Sn、白金族元素から選ばれた少なくとも1種の元素で置換したことを特徴とする請求項1〜4の何れか1項に記載の非晶質合金薄帯。 5% or less of the amount of Fe is substituted with at least one element selected from Cr, Mn, V, Nb, Mo, Ta, W, Sn, and a platinum group element. The amorphous alloy ribbon according to any one of the above. Fe量の10原子%以下をCo、Niから選ばれた少なくとも1種の元素で置換したことを特徴とする請求項1〜5の何れか1項に記載の非晶質合金薄帯。 The amorphous alloy ribbon according to any one of claims 1 to 5, wherein 10 atomic% or less of the amount of Fe is substituted with at least one element selected from Co and Ni. 請求項1〜6の何れか1項に記載の非晶質合金薄帯からなることを特徴とする磁性部品。
A magnetic component comprising the amorphous alloy ribbon according to any one of claims 1 to 6.
JP2010159444A 2010-07-14 2010-07-14 Amorphous alloy ribbon and magnetic component having amorphous alloy ribbon Active JP5645108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010159444A JP5645108B2 (en) 2010-07-14 2010-07-14 Amorphous alloy ribbon and magnetic component having amorphous alloy ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010159444A JP5645108B2 (en) 2010-07-14 2010-07-14 Amorphous alloy ribbon and magnetic component having amorphous alloy ribbon

Publications (2)

Publication Number Publication Date
JP2012021190A JP2012021190A (en) 2012-02-02
JP5645108B2 true JP5645108B2 (en) 2014-12-24

Family

ID=45775680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010159444A Active JP5645108B2 (en) 2010-07-14 2010-07-14 Amorphous alloy ribbon and magnetic component having amorphous alloy ribbon

Country Status (1)

Country Link
JP (1) JP5645108B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578876A (en) * 2017-10-17 2018-01-12 德清森腾电子科技有限公司 A kind of manufacturing process of ferro-silicium soft-magnetic composite material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327835B2 (en) * 2013-11-05 2018-05-23 株式会社トーキン Laminated magnetic body, laminated magnetic core and manufacturing method thereof
CN104862618B (en) * 2015-04-24 2017-07-14 天津理工大学 A kind of composite amorphous magnetically soft alloy material and preparation method thereof
CN105741998B (en) * 2015-12-31 2018-01-05 安泰科技股份有限公司 A kind of iron-base bulk amorphous soft-magnetic alloy of toughness enhancing and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291019A (en) * 1992-04-13 1993-11-05 Nippon Steel Corp Manufacture of fe-based amorphous alloy
JP3500062B2 (en) * 1998-04-17 2004-02-23 新日本製鐵株式会社 Fe-based amorphous alloy ribbon with ultra-thin oxide layer
JP5024644B2 (en) * 2004-07-05 2012-09-12 日立金属株式会社 Amorphous alloy ribbon
JP2007217757A (en) * 2006-02-17 2007-08-30 Nippon Steel Corp Amorphous alloy thin strip excellent in magnetic property and space factor
JP5339192B2 (en) * 2008-03-31 2013-11-13 日立金属株式会社 Amorphous alloy ribbon, nanocrystalline soft magnetic alloy, magnetic core, and method for producing nanocrystalline soft magnetic alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107578876A (en) * 2017-10-17 2018-01-12 德清森腾电子科技有限公司 A kind of manufacturing process of ferro-silicium soft-magnetic composite material

Also Published As

Publication number Publication date
JP2012021190A (en) 2012-02-02

Similar Documents

Publication Publication Date Title
JP5182601B2 (en) Magnetic core made of amorphous alloy ribbon, nanocrystalline soft magnetic alloy and nanocrystalline soft magnetic alloy
JP5445889B2 (en) Soft magnetic alloy, manufacturing method thereof, and magnetic component
JP5455041B2 (en) Soft magnetic ribbon, manufacturing method thereof, magnetic component, and amorphous ribbon
JP5339192B2 (en) Amorphous alloy ribbon, nanocrystalline soft magnetic alloy, magnetic core, and method for producing nanocrystalline soft magnetic alloy
JP5327074B2 (en) Soft magnetic alloy ribbon, method of manufacturing the same, and magnetic component having soft magnetic alloy ribbon
JP5720674B2 (en) Initial microcrystalline alloy, nanocrystalline soft magnetic alloy and method for producing the same, and magnetic component comprising nanocrystalline soft magnetic alloy
JP5327075B2 (en) Soft magnetic alloy ribbon, method of manufacturing the same, and magnetic component having soft magnetic alloy ribbon
JP5429613B2 (en) Nanocrystalline soft magnetic alloys and magnetic cores
KR102069927B1 (en) Ultrafine crystal alloy ribbon, fine crystal soft magnetic alloy ribbon, and magnetic parts using same
JP2008196006A (en) Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AMORPHOUS ALLOY THIN STRIP, METHOD FOR PRODUCING Fe BASED NANOCRYSTAL SOFT MAGNETIC ALLOY, AND MAGNETIC COMPONENT
KR20090113314A (en) Iron-based soft magnetic alloy, thin ribbon of amorphous alloy, and magnetic part
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP2009174034A (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP2008231533A (en) Soft magnetic thin band, magnetic core, magnetic component, and method for producing soft magnetic thin band
JP6077445B2 (en) Ferromagnetic amorphous alloy ribbons and their manufacture
JP5645108B2 (en) Amorphous alloy ribbon and magnetic component having amorphous alloy ribbon
JP5656114B2 (en) Ultra-quenched Fe-based soft magnetic alloy ribbon and magnetic core
JP2000328206A (en) Soft magnetic alloy strip and magnetic core using the same, its apparatus and production
JP2001295005A (en) Fe BASE AMORPHOUS ALLOY THIN STRIP FOR NANOCRYSTAL SOFT MAGNETIC ALLOY AND MAGNETIC PARTS
JP5445924B2 (en) Soft magnetic ribbon, magnetic core, magnetic component, and method of manufacturing soft magnetic ribbon
JP4798642B2 (en) Parts using Fe-based nanocrystalline alloys manufactured from high-toughness Fe-based amorphous alloys and high-toughness Fe-based amorphous alloys
JP4310738B2 (en) Soft magnetic alloys and magnetic parts
JP2008150637A (en) Magnetic alloy, amorphous alloy ribbon and magnetic parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140410

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141023

R150 Certificate of patent or registration of utility model

Ref document number: 5645108

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350