JP2672810B2 - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JP2672810B2
JP2672810B2 JP61024577A JP2457786A JP2672810B2 JP 2672810 B2 JP2672810 B2 JP 2672810B2 JP 61024577 A JP61024577 A JP 61024577A JP 2457786 A JP2457786 A JP 2457786A JP 2672810 B2 JP2672810 B2 JP 2672810B2
Authority
JP
Japan
Prior art keywords
semiconductor
single crystal
region
integrated circuit
recrystallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61024577A
Other languages
Japanese (ja)
Other versions
JPS62181464A (en
Inventor
伸一 田中
大祐 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP61024577A priority Critical patent/JP2672810B2/en
Publication of JPS62181464A publication Critical patent/JPS62181464A/en
Priority to US07/267,679 priority patent/US4888631A/en
Application granted granted Critical
Publication of JP2672810B2 publication Critical patent/JP2672810B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、SOI(Semiconactor On Insulator)構造に
より形成された半導体集積回路素子、及びSOI構造によ
り2層以上の半導体層積層構造で形成された三次元積層
構造の半導体集積回路素子に関するものであり、SOI構
造上で形成された、各再結晶化単結晶半導体領域間の結
晶粒界部を含む境界部半導体領域を効率良く利用し、単
一半導体層あたりの素子の集積度を従来の単結晶半導体
基板の集積度に近い程度まで向上させ得る素子構造を有
する半導体集積回路素子に関するものである。 <従来の技術> 近年、半導体層積層構造の三次元構造の回路素子の研
究が盛んに行われ、SOI構造でビーム照射により多結晶
シリコンを溶融成長させ再結晶能動素子領域を形成する
技術も様々検討されている。 <発明が解決しようとする課題> しかしながら、現時点では素子の全面を単結晶シリコ
ン基板と同様に同一の面方位で均一な再結晶能動領域に
形成できず、単結晶の形成方式によって部分的に面方位
の異なる単結晶領域が接するところで結晶粒界ができて
しまう。ここで第4図にその概略図を示す。第4図はSO
I構造により形成した半導体層の概念図である。第4図
(a)が平面図、(b)がその断面図(A−A′断
面)、(c)が立体図で、1,2,3は、それぞれ再結晶化
単結晶半導体領域(以下「再結晶能動素子領域」とい
う)である。なお、4は絶縁層である。1,2,3は、それ
ぞれビーム照射により多結晶シリコンを溶融成長させて
形成した再結晶能動素子領域で、それぞれ照射ビームの
中心から固化するため必ずしも面方位が同じとは限らな
い。よって、1,2及び2,3の再結晶領域の境界に結晶粒界
5が生じる。第4図に示す境界部半導体領域6,7,8,9
は、結晶粒界が存在すると考えられる領域である。この
境界部半導体領域は、結晶粒界が存在するためMOSトラ
ンジスタのチャネル領域などは配置するのに好ましくな
い領域である。そこで、MOSトランジスタのチャネルを
配置するのは再結晶能動素子領域が理想的であるが、そ
のためにトランジスタの配置可能な領域が限られ素子の
集積度に制約を受ける。特に今や大容量化の一途をたど
る半導体記憶素子では非常に都合の悪い条件となる。 本発明は上記問題点に鑑み、SOI構造での結晶粒界部
を含む境界部半導体領域を有効利用し、再結晶能動素子
領域にMOSトランジスタのチャネル領域を配置すること
で集積度を向上させ、リーク電流の少ない特性の良い半
導体集積回路素子を提供することを目的としてなされた
ものである。 <問題点を解決するための手段> この目的を達成するため、本発明は、絶縁層上に、そ
の面方位が必ずしも同一ではない複数の再結晶化単結晶
半導体領域(再結晶能動素子領域、該領域は、絶縁層上
に形成された、例えば、多結晶シリコンをビーム照射に
より溶融成長させて形成される)と、該複数の再結晶化
単結晶半導体領域間に位置し、結晶粒界部を含む境界部
半導体領域とを有してなる半導体集積回路素子におい
て、上記再結晶化単結晶半導体領域には、トランジスタ
等の能動素子の構成要素(MOSトランジスタのチャネル
領域等)を形成し、一方、上記結晶粒界部を含む境界部
半導体領域には、コンデンサ等の受動素子の構成要素又
は配線部を形成して成ることを特徴とする。本発明は、
能動素子及び受動素子等が形成された単結晶半導体基板
(単結晶シリコン基板等)上に、上記絶縁層が形成され
てなり、更に、上記単結晶半導体基板と、上記絶縁層上
の半導体層が、スルーホール等を介して接続されてなる
半導体集積回路素子であってもよい。また、上記絶縁層
上の半導体層上に更に絶縁層が形成され、該絶縁層上に
更に半導体層が形成されると共に、半導体層間がスルー
ホールで接続されてなる積層構造を有するものであって
もよい。 <実施例> 以下、図面を参照して本発明の実施例を詳細に説明す
る。 第1図(a)は、本発明を記憶素子へ運用した場合の
一実施例のマスクパターン図であり、第1図(b)は、
その断面構造図(B−B′断面)である。ここで、この
マスクパターン及び断面構造はSOI構造上でのダイナミ
ック型半導体記憶素子のメモリセルのセルアレイを示
す。 図において、11,12,13は再結晶能動素子領域、14,15
は結晶粒界を含む境界部半導体領域(以下「非能動素子
領域」という)、16は絶縁層、17は記憶用キャパシタ、
18は1層ポリシリコン(セルプレート)、19は2層ゲー
トポリシリコン(ワード線)、20はメタル(ビット
線)、21はコンタクトである。 第1図(a)及び第1図(b)で示すように、メモリ
セルのMOSトランジスタ22は単結晶シリコン23と2層ポ
リシリコンのゲート19により構成され、トランジスタの
チャネル領域は再結晶能動素子領域に形成されるように
配置し、メモリセルのセルキャパシタは、非能動素子領
域に単結晶シリコンと1層ポリシリコンによるセルプレ
ートで構成され配置している。 第2図(a)は、本発明を記憶素子へ適用した場合の
他の実施例のマスクパターン図であり、第2図(b)
は、その断面構造図(C−C′断面)である。 図において、31は再結晶能動素子領域、32,33は非能
動素子領域、34は絶縁層、35は単結晶シリコン、36はワ
ード線、37はビット線、38,39はポリシリコンである。 第2図(a)、第2図(b)においても、第1図
(a)、第1図(b)と同じく、再結晶能動素子領域に
はMOSトランジスタ40を、非能動素子領域にセルキャパ
シタ41を配置している。ここで第1図(a)、第1図
(b)のメモリセルと異なるところは、もちろんパター
ンは異なるが、ここでは、セルキャパシタを非能動素子
領域の単結晶シリコンを用いず2層のポリシリコンによ
り形成している。しかし、ここでも第1図(a)、第1
図(b)の場合と同様に、非能動素子領域にはトランジ
スタなどの能動素子を配置せず、セルキャパシタ領域と
して充分に利用している。実際には、この第2図a)の
パターンでは、第2図(b)の断面構造図に示すよう
に、結晶粒界が存在すると考えられる単結晶シリコンの
非能動素子領域は、素子分離領域として取り去られるこ
とになる。 第3図は、本発明を論理回路素子へ適用した場合の他
の実施例である。第3図(a)は、第3図(b)に論理
図で示したインバータ素子を2層の半導体層の積層構造
で実現した場合のマスクパターンとその構造の概念図で
ある。 図において、51,52は半導体層、53,54は再結晶能動素
子領域55,56,57,58は非能動素子領域、59はゲート入
力、60は出力、61は電源受、62は電源2である。 半導体層51をSOI構造によるPMOSトランジスタを形成
しているとすれば、半導体層52はSOI構造によるNMOSト
ランジスタであり、またその逆でもよい。ここで半導体
層51をPMOS、半導体層52をNMOSとすると、インバータ素
子の入出力がスルーホール63,64で層間結合されたOMOS
のインバータ素子であり、半導体層51の電源1は素子の
電源電圧Vcに相当し、半導体層52の電源2はGND(グラ
ンド)に相当する。ここで第3図(a)に示すように再
結晶能動素子領域にMOSトランジスタのチャネル領域が
形成されるように配置し、結晶粒界が存在すると考えら
れる非能動素子領域には、配線及びスルーホールを配置
する領域として利用している。図示していないが、ゲー
トポリシリコンとメタルのコンタクト及びトランジスタ
のドレイン、ソースの単結晶シリコンとメタルのコンタ
クトを非能動素子領域に配置することも勿論可能であ
る。同様に他のトランジスタ素子も同じ構造で形成する
ことが可能である。 <発明の効果> 以上のように、本発明の半導体集積回路素子は、絶縁
層上に、その面方位が必ずしも同一ではない複数の再結
晶化単結晶半導体領域と、該複数の再結晶化単結晶半導
体領域間に位置し、結晶粒界部を含む境界部半導体領域
とを有してなるものにおいて、上記再結晶化単結晶半導
体領域には、トランジスタ等の能動素子の構成要素を形
成して、素子の信頼性を確保し、一方、結晶粒界部を含
む境界部半導体領域を、キャパシタやスルーホール、コ
ンタクト、或は配線領域として有効利用し、単一の半導
体層においても、従来の単結晶半導体基板上に集積した
ものに近い程度まで集積度を向上させ得る。更には、複
数半導体層積層構造による三次元積層構造の半導体集積
回路素子では、従来の単結晶半導体基板上に形成した二
次元的半導体集積回路素子より、同一の素子面積ではは
るかに集積度を高めた半導体集積回路素子が実現でき
る。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention has a semiconductor integrated circuit element formed by an SOI (Semiconactor On Insulator) structure, and a semiconductor layer laminated structure of two or more layers formed by the SOI structure. The present invention relates to a semiconductor integrated circuit device having a three-dimensional stacked structure, which efficiently uses a boundary semiconductor region including a grain boundary part between recrystallized single crystal semiconductor regions formed on an SOI structure, The present invention relates to a semiconductor integrated circuit element having an element structure capable of improving the degree of integration of elements per semiconductor layer to a level close to that of a conventional single crystal semiconductor substrate. <Prior Art> In recent years, active research has been conducted on circuit elements having a three-dimensional structure of a semiconductor layer laminated structure, and various techniques for forming a recrystallized active element region by melting and growing polycrystalline silicon by beam irradiation in an SOI structure. Is being considered. <Problems to be Solved by the Invention> However, at present, the entire surface of the device cannot be formed in a uniform recrystallizing active region in the same plane orientation as in the single crystal silicon substrate, and a partial surface is partially formed by the single crystal forming method. A grain boundary is formed where single crystal regions having different orientations come into contact with each other. Here, FIG. 4 shows a schematic diagram thereof. Figure 4 shows SO
It is a conceptual diagram of the semiconductor layer formed by I structure. 4 (a) is a plan view, FIG. 4 (b) is a sectional view thereof (AA 'section), and FIG. 4 (c) is a three-dimensional view. 1, 2, and 3 are recrystallized single crystal semiconductor regions (hereinafter "Recrystallized active element region"). In addition, 4 is an insulating layer. Reference numerals 1, 2, and 3 are recrystallization active element regions formed by melting and growing polycrystalline silicon by beam irradiation, and they are not necessarily the same in plane orientation because they solidify from the center of the irradiation beam. Therefore, the crystal grain boundary 5 is generated at the boundary between the 1, 2 and 2, 3 recrystallized regions. Boundary semiconductor regions 6, 7, 8, 9 shown in FIG.
Is a region where grain boundaries are considered to exist. This boundary semiconductor region is a region where it is not preferable to dispose the channel region of the MOS transistor due to the existence of crystal grain boundaries. Therefore, it is ideal to dispose the channel of the MOS transistor in the recrystallized active element region. However, the region in which the transistor can be disposed is limited and the integration degree of the element is restricted. In particular, this is a very inconvenient condition for semiconductor memory devices, which are becoming ever larger in capacity. In view of the above problems, the present invention effectively utilizes a boundary semiconductor region including a crystal grain boundary portion in an SOI structure, and improves integration by arranging a channel region of a MOS transistor in a recrystallization active element region, The purpose of the present invention is to provide a semiconductor integrated circuit device having a small leak current and good characteristics. <Means for Solving the Problems> In order to achieve this object, the present invention provides a plurality of recrystallized single crystal semiconductor regions (recrystallized active element regions, which have not necessarily the same plane orientation) on an insulating layer. The region is located between the plurality of recrystallized single crystal semiconductor regions formed on the insulating layer, for example, by melting and growing polycrystalline silicon by beam irradiation, and the crystal grain boundary portion In the semiconductor integrated circuit element having a boundary semiconductor region including a semiconductor element, a component of an active element such as a transistor (channel region of a MOS transistor) is formed in the recrystallized single crystal semiconductor region, In the boundary semiconductor region including the crystal grain boundary portion, a constituent element of a passive element such as a capacitor or a wiring portion is formed. The present invention
The insulating layer is formed on a single crystal semiconductor substrate (single crystal silicon substrate or the like) on which active elements and passive elements are formed, and the single crystal semiconductor substrate and the semiconductor layer on the insulating layer are formed. It may be a semiconductor integrated circuit element which is connected through a through hole or the like. An insulating layer is further formed on the semiconductor layer on the insulating layer, a semiconductor layer is further formed on the insulating layer, and the semiconductor layers have a laminated structure in which they are connected by through holes. Good. <Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings. FIG. 1 (a) is a mask pattern diagram of an embodiment when the present invention is applied to a storage element, and FIG. 1 (b) is
It is the cross-section structural drawing (BB 'cross section). Here, the mask pattern and the cross-sectional structure show the cell array of the memory cells of the dynamic semiconductor memory element on the SOI structure. In the figure, 11, 12, and 13 are recrystallization active element regions, and 14, 15
Is a boundary semiconductor region including a grain boundary (hereinafter referred to as “inactive element region”), 16 is an insulating layer, 17 is a storage capacitor,
Reference numeral 18 is a single layer polysilicon (cell plate), 19 is a double layer gate polysilicon (word line), 20 is a metal (bit line), and 21 is a contact. As shown in FIGS. 1 (a) and 1 (b), the MOS transistor 22 of the memory cell is composed of a single crystal silicon 23 and a gate 19 of two-layer polysilicon, and the channel region of the transistor is a recrystallized active element. The cell capacitors of the memory cells are arranged so as to be formed in the region, and are arranged in the inactive element region by the cell plate made of single crystal silicon and single-layer polysilicon. FIG. 2 (a) is a mask pattern diagram of another embodiment when the present invention is applied to a memory element, and FIG.
FIG. 3 is a cross-sectional structure diagram (cross section CC ′). In the figure, 31 is a recrystallized active element region, 32 and 33 are inactive element regions, 34 is an insulating layer, 35 is single crystal silicon, 36 is a word line, 37 is a bit line, and 38 and 39 are polysilicon. 2 (a) and 2 (b), as in FIGS. 1 (a) and 1 (b), the MOS transistor 40 is provided in the recrystallization active element region and the cell is provided in the inactive element region. The capacitor 41 is arranged. The pattern of the memory cell is different from that of the memory cell of FIGS. 1A and 1B, of course, but in this example, the cell capacitor is formed of a two-layer poly-silicon without using single crystal silicon in the inactive element region. It is made of silicon. However, here again, FIG.
As in the case of FIG. 3B, active elements such as transistors are not arranged in the non-active element region, and they are fully utilized as the cell capacitor region. In fact, in the pattern of FIG. 2A, as shown in the sectional structure diagram of FIG. 2B, the non-active element region of single crystal silicon in which crystal grain boundaries are considered to exist is the element isolation region. Will be removed as. FIG. 3 shows another embodiment in which the present invention is applied to a logic circuit element. FIG. 3A is a conceptual diagram of a mask pattern and its structure when the inverter element shown in the logic diagram of FIG. 3B is realized by a laminated structure of two semiconductor layers. In the figure, 51 and 52 are semiconductor layers, 53 and 54 are recrystallized active element regions 55, 56, 57 and 58 are inactive element regions, 59 is a gate input, 60 is an output, 61 is a power source, and 62 is a power source 2. Is. If the semiconductor layer 51 is a PMOS transistor having an SOI structure, the semiconductor layer 52 is an NMOS transistor having an SOI structure, and vice versa. Here, when the semiconductor layer 51 is a PMOS and the semiconductor layer 52 is an NMOS, the input / output of the inverter element is an OMOS which is interlayer-coupled by through holes 63 and 64.
The power source 1 of the semiconductor layer 51 corresponds to the power source voltage Vc of the element, and the power source 2 of the semiconductor layer 52 corresponds to GND (ground). As shown in FIG. 3 (a), the recrystallized active element region is arranged so that the channel region of the MOS transistor is formed, and the inactive element region where the crystal grain boundaries are considered to exist has wiring and through holes. It is used as an area for arranging holes. Although not shown, it is of course possible to arrange the contact between the gate polysilicon and the metal and the contact between the drain and the source single crystal silicon and the metal in the inactive element region. Similarly, other transistor elements can be formed with the same structure. <Effects of the Invention> As described above, in the semiconductor integrated circuit device of the present invention, the plurality of recrystallized single crystal semiconductor regions having the same plane orientation on the insulating layer and the plurality of recrystallized single crystal regions are not necessarily the same. A boundary semiconductor region including a crystal grain boundary portion, which is located between the crystalline semiconductor regions, and a constituent element of an active element such as a transistor is formed in the recrystallized single crystal semiconductor region. In addition, the reliability of the device is ensured, while the boundary semiconductor region including the crystal grain boundary is effectively used as a capacitor, a through hole, a contact, or a wiring region. The degree of integration can be improved to a level close to that on a crystalline semiconductor substrate. Furthermore, in a semiconductor integrated circuit device having a three-dimensional laminated structure of a plurality of semiconductor layer laminated structures, the degree of integration is much higher in the same device area than a two-dimensional semiconductor integrated circuit device formed on a conventional single crystal semiconductor substrate. A semiconductor integrated circuit device can be realized.

【図面の簡単な説明】 第1図(a)はSOI構造による半導体層にダイナミック
型の半導体記憶素子を形成した場合のメモリセルアレイ
のマスクパターン図、第1図(b)はその断面構造図で
ある。第2図(a)及びけb)は、第1図(a)及び
(b)と同様にSOI構造上の半導体層にダイナミック型
の半導体記憶素子を構成した場合のメモリセルアレイの
他のマスクパターン図とその断面構造図である。第3図
(a)はSOI構造による半導体層を積層構造にした三次
元構造の素子のマスクパターンと構造の概念図、第3図
(b)は第3図(a)の論理図である。第4図は絶縁層
上に多結晶シリコンをビーム照射により溶融成長して得
たSOI構造の半導体層で結晶粒界が生じている様子を示
した概念図である。 【符号の説明】 1,2,3:再結晶能動素子領域、4:絶縁層、5:結晶粒界、6,
7,8,9:非能動素子領域、11,12,13:再結晶能動素子領
域、14,15:非能動素子領域、16:絶縁層、17:記憶用キャ
パシタ、18:1層ポリシリコン(セルプレート)、19:2層
ゲートポリシリコン(ワード線)、20:メタル(ビット
線)、21:コンタクト、22:MOSトランジスタ、23:単結晶
シリコン、31:再結晶能動素子領域、32,33:非能動素子
領域、34:絶縁層、35:単結晶シリコン、36:ワード線、3
7:ビット線、38,39:ポリシリコン、40:MOSトランジス
タ、41:セルキャパシタ、51,52:半導体層、53,54:再結
晶能動素子領域、55,56,57,58:非能動素子領域、59:ゲ
ート入力、60:出力、61:電源1、62:電源2、63,64:ス
ルーホール。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is a mask pattern diagram of a memory cell array when a dynamic semiconductor memory element is formed in a semiconductor layer having an SOI structure, and FIG. 1 (b) is a sectional structure diagram thereof. is there. 2 (a) and 2 (b) are other mask patterns of the memory cell array when a dynamic semiconductor memory element is formed in the semiconductor layer on the SOI structure as in FIGS. 1 (a) and 1 (b). It is a figure and its sectional construction drawing. FIG. 3 (a) is a conceptual diagram of a mask pattern and structure of a device having a three-dimensional structure in which a semiconductor layer having an SOI structure has a laminated structure, and FIG. 3 (b) is a logic diagram of FIG. 3 (a). FIG. 4 is a conceptual diagram showing a state in which crystal grain boundaries are generated in a semiconductor layer having an SOI structure obtained by melting and growing polycrystalline silicon on an insulating layer by beam irradiation. [Explanation of symbols] 1,2,3: Recrystallization active element region, 4: Insulating layer, 5: Crystal grain boundary, 6,
7,8,9: Inactive element area, 11,12,13: Recrystallized active element area, 14,15: Inactive element area, 16: Insulating layer, 17: Storage capacitor, 18: 1 layer polysilicon ( Cell plate), 19: 2-layer gate polysilicon (word line), 20: Metal (bit line), 21: Contact, 22: MOS transistor, 23: Single crystal silicon, 31: Recrystallized active element region, 32, 33 : Inactive element region, 34: Insulating layer, 35: Single crystal silicon, 36: Word line, 3
7: bit line, 38, 39: polysilicon, 40: MOS transistor, 41: cell capacitor, 51, 52: semiconductor layer, 53, 54: recrystallized active element region, 55, 56, 57, 58: inactive element Area, 59: Gate input, 60: Output, 61: Power supply 1, 62: Power supply 2, 63, 64: Through hole.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−222959(JP,A) 特開 昭60−160646(JP,A) 特開 昭51−95742(JP,A) 特開 昭60−236261(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page    (56) References JP-A-59-222959 (JP, A)                 JP-A-60-160646 (JP, A)                 JP-A-51-95742 (JP, A)                 JP-A-60-236261 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.絶縁層上に、その面方位が必ずしも同一ではない複
数の再結晶化単結晶半導体領域と、該複数の再結晶化単
結晶半導体領域間に位置し、結晶粒界部を含む境界部半
導体領域とを有して成る半導体層を設けて成る半導体集
積回路素子において、 上記再結晶化単結晶半導体領域には、トランジスタ等の
能動素子の構成要素を形成し、一方、上記結晶粒界部を
含む境界部半導体領域には、コンデンサ等の受動素子の
構成要素又は配線部を形成して成ることを特徴とする半
導体集積回路素子。 2.特許請求の範囲第1項に記載の半導体集積回路素子
において、上記半導体層上に、更に、絶縁層を介して、
その面方位が必ずしも同一ではない複数の再結晶化単結
晶半導体領域と、該複数の再結晶化単結晶半導体領域間
に位置し、結晶粒界部を含む境界部半導体領域とを有し
て成る半導体層を設けて成り、上記各半導体層間の接続
を行うスルーホールを、上記境界部半導体領域に形成し
て成ることを特徴とする半導体集積回路素子。
(57) [Claims] A plurality of recrystallized single crystal semiconductor regions whose plane orientations are not necessarily the same on the insulating layer, and a boundary semiconductor region which is located between the plurality of recrystallized single crystal semiconductor regions and includes a crystal grain boundary portion. In a semiconductor integrated circuit element provided with a semiconductor layer comprising: a recrystallization single crystal semiconductor region, a constituent element of an active element such as a transistor is formed, while a boundary including the crystal grain boundary portion is formed. A semiconductor integrated circuit element, characterized in that a constituent element of a passive element such as a capacitor or a wiring portion is formed in the partial semiconductor region. 2. In the semiconductor integrated circuit element according to claim 1, on the semiconductor layer, further, via an insulating layer,
It has a plurality of recrystallized single crystal semiconductor regions whose plane orientations are not necessarily the same, and a boundary semiconductor region located between the plurality of recrystallized single crystal semiconductor regions and including a crystal grain boundary portion. A semiconductor integrated circuit device comprising a semiconductor layer, and a through hole for connecting the semiconductor layers to each other is formed in the boundary semiconductor region.
JP61024577A 1986-01-17 1986-02-05 Semiconductor integrated circuit device Expired - Lifetime JP2672810B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP61024577A JP2672810B2 (en) 1986-02-05 1986-02-05 Semiconductor integrated circuit device
US07/267,679 US4888631A (en) 1986-01-17 1988-11-03 Semiconductor dynamic memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61024577A JP2672810B2 (en) 1986-02-05 1986-02-05 Semiconductor integrated circuit device

Publications (2)

Publication Number Publication Date
JPS62181464A JPS62181464A (en) 1987-08-08
JP2672810B2 true JP2672810B2 (en) 1997-11-05

Family

ID=12142020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61024577A Expired - Lifetime JP2672810B2 (en) 1986-01-17 1986-02-05 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JP2672810B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619741B2 (en) * 1975-02-20 1986-03-25 Fujitsu Ltd
JPH0638485B2 (en) * 1983-06-01 1994-05-18 株式会社日立製作所 Semiconductor memory
JPS60160646A (en) * 1984-02-01 1985-08-22 Hitachi Ltd Manufacture of soi type semiconductor device
EP0168528B1 (en) * 1984-04-25 1989-03-08 Siemens Aktiengesellschaft One-transistor memory cell for high-density integrated dynamic semiconductor memories, and method for manufacturing the same

Also Published As

Publication number Publication date
JPS62181464A (en) 1987-08-08

Similar Documents

Publication Publication Date Title
JP3089570B2 (en) Integrated circuit comprising a plurality of transistor structures with shared electrodes
JPH0936252A (en) Semiconductor integrated circuit device and its manufacture
JPS61280651A (en) Semiconductor memory unit
JP2003068883A (en) Semiconductor storage device
JP3780003B2 (en) Semiconductor integrated circuit device
JP2998679B2 (en) Semiconductor memory device and method of manufacturing the same
JPH1041409A (en) Semiconductor device
JPS58204568A (en) Semiconductor device
JP2672810B2 (en) Semiconductor integrated circuit device
JPH07109874B2 (en) Semiconductor device and manufacturing method thereof
JPH10200063A (en) Semiconductor memory
JP3098786B2 (en) Semiconductor integrated circuit device
JPH01100960A (en) Semiconductor integrated circuit device
JPH0691216B2 (en) Semiconductor memory device
JP2689940B2 (en) Static memory cell
JPS60261167A (en) Semiconductor integrated circuit device
JPS6343901B2 (en)
JPS63104373A (en) Semiconductor memory device
JP2876665B2 (en) Semiconductor memory
JPH09283640A (en) Static semiconductor memory device
JPH06232372A (en) Semiconductor storage device
JP3058948B2 (en) Semiconductor device
JPH0817203B2 (en) Semiconductor device and manufacturing method thereof
JP2954252B2 (en) Semiconductor storage device
KR100190031B1 (en) Static random access memory device and fabricating method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term