JP2645759B2 - Method for manufacturing thermal head for uniformizing surface temperature of heating resistor protective layer with high accuracy - Google Patents

Method for manufacturing thermal head for uniformizing surface temperature of heating resistor protective layer with high accuracy

Info

Publication number
JP2645759B2
JP2645759B2 JP2217095A JP21709590A JP2645759B2 JP 2645759 B2 JP2645759 B2 JP 2645759B2 JP 2217095 A JP2217095 A JP 2217095A JP 21709590 A JP21709590 A JP 21709590A JP 2645759 B2 JP2645759 B2 JP 2645759B2
Authority
JP
Japan
Prior art keywords
surface temperature
pulse
protective layer
heating resistor
thermal head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2217095A
Other languages
Japanese (ja)
Other versions
JPH0499654A (en
Inventor
辰男 河野
光春 小俵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NORITAKE KANPANII RIMITEDO KK
Original Assignee
NORITAKE KANPANII RIMITEDO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NORITAKE KANPANII RIMITEDO KK filed Critical NORITAKE KANPANII RIMITEDO KK
Priority to JP2217095A priority Critical patent/JP2645759B2/en
Publication of JPH0499654A publication Critical patent/JPH0499654A/en
Application granted granted Critical
Publication of JP2645759B2 publication Critical patent/JP2645759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Apparatuses And Processes For Manufacturing Resistors (AREA)
  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、主としてファクシミリ、プリンター等に使
用されるサーマルヘッドの製造方法に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a thermal head mainly used for facsimile machines, printers, and the like.

[従来技術] 現像や定着が不要で、またメンテナンスの必要性がな
く、無騒音であり、高い信頼性を有するサーマルヘッド
が感熱記録紙の品質の向上と共に普及している。
[Prior Art] Thermal heads that do not require development and fixing, do not require maintenance, are noiseless, and have high reliability have become widespread as the quality of thermosensitive recording paper improves.

これらのサーマルヘッドのうち、厚膜サーマルヘッド
の従来より用いられている一般的な製造方法は次のごと
くである。
Among these thermal heads, a general method of manufacturing a thick-film thermal head that has been conventionally used is as follows.

すなわち、(1)グレース基板等の絶縁基板上に導体
を印刷焼成する。(2)フォトリソエッチング等によっ
て電極を形成する。(3)抵抗体パターンを印刷焼成す
る。(4)発熱抵抗体保護層(耐摩耗層)を印刷焼成す
る。(5)発熱素子温度コントロールのための電圧パル
スの印加により抵抗値を調整する。(6)抵抗体安定化
処理を行なう。
That is, (1) a conductor is printed and fired on an insulating substrate such as a grace substrate. (2) An electrode is formed by photolithographic etching or the like. (3) Print and bake the resistor pattern. (4) The heating resistor protective layer (abrasion resistant layer) is printed and baked. (5) The resistance value is adjusted by applying a voltage pulse for controlling the temperature of the heating element. (6) Perform resistor stabilization processing.

この製造方法において、特に、(5)抵抗値調整工程
では以下のような課題があった。
In this manufacturing method, in particular, there is the following problem in the (5) resistance value adjusting step.

厚膜サーマルヘッドの発熱体の表面温度のコントロー
ルは、発熱体の抵抗値を電圧パルス印加により変化させ
目的の抵抗値を調整し、抵抗値のばらつきを抑え、抵抗
値を表面温度の代用特性値としてとらえ、表面温度のば
らつきの調整は主に発熱抵抗体の抵抗値均一化調整を目
的として処理されることに主眼が置かれていた。
The surface temperature of the heating element of the thick film thermal head is controlled by changing the resistance value of the heating element by applying a voltage pulse, adjusting the target resistance value, suppressing the variation of the resistance value, and changing the resistance value to a substitute characteristic value of the surface temperature. Therefore, the main focus has been on adjusting the variation of the surface temperature mainly for the purpose of adjusting the resistance value of the heating resistor to be uniform.

[発明が解決しようとする課題] しかし、厚膜印刷方法により発熱抗体およびその保護
層を形成するためにどうしても膜厚にばらつきが生じ、
発熱抵抗体の抵抗値を調整しても、膜厚のばらつきがあ
るため印字パルス印加時の発熱抵抗体から保護層表面ま
での熱伝達経路に差が生じ、最終的に発熱紙と接触する
抵抗体保護層の表面温度が均一にならず、印字すると濃
度むらを生じると言う課題がある。この課題の原因は抵
抗体幅、抵抗体膜厚、抵抗体形状、抵抗体保護層膜厚に
ある。特に抵抗体形状においては印刷ペーストの粘度、
印刷条件(スナップディスタンス、スキージ角度、スキ
ージスピード、スキージ硬度、印圧)により形状が左右
され、抵抗体印刷直後の断面形状がきれいな凸状である
か、あるいは凹状であるかのいずれか、あるいは両者が
混在した状態に印刷される。このようなサーマルヘッド
の抵抗体部分の概略断面図を第1図(a)および(b)
に示す。なお、同図において、1は発熱抵抗体保護層、
2は発熱抵抗体、3は導体、4はグレーズ層、5はアル
ミナ基板をそれぞれ示す。
[Problems to be Solved by the Invention] However, in order to form the exothermic antibody and its protective layer by the thick film printing method, the film thickness inevitably varies,
Even if the resistance value of the heating resistor is adjusted, there is a variation in the film thickness, so that a difference occurs in the heat transfer path from the heating resistor to the surface of the protective layer when a print pulse is applied, and the resistance that finally contacts the heating paper. There is a problem in that the surface temperature of the body protective layer is not uniform, and density unevenness occurs when printing. The cause of this problem is the resistor width, the resistor film thickness, the resistor shape, and the resistor protective layer film thickness. Especially in the resistor shape, the viscosity of the printing paste,
The shape depends on the printing conditions (snap distance, squeegee angle, squeegee speed, squeegee hardness, printing pressure), and the cross-sectional shape immediately after printing the resistor is either a clean convex or concave shape, or both. Are printed in a mixed state. FIGS. 1A and 1B are schematic cross-sectional views of a resistor portion of such a thermal head.
Shown in In the drawing, reference numeral 1 denotes a heating resistor protective layer,
2 denotes a heating resistor, 3 denotes a conductor, 4 denotes a glaze layer, and 5 denotes an alumina substrate.

このため抵抗体焼成後の形状は印刷直後の抵抗体形状
に左右される。このようにして形成された抵抗体上に保
護層を形成するため、厚膜印刷方法により形成される保
護層は従来のばらつきに下部抵抗体層の膜厚ばらつき、
形状のばらつきが加味され、抵抗値を均一化調整しても
感熱紙と接触する発熱抵抗体保護層表面温度は均一化す
ることができないという課題があった。
For this reason, the shape after firing the resistor depends on the shape of the resistor immediately after printing. Since the protective layer is formed on the resistor thus formed, the thickness of the protective layer formed by the thick-film printing method may vary from the conventional variation to the variation in the thickness of the lower resistor layer.
Due to the variation in shape, even if the resistance value is adjusted to be uniform, there is a problem that the surface temperature of the heating resistor protective layer in contact with the thermal paper cannot be made uniform.

また、発熱抵抗体保護層もスクリーン印刷等による厚
膜形成のため、焼成したままの状態では表面粗度が荒
く、感熱紙との理想的な接触が十分でなく、均一な抵抗
値を達成しても十分な印字品位を期待できなかった。
In addition, since the heating resistor protection layer is also formed as a thick film by screen printing or the like, the surface roughness is rough in the as-fired state, the ideal contact with the thermal paper is not sufficient, and a uniform resistance value is achieved. However, sufficient print quality could not be expected.

そのため高品位な細かい階調表面を有するプリンター
用途には使用が難しい状況である。
Therefore, it is difficult to use it for a printer having a high-quality fine gradation surface.

本発明の目的は、かかる従来技術の課題を解決すべく
なされたもので、抵抗値均一化調整だけでは達成されな
かった発熱抵抗体保護層表面温度の均一化を達成し、印
字画質の濃度むらを解消し、高品質の印字が得られるサ
ーマルヘッドの製造方法を提供することにある。
An object of the present invention is to solve the problems of the related art, and achieves uniform heating of the surface of the heating resistor protective layer, which has not been achieved only by adjusting the uniformity of the resistance value, and achieves density unevenness of print image quality. It is an object of the present invention to provide a method of manufacturing a thermal head capable of achieving high quality printing by solving the problem.

[課題を解決するための手段] 本発明の上記目的は、次に示す製造方法によって達成
される。
[Means for Solving the Problems] The above object of the present invention is achieved by the following manufacturing method.

すなわち、本発明のサーマルヘッドの製造方法は、サ
ーマルヘッド発熱抵抗体への定格印字パルス印加時の発
熱抵抗体保護層表面温度の変化を赤外線輻射顕微鏡によ
り測定し、所定の表面温度および熱応答特性が得られる
まで電圧パルスを印加して発熱抵抗体特性を変化させ、
定格印字パルス印加時の表面温度および熱応答特性を調
整することを特徴とする。
That is, the method of manufacturing a thermal head of the present invention measures a change in the surface temperature of the heating resistor protective layer when a rated print pulse is applied to the thermal head heating resistor using an infrared radiation microscope, and determines the predetermined surface temperature and thermal response characteristics. Until a voltage pulse is obtained to change the heating resistor characteristics,
It is characterized in that the surface temperature and the thermal response characteristics when a rated printing pulse is applied are adjusted.

以下、本発明の製造方法について詳細に説明する。 Hereinafter, the production method of the present invention will be described in detail.

先ず、本発明では、第1図(a)および(b)に示さ
れるように、グレーズ基板上に、導体、電極、発熱抵抗
体を形成し、さらに発熱抵抗体保護層を形成する。
First, in the present invention, as shown in FIGS. 1 (a) and 1 (b), a conductor, an electrode, and a heating resistor are formed on a glaze substrate, and further, a heating resistor protection layer is formed.

次に、発熱抵抗体保護層を研磨する。従来技術で行な
われるように、ラッピングマシン等により、表面粗度Ra
=2μm以下に研磨する。このことによって、発熱抵抗
体保護層表面が平坦となり、感熱紙との接触が均一にな
る。
Next, the heating resistor protection layer is polished. As is done in the prior art, the surface roughness Ra
= 2 μm or less. As a result, the surface of the heating resistor protective layer becomes flat, and the contact with the thermal paper becomes uniform.

次いで、定格印字パルスを発熱抵抗体に印加すると共
に、その際の発熱抵抗体保護層表面温度の変化を赤外線
輻射顕微鏡により測定する。
Next, a rated print pulse is applied to the heating resistor, and a change in the surface temperature of the heating resistor protective layer at that time is measured by an infrared radiation microscope.

すなわち、黒体輻射の理論を応用した赤外線輻射温度
計測の技術を応用し、印字パルスによる発熱抵抗体保護
層の表面温度変化を測定しながら、熱応答特性をモニタ
ーする。検出器としてはIn Sb、Hg Cd Te等が用いら
れ、検出波長領域は、In Sbの1.8〜5.5μmからHg Cd T
eの6〜14μmまで広げることにより、耐摩耗層である
ガラス膜を透過してくる赤外線に邪魔されない信号を検
出する。サーマルヘッドの発熱抵抗体のピッチは微小な
ほど解像性が良いとされている。従って、200μm□以
下の微小領域の赤外線輻射温度計測の技術が要求され
る。
That is, the thermal response characteristic is monitored while measuring the surface temperature change of the heating resistor protective layer due to the printing pulse by applying the infrared radiation temperature measurement technology applying the blackbody radiation theory. As the detector, In Sb, Hg Cd Te, or the like is used, and the detection wavelength range is from 1.8 to 5.5 μm of In Sb to Hg Cd T
By extending e to 6 to 14 μm, a signal which is not disturbed by infrared rays transmitted through the glass film as the wear-resistant layer is detected. It is considered that the finer the pitch of the heating resistors of the thermal head, the better the resolution. Therefore, a technique of measuring infrared radiation temperature in a minute region of 200 μm □ or less is required.

この検出した信号に基づいて、発熱抵抗体保護層表面
温度が所定値から外れていたり、熱応答曲線の感度が所
定値から外れている場合には電圧パルスを印加する。印
加する電圧パルスの電圧は、最初の定格パルス印加時の
初期表面温度、熱応答曲線の感度と電圧パルス印加時の
表面温度変化率、熱応答曲線感度変化率によって予め算
出されるものである。
Based on the detected signal, a voltage pulse is applied when the surface temperature of the heating resistor protective layer deviates from a predetermined value or when the sensitivity of the thermal response curve deviates from a predetermined value. The voltage of the applied voltage pulse is calculated in advance based on the initial surface temperature at the time of applying the first rated pulse, the sensitivity of the thermal response curve, the rate of change of the surface temperature at the time of applying the voltage pulse, and the rate of change of the thermal response curve.

具体的な一例は次のようである。0.5μsのパルス幅
をもつ24Vの印字パルスを印字し、発熱抵抗体保護層の
表面温度を測定する。次に1μsのパルス幅を持つ電圧
パルスを印加する。電圧は50Vとする。次に印字パルス
を印加し、表面温度を測定する、さらに、1μsの電圧
パルスを印加する。電圧は100Vとする。印字パルスを印
加し、表面温度を測定する、このようにして、パルス電
圧と表面温度の変化率の関係のテーブルを作成する。予
めパルス電圧と表面温度のテーブルを作成し、初期表面
温度を測定したら、自動的に印加するパルス電圧が算出
できるようにする。表面温度変化率と印加パルスエネル
ギーの関係を示すグラフを第2図に、またパルス電圧と
表面温度の関係を示すグラフを第3図にそれぞれ示す。
A specific example is as follows. A printing pulse of 24 V having a pulse width of 0.5 μs is printed, and the surface temperature of the heating resistor protective layer is measured. Next, a voltage pulse having a pulse width of 1 μs is applied. The voltage is 50V. Next, a printing pulse is applied to measure the surface temperature, and a voltage pulse of 1 μs is applied. The voltage is 100V. A printing pulse is applied to measure the surface temperature. In this way, a table of the relationship between the pulse voltage and the rate of change of the surface temperature is created. A table of pulse voltage and surface temperature is created in advance, and after the initial surface temperature is measured, the pulse voltage to be automatically applied can be calculated. FIG. 2 is a graph showing the relationship between the surface temperature change rate and the applied pulse energy, and FIG. 3 is a graph showing the relationship between the pulse voltage and the surface temperature.

この印加する電圧パルスは、0.1〜10μsのパルス幅
の変化パルスである。抵抗値調整のための電圧パルス幅
は印字パルス幅の100分の1〜1000分の1程度に小さい
ものである。電圧パルスの印加により、抵抗値が変化
し、多くの場合は抵抗値は減少する。そのため、印字パ
ルスを印加した時に生じるジュール熱が変化する。次
に、再度、印字パルスを印加して表面温度を赤外線輻射
顕微鏡によって測定する。
The applied voltage pulse is a change pulse having a pulse width of 0.1 to 10 μs. The voltage pulse width for adjusting the resistance value is as small as about 1/100 to 1/1000 of the print pulse width. The application of the voltage pulse changes the resistance value, and often decreases the resistance value. For this reason, Joule heat generated when a print pulse is applied changes. Next, a printing pulse is applied again and the surface temperature is measured by an infrared radiation microscope.

さらに、発熱抵抗体保護層表面温度の調整が必要な場
合は、電圧パルスの電圧を増やし印加する。このような
作業を繰り返し、印字パルス印加時の所定の表面温度お
よび熱応答特性を得る。本発明に用いられる装置の概略
を第4図に示す。同図において、11はサーマルヘッド基
板、12はプローブ、13は赤外線輻射顕微鏡、14は検出
器、15はパルスジェネレータ、16はCPU、17はモニター
をそれぞれ示す。また、本発明の製造方法のフローチャ
ートを第5図に示す。
Further, when the surface temperature of the heating resistor protective layer needs to be adjusted, the voltage of the voltage pulse is increased and applied. Such operations are repeated to obtain a predetermined surface temperature and thermal response characteristics at the time of applying the printing pulse. FIG. 4 shows an outline of the apparatus used in the present invention. In the figure, 11 is a thermal head substrate, 12 is a probe, 13 is an infrared radiation microscope, 14 is a detector, 15 is a pulse generator, 16 is a CPU, and 17 is a monitor. FIG. 5 shows a flowchart of the manufacturing method of the present invention.

このように従来の技術が電圧パルス−抵抗値の関係か
ら表面温度の均一化を達成しようとするのに対し、本発
明では電圧パルス−表面温度の関係から表面温度の均一
化を達成しようとするものである。
As described above, the prior art attempts to achieve a uniform surface temperature from the relationship between the voltage pulse and the resistance value, whereas the present invention seeks to achieve a uniform surface temperature from the relationship between the voltage pulse and the surface temperature. Things.

[作用] 本発明では定格印字パルスによる発熱抵抗体保護層表
面温度の変化を赤外線輻射顕微鏡等でモニターし、所定
表面温度、所定熱応答感度から外れている場合は、電圧
パルス印加により発熱抵抗体抵抗値を変化させ、再度、
定格印字パルスを印加し表面温度および熱応答特性を調
べ、所定表面温度が達成されるまで以上のような工程を
繰り返すことにより、表面温度の均一化が図れ、このこ
とにより印字画質の濃度むらを減少させることができ
る。
[Operation] In the present invention, the change in the surface temperature of the heating resistor protective layer due to the rated printing pulse is monitored by an infrared radiation microscope or the like. If the surface temperature deviates from the predetermined surface temperature and the predetermined thermal response sensitivity, the heating resistor is applied by applying a voltage pulse. Change the resistance value and again
By applying the rated print pulse and examining the surface temperature and thermal response characteristics, the above steps are repeated until the predetermined surface temperature is achieved, so that the surface temperature can be made uniform and the density unevenness of the print image quality can be reduced. Can be reduced.

[実施例] 以下、本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

実施例 先ず、グレーズ基板上に金レジネートで導体膜を形成
した。次に、フォトリソエッチング法により導体層の電
極リード部ファインパターンを形成した。次いで、コモ
ン電極を印刷、焼成し形成し、その後、酸化ルテニウム
およびガラスを主成分とする抵抗ペーストを用いてスク
リーン印刷および焼成を行い、抵抗体を形成した。さら
に、ガラスペーストを用いて抵抗体保護層(耐摩耗層)
を形成した。次に発熱抵抗体保護層形成後、保護層をラ
ッピングマシン等で研磨した。このとき、表面粗度Ra=
2μm以下とした。
Example First, a conductor film was formed on a glaze substrate using gold resinate. Next, a fine pattern of an electrode lead portion of the conductor layer was formed by a photolithographic etching method. Next, a common electrode was formed by printing and firing, and then screen printing and firing were performed using a resistance paste containing ruthenium oxide and glass as main components to form a resistor. Furthermore, using a glass paste, a resistor protection layer (abrasion resistant layer)
Was formed. Next, after forming the heating resistor protection layer, the protection layer was polished with a lapping machine or the like. At this time, the surface roughness Ra =
It was 2 μm or less.

このようにして得られたサーマルヘッドの定格印字パ
ルス印加時の抵抗体保護層の表面温度を赤外線輻射顕微
鏡で測定した。次に所定表面温度、熱応答感度を得るた
め、予め作成したパルス電圧−表面温度テーブルから所
定の電圧値の電圧パルスを選択し、印加する。発熱抵抗
体特性を変化させた後、再度、定格印字パルスを印加し
た。これらの工程を所定表面温度、熱応答特性が得られ
るまで繰り返した。
The surface temperature of the resistor protective layer of the thus obtained thermal head when a rated print pulse was applied was measured by an infrared radiation microscope. Next, in order to obtain a predetermined surface temperature and thermal response sensitivity, a voltage pulse having a predetermined voltage value is selected and applied from a pulse voltage-surface temperature table created in advance. After changing the heating resistor characteristics, a rated print pulse was applied again. These steps were repeated until a predetermined surface temperature and thermal response characteristics were obtained.

これらを繰り返した後、赤外線輻射顕微鏡により所定
表面温度、熱応答感度を達成したことを確認した。
After repeating these, it was confirmed by an infrared radiation microscope that the predetermined surface temperature and thermal response sensitivity were achieved.

このようにして抵抗体保護層の定格印字パルス印加時
の表面温度が均一な厚膜サーマルヘッドが得られた。こ
の方法で発熱抵抗体を処理した後、抵抗値を測定すると
定格印字パルス印加時の表面温度が均一であるにも拘ら
ず、抵抗値のばらつきは表面温度のばらつきよりも大き
かった。
Thus, a thick-film thermal head having a uniform surface temperature at the time of application of the rated printing pulse of the resistor protective layer was obtained. After treating the heating resistor by this method, when the resistance value was measured, the variation in the resistance value was larger than the variation in the surface temperature, even though the surface temperature at the time of application of the rated print pulse was uniform.

これに対し、従来のパルストリミング方法は、抵抗値
を測定し、電圧パルスを印加して所定抵抗値に調整する
ものであるが、この方法では抵抗体および保護層の膜厚
むらによる表面温度の局部的不均一が認められる。
On the other hand, the conventional pulse trimming method measures a resistance value and applies a voltage pulse to adjust the resistance value to a predetermined value. In this method, however, the surface temperature of the resistor and the protective layer due to uneven film thickness is reduced. Local unevenness is observed.

両者の印字画質を比較すると明らかな画質の向上が認
められる。
Comparing the print quality of the two, a clear improvement in the image quality is recognized.

[発明の効果] 本発明の製造方法により得られるサーマルヘッドは、
発熱抵抗体保護層表面温度のばらつきが少ないので、サ
ーマルヘッドの印字濃度むらが解消し、高品質の印字が
得られる。
[Effects of the Invention] A thermal head obtained by the manufacturing method of the present invention includes:
Since there is little variation in the surface temperature of the heating resistor protective layer, uneven printing density of the thermal head is eliminated, and high quality printing is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)および(b)は、サーマルヘッドの抵抗体
部分の概略断面図、 第2図は、表面温度変化率と印字パルスエネルギーの関
係を示すグラフ 第3図は、パルス電圧と表面温度の関係を示すグラフ、 第4図は、本発明に用いられる装置の概略図、 そして、 第5図は、本発明の製造方法のフローチャート。
1 (a) and 1 (b) are schematic cross-sectional views of a resistor portion of a thermal head, FIG. 2 is a graph showing a relationship between a surface temperature change rate and a printing pulse energy, and FIG. FIG. 4 is a graph showing a temperature relationship, FIG. 4 is a schematic diagram of an apparatus used in the present invention, and FIG. 5 is a flowchart of a manufacturing method of the present invention.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】サーマルヘッド発熱抵抗体への定格印字パ
ルス印加時の発熱抵抗体保護層表面温度の変化を赤外線
輻射顕微鏡により測定し、所定の表面温度および熱応答
特性が得られるまで電圧パルスを印加して発熱抵抗体特
性を変化させ、定格印字パルス印加時の表面温度および
熱応答特性を調整することを特徴とするサーマルヘッド
の製造方法。
An infrared radiation microscope is used to measure the change in the surface temperature of the heat-generating resistor protective layer when a rated print pulse is applied to the heat-generating resistor of the thermal head, and a voltage pulse is applied until a predetermined surface temperature and thermal response characteristics are obtained. A method of manufacturing a thermal head, comprising: changing the characteristics of a heating resistor by applying the same to adjust a surface temperature and a thermal response characteristic when a rated print pulse is applied.
JP2217095A 1990-08-20 1990-08-20 Method for manufacturing thermal head for uniformizing surface temperature of heating resistor protective layer with high accuracy Expired - Lifetime JP2645759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2217095A JP2645759B2 (en) 1990-08-20 1990-08-20 Method for manufacturing thermal head for uniformizing surface temperature of heating resistor protective layer with high accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2217095A JP2645759B2 (en) 1990-08-20 1990-08-20 Method for manufacturing thermal head for uniformizing surface temperature of heating resistor protective layer with high accuracy

Publications (2)

Publication Number Publication Date
JPH0499654A JPH0499654A (en) 1992-03-31
JP2645759B2 true JP2645759B2 (en) 1997-08-25

Family

ID=16698767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2217095A Expired - Lifetime JP2645759B2 (en) 1990-08-20 1990-08-20 Method for manufacturing thermal head for uniformizing surface temperature of heating resistor protective layer with high accuracy

Country Status (1)

Country Link
JP (1) JP2645759B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239689A (en) * 2000-02-28 2001-09-04 Ricoh Elemex Corp Thermal head, method and apparatus for adjusting thermal head, and method of manufacturing thermal head

Also Published As

Publication number Publication date
JPH0499654A (en) 1992-03-31

Similar Documents

Publication Publication Date Title
US4782202A (en) Method and apparatus for resistance adjustment of thick film thermal print heads
JP2645759B2 (en) Method for manufacturing thermal head for uniformizing surface temperature of heating resistor protective layer with high accuracy
JPS62122102A (en) Heat sensitive recording head and manufacture of the same
JP3321249B2 (en) Thermal print head
US4698643A (en) Serial type thermal head
JP2615633B2 (en) Manufacturing method of thermal head
JPS6292411A (en) Manufacture of thick film thermal head
JPS6183055A (en) Preparation of thermal head
JPS6183062A (en) Apparatus for preparing thermal head
JP2965339B2 (en) Manufacturing method of thermal head
JPS6183058A (en) Apparatus for preparing thermal head
JPH05258843A (en) Fixing heater and its manufacture
JPS6183059A (en) Apparatus for preparing thermal head
JPS6183066A (en) Apparatus for preparing thermal head
JPS6183060A (en) Apparatus for preparing thermal head
SU1729799A1 (en) Thermographic printer
JPS63125355A (en) Thick film thermal head
JPH07186429A (en) Manufacture of thermal print head
JPH0547961B2 (en)
JPH01135659A (en) Thick film thermal head
JPS6183054A (en) Preparation of thermal head
JPH0630885B2 (en) Method of manufacturing thermal head
JPS6292414A (en) Manufacture of thick film thermal head
JPH09267502A (en) Thermal head
JPH04232071A (en) Thermal head