JPH0499654A - Manufacture of thermal head for accurately making surface temperature of heat generating resistor protective layer uniform - Google Patents

Manufacture of thermal head for accurately making surface temperature of heat generating resistor protective layer uniform

Info

Publication number
JPH0499654A
JPH0499654A JP2217095A JP21709590A JPH0499654A JP H0499654 A JPH0499654 A JP H0499654A JP 2217095 A JP2217095 A JP 2217095A JP 21709590 A JP21709590 A JP 21709590A JP H0499654 A JPH0499654 A JP H0499654A
Authority
JP
Japan
Prior art keywords
surface temperature
protective layer
pulse
heat generating
generating resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2217095A
Other languages
Japanese (ja)
Other versions
JP2645759B2 (en
Inventor
Tatsuo Kono
河野 辰男
Mitsuharu Odawara
小俵 光春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2217095A priority Critical patent/JP2645759B2/en
Publication of JPH0499654A publication Critical patent/JPH0499654A/en
Application granted granted Critical
Publication of JP2645759B2 publication Critical patent/JP2645759B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electronic Switches (AREA)
  • Apparatuses And Processes For Manufacturing Resistors (AREA)

Abstract

PURPOSE:To make the surface temperature of a protective layer uniform, to eliminate density irregularity of a printing quality and to obtain a thermal head of high quality by measuring variation in the surface temperature of a heat generating resistor protective layer by an infrared ray radiation microscope at the time of applying a rated printing pulse to a thermal head heat generating resistor, and applying a voltage pulse until a predetermined surface temperature and a thermal response characteristic are obtained to vary heat generating resistor characteristics. CONSTITUTION:A conductor, electrodes, a heat generating resistor are formed on a glazed board, a heat generating resistor protective layer is further formed, and polished to flatten the surface. Then, a rated printing pulse is applied to the generator, and variation in the surface temperature of the protective layer is measured by an infrared ray radiation microscope. If the surface temperature is deviated from a predetermined value, sensitivity of a heat response curve is deviated from a predetermined value, a voltage pulse is applied. This operation is repeated to obtain predetermined surface temperature and response characteristics at the time of applying a printing pulse.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、主としてファクシミリ、プリンター等に使用
されるサーマルヘッドの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a thermal head mainly used in facsimiles, printers, etc.

[従来技術] 現像や定着が不要で、またメンテナンスの必要性がなく
、無騒音であり、高い信頼性を有するサマルヘッドが感
熱記録紙の品質の向上と共に普及している。
[Prior Art] Thermal heads, which do not require development or fixing, do not require maintenance, are noiseless, and are highly reliable, have become popular as the quality of thermal recording paper improves.

こレラのサーマルヘッドのうち、厚膜サーマルヘッドの
従来より用いられている一般的な製造方法は次のごとく
である。
Among the thermal heads of Korera, the general manufacturing method conventionally used for thick film thermal heads is as follows.

すなわち、(1)グレーズ基板等の絶縁基板上に導体を
印刷焼成する。(2)フォトリソエツチング等によって
電極を形成する。(3)抵抗体パターンを印刷焼成する
。(4)発熱抵抗体保護層(耐摩耗層)を印刷焼成する
。(5)発熱素子温度コントロールのための電圧パルス
の印加により抵抗値を調整する。(B)抵抗体安定化処
理を行なう。
That is, (1) a conductor is printed and fired on an insulating substrate such as a glazed substrate. (2) Form electrodes by photolithography or the like. (3) Print and bake the resistor pattern. (4) Print and bake the heating resistor protective layer (wear-resistant layer). (5) Adjust the resistance value by applying a voltage pulse to control the heating element temperature. (B) Perform resistor stabilization treatment.

この製造方法において、特に、(5)抵抗値調整工程で
は以下のような課題かあった。
In this manufacturing method, there were the following problems, particularly in (5) resistance value adjustment step.

厚膜サーマルヘッドの発熱体の表面温度のコントロール
は、発熱体の抵抗値を電圧パルス印加により変化させ目
的の抵抗値に調整し、抵抗値のばらつきを抑え、抵抗値
を表面温度の代用特性値としてとらえ、表面温度のばら
つきの調整は主に発熱抵抗体の抵抗値均一化調整を目的
として処理されることに主眼が置かれていた。
The surface temperature of the heating element of a thick film thermal head is controlled by changing the resistance value of the heating element by applying a voltage pulse, adjusting it to the desired resistance value, suppressing the variation in resistance value, and using the resistance value as a substitute characteristic value for the surface temperature. Therefore, the main focus has been on adjusting surface temperature variations for the purpose of equalizing the resistance value of the heating resistor.

[発明が解決しようとする課題] しかし、厚膜印刷方法により発熱抵抗体およびその保護
層を形成するためにどうしても膜厚にばらつきが生じ、
発熱抵抗体の抵抗値を調整しても、膜厚にばらつきがあ
るため印字パルス印加時の発熱抵抗体から保護層表面ま
での熱伝達径路に差が生じ、最終的に感熱紙と接触する
抵抗体保護層の表面温度か均一にならず、印字すると濃
度むらを生しると言う課題かある。この課題の原因は抵
抗体幅、抵抗体膜厚、抵抗体形状、抵抗体保護層膜厚に
ある。特に抵抗体形状においては印刷ペーストの粘度、
印刷条件(スナップデイスタンス、スキージ角度、スキ
ージスピード、スキージ硬度、印圧)により形状が左右
され、抵抗体印刷直後の断面形状がきれいな凸状である
か、あるいは凹状であるかのいずれか、あるいは両者が
混在した状態に印刷される。このようなサーマルヘッド
の抵抗体部分の概略断面図を第1図(a)および(b)
に示す。なお、同図において、1は発熱抵抗体保護層、
2は発熱抵抗体、3は導体、4はグレーズ層、5はアル
ミナ基板をそれぞれ示す。
[Problems to be Solved by the Invention] However, in order to form the heating resistor and its protective layer using the thick film printing method, variations in film thickness inevitably occur.
Even if the resistance value of the heating resistor is adjusted, due to variations in film thickness, there will be differences in the heat transfer path from the heating resistor to the surface of the protective layer when a printing pulse is applied, and the resistance that ultimately comes into contact with the thermal paper will vary. There is a problem in that the surface temperature of the body protection layer is not uniform, resulting in uneven density when printed. The cause of this problem lies in the width of the resistor, the thickness of the resistor, the shape of the resistor, and the thickness of the resistor protective layer. Especially when it comes to resistor shapes, the viscosity of printing paste,
The shape depends on the printing conditions (snap distance, squeegee angle, squeegee speed, squeegee hardness, printing pressure), and the cross-sectional shape immediately after printing the resistor is either convex or concave, or Both are printed in a mixed state. A schematic cross-sectional view of the resistor portion of such a thermal head is shown in FIGS. 1(a) and 1(b).
Shown below. In addition, in the same figure, 1 is a heating resistor protective layer,
2 is a heating resistor, 3 is a conductor, 4 is a glaze layer, and 5 is an alumina substrate.

このため抵抗体焼成後の形状は印刷直後の抵抗体形状に
左右される。このようにして形成された抵抗体上に保護
層を形成するため、厚膜印刷方法により形成される保護
層は本来のばらつきに下部抵抗体層の膜厚ばらつき、形
状のばらつきか加味され、抵抗値を均一化調整しても感
熱紙と接触する発熱抵抗体保護層表面温度は均一化する
ことかテキないという課題があった。
Therefore, the shape of the resistor after firing depends on the shape of the resistor immediately after printing. In order to form a protective layer on the resistor formed in this way, the protective layer formed by the thick film printing method takes into account variations in the film thickness and shape of the lower resistor layer in addition to the original variations, making it difficult to resist. Even if the values were adjusted to be uniform, there was a problem in that it was not possible to equalize the surface temperature of the heating resistor protective layer that came into contact with the thermal paper.

また、発熱抵抗体保護層もスクリーン印刷等による厚膜
形成のため、焼成したままの状態では表面粗度が荒く、
感熱紙との理想的な接触が十分てなく、均一な抵抗値を
達成しても十分な印字品位を期待できなかった。
In addition, since the heating resistor protective layer is formed into a thick film by screen printing, etc., the surface roughness is rough in the as-fired state.
There was insufficient ideal contact with the thermal paper, and even if a uniform resistance value was achieved, sufficient printing quality could not be expected.

そのため高品位な細かい階調表現を有するプリンター用
途には使用が難しい状況である。
Therefore, it is difficult to use it for printers with high-quality, fine gradation expression.

本発明の目的は、かかる従来技術の課題を解決すへくな
されたもので、抵抗値均一化調整たけでは達成されなか
った発熱抵抗体保護層表面温度の均一化を達成し、印字
画質の濃度むらを解消し、高品質の印字が得られるサー
マルヘッドの製造方法を提供することにある。
It is an object of the present invention to solve the problems of the prior art, and to achieve uniformity of the surface temperature of the protective layer of the heating resistor, which could not be achieved only by adjusting the resistance value uniformity, and to improve the density of the printed image quality. An object of the present invention is to provide a method for manufacturing a thermal head that eliminates unevenness and provides high-quality printing.

[課題を解決するための手段] 本発明の上記目的は、次に示す製造方法によって達成さ
れる。
[Means for Solving the Problems] The above objects of the present invention are achieved by the following manufacturing method.

すなわち、本発明のサーマルヘッドの製造方法は、サー
マルヘッド発熱抵抗体への定格印字パルス印加時の発熱
抵抗体保護層表面温度の変化を赤外線輻射顕微鏡により
測定し、所定の表面温度および熱応答特性が得られるま
で電圧パルスを印加して発熱抵抗体特性を変化させ、定
格印字パルス印加時の表面温度および熱応答特性を調整
することを特徴とする。
That is, in the method for manufacturing a thermal head of the present invention, changes in the surface temperature of the heating resistor protective layer when a rated printing pulse is applied to the thermal head heating resistor are measured using an infrared radiation microscope, and a predetermined surface temperature and thermal response characteristics are determined. It is characterized in that the heating resistor characteristics are changed by applying a voltage pulse until the rated printing pulse is applied, and the surface temperature and thermal response characteristics are adjusted when the rated printing pulse is applied.

以下、本発明の製造方法について詳細に説明する。Hereinafter, the manufacturing method of the present invention will be explained in detail.

先ず、本発明では、第1図(a)および(b)に示され
るように、グレーズ基板上に、導体、電極、発熱抵抗体
を形成し、さらに発熱抵抗体保護層を形成する。
First, in the present invention, as shown in FIGS. 1(a) and 1(b), a conductor, an electrode, and a heating resistor are formed on a glazed substrate, and a heating resistor protective layer is further formed.

次に、発熱抵抗体保護層を研磨する。従来技術で行なわ
れているように、ラッピングマシン等により、表面粗度
Ra−2μD以下に研磨する。このことによって、発熱
抵抗体保護層表面が平坦となり、感熱紙との接触か均一
になる。
Next, the heating resistor protective layer is polished. As is done in the prior art, the surface is polished to a surface roughness of Ra-2 μD or less using a lapping machine or the like. As a result, the surface of the heating resistor protective layer becomes flat, and the contact with the thermal paper becomes uniform.

次いで、定格印字パルスを発熱抵抗体に印加すると共に
、その際の発熱抵抗体保護層表面温度の変化を赤外線輻
射顕微鏡により測定する。
Next, a rated printing pulse is applied to the heating resistor, and the change in surface temperature of the heating resistor protective layer at that time is measured using an infrared radiation microscope.

すなわち、黒体輻射の理論を応用した赤外線輻射温度計
測の技術を応用し、印字パルスによる発熱抵抗体保護層
の表面温度変化を計測しながら、熱応答特性をモニター
する。検出器としてはInSb 、Hg Cd Te等
か用いられ、検出波長領域は、InSbの1.8〜5.
5μmからHg Cd Teの6〜14μmまで広げる
ことにより、耐摩耗層であるガラス膜を透過してくる赤
外線に邪魔されない信号を検出する。サーマルヘッドの
発熱抵抗体のピッチは微小なほど解像性が良いとされて
いる。
That is, by applying infrared radiation temperature measurement technology that applies the theory of black body radiation, thermal response characteristics are monitored while measuring surface temperature changes of the heating resistor protective layer due to printing pulses. InSb, Hg Cd Te, etc. are used as a detector, and the detection wavelength range is 1.8 to 5.
By widening the range from 5 μm to 6 to 14 μm for Hg Cd Te, a signal is detected that is not disturbed by infrared rays that pass through the glass film, which is a wear-resistant layer. It is said that the smaller the pitch of the heating resistors of the thermal head, the better the resolution.

従って200μm口以下の微小領域の赤外線輻射温度計
測の技術が要求される。
Therefore, a technique for measuring infrared radiation temperature in a minute area of 200 μm or less is required.

この検出した信号に基づいて、発熱抵抗体保護層表面温
度が所定値から外れていたり、熱応答曲線の感度か所定
値から外れている場合には電圧パルスを印加する。印加
する電圧パルスの電圧は、最初の定格パルス印加時の初
期表面温度、熱応答曲線の感度と電圧パルス印加時の表
面温度変化率、熱応答曲線感度変化率によって予め算出
されるものである。
Based on this detected signal, a voltage pulse is applied if the surface temperature of the heat generating resistor protective layer deviates from a predetermined value or if the sensitivity of the thermal response curve deviates from a predetermined value. The voltage of the voltage pulse to be applied is calculated in advance based on the initial surface temperature when the first rated pulse is applied, the sensitivity of the thermal response curve, the rate of change in the surface temperature when the voltage pulse is applied, and the rate of change in the sensitivity of the thermal response curve.

具体的な一例は次のよってある。0.5μsのパルス幅
をもつ24Vの印字パルスを印字し、発熱抵抗体保護層
の表面温度を測定する。次に1μsのパルス幅を持つ電
圧パルスを印加する。電圧は50Vとする。次に印字パ
ルスを印加し、表面温度を測定する。さらに、1μsの
電圧パルスを印加する。電圧は100Vとする。印字パ
ルスを印加し、表面温度を測定する。このようにして、
パルス電圧と表面温度の変化率の関係のテーブルを作成
する。予めパルス電圧と表面温度のテーブルを作成し、
初期表面温度を測定したら、自動的に印加するパルス電
圧が算出できるようにする。表面温度変化率と印加パル
スエネルギーの関係を示すグラフを第2図に、またパル
ス電圧と表面温度の関係を示すグラフを第3図にそれぞ
れ示す。
A specific example is as follows. A 24 V printing pulse with a pulse width of 0.5 μs is printed, and the surface temperature of the heating resistor protective layer is measured. Next, a voltage pulse with a pulse width of 1 μs is applied. The voltage is 50V. Next, a printing pulse is applied and the surface temperature is measured. Furthermore, a voltage pulse of 1 μs is applied. The voltage is 100V. Apply a printing pulse and measure the surface temperature. In this way,
Create a table of the relationship between pulse voltage and surface temperature change rate. Create a table of pulse voltage and surface temperature in advance,
After measuring the initial surface temperature, the pulse voltage to be applied can be automatically calculated. FIG. 2 shows a graph showing the relationship between the rate of change in surface temperature and applied pulse energy, and FIG. 3 shows a graph showing the relationship between pulse voltage and surface temperature.

この印加する電圧パルスは0.1〜10μsのバ/1ス
幅の電圧パルスである。抵抗値調整のための電圧パルス
幅は印字パルス幅の 100分の1〜1000分の 工
程度に小さいものである。電圧パルスの印加により、抵
抗値が変化し、多くの場合は抵抗値は減少する。そのた
め、印字パルスを印加した時に生しるジュール熱か変化
する。次に、再度、印字パルスを印加して表面温度を赤
外線輻射顕微鏡によって測定する。
This applied voltage pulse has a bus width of 0.1 to 10 μs. The voltage pulse width for adjusting the resistance value is as small as 1/100th to 1000th of the printing pulse width. Application of a voltage pulse changes the resistance value, and in many cases the resistance value decreases. Therefore, the Joule heat generated when a printing pulse is applied changes. Next, a printing pulse is applied again and the surface temperature is measured using an infrared radiation microscope.

さらに、発熱抵抗体保護層表面温度の調整か必要な場合
は、電圧パルスの電圧を増やし印加する。
Further, if it is necessary to adjust the surface temperature of the heating resistor protective layer, the voltage of the voltage pulse is increased and applied.

このような作業を繰り返し、印字パルス印加時の所定の
表面温度および熱応答特性を得る。本発明に用いられる
装置の概略を第4図に示す。同図において、11はサー
マルヘッド基板、】2はプローブ、13は赤外線複写顕
微鏡、14は検出器、15はパルスジェネレーター 1
6はCPU、17はモニターをそれぞれ示す。また、本
発明の製造方法のフローチャートを第5図に示す。
Such operations are repeated to obtain a predetermined surface temperature and thermal response characteristics when a printing pulse is applied. FIG. 4 shows an outline of the apparatus used in the present invention. In the figure, 11 is a thermal head board, 2 is a probe, 13 is an infrared copying microscope, 14 is a detector, and 15 is a pulse generator 1
6 represents a CPU, and 17 represents a monitor. Further, a flowchart of the manufacturing method of the present invention is shown in FIG.

このように従来の技術か電圧パルス−抵抗値の関係から
表面温度の均一化を達成しようとするのに対し、本発明
では電圧パルス−表面温度の関係から表面温度の均一化
を達成しようとするものである。
In this way, while the conventional technique attempts to achieve uniform surface temperature from the relationship between voltage pulse and resistance value, the present invention attempts to achieve uniform surface temperature from the relationship between voltage pulse and surface temperature. It is something.

[作用] 本発明では定格印字パルスによる発熱抵抗体保護層表面
温度の変化を赤外線輻射顕微鏡等でモニターし、所定表
面温度、所定熱応答感度から外れている場合は、電圧パ
ルス印加により発熱抵抗体抵抗値を変化させ、再度、定
格印字パルスを印加し表面温度および熱応答特性を調べ
、所定表面温度が達成されるまで以上のような工程を繰
り返すことにより、表面温度の均一化が図れ、このこと
により印字画質の濃度むらを減少させることができる。
[Function] In the present invention, changes in the surface temperature of the heat generating resistor protective layer due to rated printing pulses are monitored using an infrared radiation microscope, etc., and if the surface temperature is outside the predetermined surface temperature and predetermined thermal response sensitivity, the heat generating resistor is removed by applying a voltage pulse. By changing the resistance value, applying the rated printing pulse again, checking the surface temperature and thermal response characteristics, and repeating the above steps until the specified surface temperature is achieved, the surface temperature can be made uniform. This makes it possible to reduce density unevenness in printed image quality.

[実施例] 以下、本発明の実施例について説明する。[Example] Examples of the present invention will be described below.

実施例 先ず、グレーズ基板上に金レジネートで導体膜を形成し
た。次に、フォトリソエツチング法により導体層の電極
リード部ファインパターンを形成した。次いで、コモン
電極を印刷、焼成し形成し、その後、酸化ルテニウムお
よびガラスを主成分とする抵抗ペーストを用いてスクリ
ーン印刷および焼成を行い、抵抗体を形成した。さらに
、ガラスペーストを用いて抵抗体保護層(耐摩耗層)を
形成した。次に発熱抵抗体保護層形成後、保護層をラッ
ピングマンン等で研磨した。このとき、表面粗度Ra−
2μm以下とした。
Example First, a conductor film was formed using gold resinate on a glazed substrate. Next, a fine pattern for the electrode lead portion of the conductor layer was formed by photolithography. Next, a common electrode was formed by printing and firing, and then screen printing and firing were performed using a resistance paste containing ruthenium oxide and glass as main components to form a resistor. Furthermore, a resistor protection layer (wear-resistant layer) was formed using glass paste. Next, after forming a heating resistor protective layer, the protective layer was polished using a lapping machine or the like. At this time, the surface roughness Ra-
It was set to 2 μm or less.

このようにして得られたサーマルヘッドの定格印字パル
ス印加時の抵抗体保護層の表面温度を赤外線輻射顕微鏡
で測定した。次に所定表面温度、熱応答感度を得るため
、予め作成したパルス電圧表面温度テーブルから所定の
電圧値の電圧パルスを選択し、印加する。発熱抵抗体特
性を変化させた後、再度、定格印字パルスを印加した。
The surface temperature of the resistor protective layer of the thus obtained thermal head was measured using an infrared radiation microscope when a rated printing pulse was applied. Next, in order to obtain a predetermined surface temperature and thermal response sensitivity, a voltage pulse of a predetermined voltage value is selected from a pulse voltage surface temperature table created in advance and applied. After changing the heating resistor characteristics, the rated printing pulse was applied again.

これらの工程を所定表面温度、熱応答特性が得られるま
で繰り返した。
These steps were repeated until a predetermined surface temperature and thermal response characteristics were obtained.

これらを繰り返した後、赤外線輻射顕微鏡により所定表
面温度、熱応答感度を達成したことを確認した。
After repeating these steps, it was confirmed using an infrared radiation microscope that a predetermined surface temperature and thermal response sensitivity had been achieved.

このようにして抵抗体保護層の定格印字パルス印加時の
表面温度が均一な厚膜サーマルヘッドが得られた。この
方法で発熱抵抗体を処理した後、抵抗値を測定すると定
格印字パルス印加時の表面温度が均一であるにも拘らず
、抵抗値のばらつきは表面温度のばらつきよりも大きか
った。
In this way, a thick film thermal head was obtained in which the surface temperature of the resistor protective layer was uniform when the rated printing pulse was applied. After the heat generating resistor was treated with this method, the resistance value was measured. Although the surface temperature was uniform when the rated printing pulse was applied, the variation in the resistance value was larger than the variation in the surface temperature.

これに対し、従来のパルストリミング方法は、抵抗値を
測定し、電圧パルスを印加して所定抵抗値に調整するも
のであるが、この方法では抵抗体および保護層の膜厚む
らによる表面温度の局部的不均一が認められる。
In contrast, the conventional pulse trimming method measures the resistance value and adjusts it to a predetermined resistance value by applying a voltage pulse. Local non-uniformity is observed.

両者の印字画質を比較すると明らかな画質の向上が認め
られる。
When comparing the print image quality of the two, a clear improvement in image quality is recognized.

[発明の効果] 本発明の製造方法により得られるサーマルヘッドは、発
熱抵抗体保護層表面温度のばらつきか少ないので、サー
マルヘッドの印字濃度のむらが解消し、高品質の印字が
得られる。
[Effects of the Invention] Since the thermal head obtained by the manufacturing method of the present invention has little variation in the surface temperature of the heating resistor protective layer, unevenness in print density of the thermal head is eliminated and high quality printing can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)および(b)は、サーマルヘッドの抵抗体
部分の概略断面図、 第2図は、表面温度変化率と印加パルスエネルギーの関
係を示すグラフ 第3図は、パルス電圧と表面温度の関係を示すグラフ、 第4図は、本発明に用いられる装置の概略図、そして、 第5図は、本発明の製造方法のフローチャート。
Figures 1 (a) and (b) are schematic cross-sectional views of the resistor portion of the thermal head. Figure 2 is a graph showing the relationship between the surface temperature change rate and applied pulse energy. Figure 3 is a graph showing the relationship between the pulse voltage and the surface temperature. A graph showing the relationship between temperatures; FIG. 4 is a schematic diagram of the apparatus used in the present invention; and FIG. 5 is a flowchart of the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1.サーマルヘッド発熱抵抗体への定格印字パルス印加
時の発熱抵抗体保護層表面温度の変化を赤外線輻射顕微
鏡により測定し、所定の表面温度および熱応答特性が得
られるまで電圧パルスを印加して発熱抵抗体特性を変化
させ、定格印字パルス印加時の表面温度および熱応答特
性を調整することを特徴とするサーマルヘッドの製造方
法。
1. The change in the surface temperature of the heating resistor protective layer when a rated printing pulse is applied to the thermal head heating resistor is measured using an infrared radiation microscope, and voltage pulses are applied until the predetermined surface temperature and thermal response characteristics are obtained. A method for manufacturing a thermal head, characterized by changing body characteristics and adjusting surface temperature and thermal response characteristics when a rated printing pulse is applied.
JP2217095A 1990-08-20 1990-08-20 Method for manufacturing thermal head for uniformizing surface temperature of heating resistor protective layer with high accuracy Expired - Lifetime JP2645759B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2217095A JP2645759B2 (en) 1990-08-20 1990-08-20 Method for manufacturing thermal head for uniformizing surface temperature of heating resistor protective layer with high accuracy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2217095A JP2645759B2 (en) 1990-08-20 1990-08-20 Method for manufacturing thermal head for uniformizing surface temperature of heating resistor protective layer with high accuracy

Publications (2)

Publication Number Publication Date
JPH0499654A true JPH0499654A (en) 1992-03-31
JP2645759B2 JP2645759B2 (en) 1997-08-25

Family

ID=16698767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2217095A Expired - Lifetime JP2645759B2 (en) 1990-08-20 1990-08-20 Method for manufacturing thermal head for uniformizing surface temperature of heating resistor protective layer with high accuracy

Country Status (1)

Country Link
JP (1) JP2645759B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239689A (en) * 2000-02-28 2001-09-04 Ricoh Elemex Corp Thermal head, method and apparatus for adjusting thermal head, and method of manufacturing thermal head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001239689A (en) * 2000-02-28 2001-09-04 Ricoh Elemex Corp Thermal head, method and apparatus for adjusting thermal head, and method of manufacturing thermal head

Also Published As

Publication number Publication date
JP2645759B2 (en) 1997-08-25

Similar Documents

Publication Publication Date Title
JPH0499654A (en) Manufacture of thermal head for accurately making surface temperature of heat generating resistor protective layer uniform
JPS62122102A (en) Heat sensitive recording head and manufacture of the same
US5097272A (en) Thermal head, producing method therefor, and recording apparatus using the thermal head
JPH0848026A (en) Printing control method for screen printing and screen printing apparatus
JP2590916B2 (en) Method of manufacturing thick film type thermal head
JP3797173B2 (en) Screen printing method
JP3133862B2 (en) Measurement method of moisture content of recording paper
JP2523934B2 (en) Resistance trimming method of thermal head
JPS6292411A (en) Manufacture of thick film thermal head
JPS6183055A (en) Preparation of thermal head
JPH05258843A (en) Fixing heater and its manufacture
JPS6292414A (en) Manufacture of thick film thermal head
JP3667862B2 (en) Method for adjusting heating element resistance value of thin film thermal print head and thin film thermal print head
JPS63178060A (en) Method for trimming heat generating resistor of thermal head
JPS60171178A (en) Thermal head
JP2965339B2 (en) Manufacturing method of thermal head
JPH03258561A (en) Adjusting method of thermal head resistance value
JPH0272966A (en) Thick-film type thermal recording head
JPH0533539B2 (en)
JPS63230361A (en) Thermal head
JPH02214672A (en) Manufacture of thick-film thermal head
JPS63141765A (en) Thermal recording head
JPS6183058A (en) Apparatus for preparing thermal head
JPH0516406A (en) Thermal head
JPS6183065A (en) Apparatus for preparing thermal had